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1. Introduction

The classical theory of General Relativity is very well ggkat the scale of our solar system.
This year, ninety years after the experimental verificabbGeneral Relativity by Eddington and
Dyson on the island of Principe, the International AstrogoYear is being celebrated. Although
the understanding and mastering of General Relativityceffeeyond the Newtonian limit has lead
to a high precision analysis of the energy loss of neutronbétery systems [1], the consequences
of General Relativity as a quantum theory are still elusigéhtexperimentally and theoretically.
To understand the structure of our present universe thé stinings of (quantum) gravity effects
for cosmology will have to be understood.

Contrary to gauge theories of spin at most one, a theoratitallysis of the quantization of
gravity is complicated by the non-linear nature of the gedional interactions. It is possible
to make an effective field theory description of gravity [Rh8wever the complexity introduced
by interactions and the consequences of diffeomorphis@arisnce, makes a traditional Feynman
graph approach to perturbative gravity rather quicklyactable [4].

Witten’s proposal [5] of gauge theory as a twistor stringotiyecombined with powerful meth-
ods based on on-shell unitarity have led to a rapid new pssgrecomputational techniques for
scattering amplitudes. The past decade has seen cruitlakdtieing taken in producing new results
for various standard model processes in pure QCD, heavk ggsics, mixed QCD/electroweak
processes (see [6] for a recent review) and on-shell grawiglitudes in various dimensions. Sur-
prising and crucial to the rapid progress have been a disedgmplicity of S-matrix elements in
maximally supersymmetric gauge theories [7-9].

The application of on-shell unitarity methods greatly glifigs various computations by incor-
porating only physical gauge degrees-of-freedom. Howsyemmetries are often not completely
realized via such an approach and additional organizdtfmireciples are needed.

Clearly an optimal form for the tree level amplitude provithe first step and a theoretical
guidance for higher loop computations. The simplicity eetamplitudes explains in part simplic-
ity at the loop level. But an additional understanding of te@sequences of symmetries at loop
orders is usually necessary for the full picture. In the aafstheories without color factors the
sum over all orderings of the external legs including alhplaand non-planar contributions lead to
important on-shell cancelations simplifying the struetof QED and gravity amplitudes [10-12].
The constraints from maximal supersymmetry is as well rgpoerly understood in perturbation
theory. For instance, in maximal supergravity four-graviemplitudes display a much better ul-
traviolet behavior [4,13-18], than predicted by a supars@malysis [19-21].

We now know that loop amplitudes in” = 4 super-Yang-Mills which are leading in color
enjoy a dual conformal symmetry and that one-loop ampliude/” = 8 supergravity satisfy a
no-triangle property [10, 11, 22-28]. Both of these prdpsrput strong constraints on the basis of
integral functions in which amplitudes can be expanded sé&lpgoperties are consequences of the
symmetries of the theory but are not so explicit in a unyabdsed method. Their origin can be
made more explicit by considering a string theory realoratf these theories [10, 11, 28].

In this talk we will discuss the recent progress for ampkisiéh field theories without color
factors. We will focus especially on results fotr” = 8 supergravity amplitudes. We will discuss
new techniques for amplitude computations and considepaissibility of recycling progress for
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computations of Yang-Mills amplitudes into results fongtaamplitudes via the Kawai-Lewellen-
Tye relations. We will also discuss how it is possible to wera fascinating simplicity of gravity
amplitudes via a combination of unitarity methods and the afsorganizational inspiration from
string theory.

2. Amplitudesin Gauge Theory

2.1 Critical ultraviolet behavior of .4 = 4 perturbation

The maximally supersymmetric case .of° = 4 Yang-Mills is known to be perturbatively
ultraviolet finite inD < 4 dimensions [20,29-31]. This can be shown by an implementaf half
(eight) of the total (sixteen) supersymmetries in the thedhis implies that thé.-loop four-gluon
amplitude has a ultraviolet behavior dominated by

%4(5) ~ \(D-4L-4p4 (2.1)

whereA is a ultraviolet cutoff. This power counting law implies fiemess in dimensiond < 4.
However, the situation is better than that because the @R+evmF* is related by supersymmetry
to the CP-odd anomaly canceling teBw F4 whereB is the NS-NS B-field. One therefore expect
these contributions to be one-loop exact [32—-36]. This mehat theL > 1 contributions must
have a low energy limit that behaves@#: F4 with B > 1 for L > 1, so that the prefactor contains
at least two extra powers of momentum. In fact, direct pbsdtive evaluations of the four gluon
amplitude [37,38] indicates th@ = 1 for allL > 1, leading to the ultraviolet behavior’of

Ay ~ NO=I892¢5tr(F4) for L > 2. 2.2)

We refer to [40] for a discussion of the ultraviolet behavibthe sub-leading contributions in the
color factors. In a unitarity computations the behavior gf €.2) is directly obtained from an
explicit realization of the supersymmetry, by consideriimgrams [38] constructed from the ‘rung
rule’ and via dual conformal symmetry [9, 41]. The resulteira unitarity based approach can be
independently confirmed by superspace methods as in ref2]19

At one-loop order in four dimensions one can expandadbint amplitudes in a set of basis
functions which consists of scalar boxes, triangles, brilitlegrals and possibly rational poly-
nomial functions [42, 43]. This expansion in terms of basisctions is symbolically illustrated
in figure 1. The split-up in basis functions holds via kineimagstrictions for four-dimensional
momenta and because one-loop tensor integrals in ampitaldeays can be reduced to scalar
integrals [42,44-46].

In D = 4— 2¢ dimensions the one-loappoint amplitude will take the schematic form

D ' Zn(0)
A = qu/dDegz Y (2.3)
1 n
Here > = (¢ —k; —--- — k)? are the propagators along the loop a#ti(¢) is a polynomial in

the loop momentunt¥. This polynomial is a function as well of the external monzeand the

1The tensotg is defined in the appendix 9.A of volume Il of [39].
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Figurel: Basis of one-loop scalar integrals given by a) a scalar btix four propagators to be integrated
over, b) scalar triangles with three propagators and c) larsibabble integral with only two propagators. In
D = 4 — 2¢ dimensions these diagrams carry all the ultraviolet anchiefl divergences of the amplitudes.
Possible finite contributions to the amplitude are absonbedrational polynomial function.

helicities of the external states. The maximal dependehtieedoop momentunt is n from the
three point coupling of the Yang-Mills theory. From the sation of half of the supersymmetries
in the loop (.e. eight supercharges) is reduced tm— 4. Hence the numerator takes the form
Pn(l) =5, 0y x Pl _,(£), whered} is a dimension four operator made from external momenta
and polarization vectors.

In each on-shell amplitude one can apply the following Passa/eltman reduction [47]
which trade one power of loop momentunto a propagator

2(0-ky)
D 1) D D )
/d £€2€ o2 /d (—= = kl /d 0= (). (2.4)

This identity is represented pictorially in figure 2. Sinbe numerator im-point .4 = 4 Super
Yang-Mills one-loop amplitudes have at mast- 4 powers of loop momenta after— 4 steps
of reductions (2.4) the complete amplitude can decompoeetpletely in a basis of scalar box
integral functions.

Figure 2: On-shell reduction of color ordered amplitudes.

2.2 QED amplitudes

We will now consider the one-loop-photon amplitudes in massless QED. Furry’s theorem
apply here and dictates that amplitudes with an odd numbextefnal photon lines are vanishing.
Thus we only need to consider amplitudes with an even nunftexternal lines.
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Each vertex will bring one power of momenta and make the natoer?,(¢) a polynomial
with at mostn powers of loop momenturh= ¢,,. Because of up ta powers of loop momenta in
the numerator of the-point amplitude, one would expect via a succession of Pass¥eltman
reductions that the one-loop amplitude could be expandediimear basis of scalar box, triangle
and bubble integral functions (see figure 1) and possibierait pieces.

+ Dimension
! shifted integrals

Figure 3: On-shell reduction of unordered amplitudes.

It was shown in ref. [12] that the one-loophoton amplitude in massless QED is completely
expressible in terms of scalar box integral functionsrior 8 external photons. The cancelation
of the scalar triangle and bubble functions was accountedhyfdhe sum over the permutations
imposed by the absence of color factors. This is a consequafrtbe fact that unordered colorless
amplitudes satisfy a new type of reduction formula derivedli0] where two powers of loop
momenta are traded for a propagator factor as depicted irefigju Such a reduction formula is
reflecting the milder infrared behavior of colorless QED anavity amplitudes compared to the
QCD amplitudes [48].

The reduction formula in figure 3 shows the appearance ofrbina shifted integrals. These
can be shown to cancel in the physical amplitude by gaugeiamee (In the string based formalism
used in [10, 12] the cancelation makes use of a canceled gapamechanism).

The application of this reduction formula gives that all éoep amplitudes witim > 8 external
photons can be expressed as a linear combination of scadantegral functions

(U2 T(1+e)r?(1—eg)

Ml—loop _
: (4m)2-¢ r(1—2¢)

(i, j, k) F(i, j,k1). (2.5)
a={1m,2me2mh3m,4m} (i,] k)

Here(i, j,k,l) is a parametrization of the four uncanceled propagatoff#idg the kinematic in-
variants of the scalar box functions [49]. We remark thas tigisult is helicity independent and
generalizes to all helicity configurations the result dedivby Mahlon for MHV amplitudes in
ref. [50].

We have in the previous equation introdu¢giwhich is the dimensionless scalar box function
defined as in ref. [51]

P (i j k) = 1 il

1
S (09t - adadad! [ oo [, @9
2 (2m2 1 |2
whereK} = x!' —xf, |, with 1 <i < 4 andxs = x; andK; are the external momenta at each corner

of the scalar box functions. We have used the notatfor- (x' —x|)2.
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The sum is over thd; = n one-mass scalar box functions, thg = n(n—5)/2 two-mass easy
boxes, thal, = n(n—5) two-mass hard boxes, tlilg = n(n—5)(n— 6)/2 three-mass boxes, and
thed, =n(n—5)(n—6)(n—7)/24 four-mass boxes [49]. Actually because of the soft liglation
between the two-mass easy and the one-mass scalar boohsetée have,

KlirEOFzme(k,-,kj + K, ki, kg + Ka) = FIM(k, kg + Ko, ki k) (2.7)

thus there is no need to distinguish between these funciindsseparate them into two different
sets. This gives a total of(n— 3) /2 functions.

Because of the vanishing of the multi-photon tree level d@mmiés no infrared singularities of
the QED amplitudes are present

k|+k|+1

o] = o, (2.8)

23
This lead ton(n— 3) /2 relations for each independent kinematic invariant [#8jwever the set of
relations appear to be redundant. The vanishing of thergdraingularities imply that the one-loop
multi-photon amplitudes are given by a ultraviolet andanéd finite combination of the scalar

box functions. As well this guaranties that the amplitudénisriant under the dual conformal
transformations of [9, 41].

3. Amplitudesin Gravity

TheD-dimensional Einstein-Hilbert Lagrangian has the form:
1
“ 3 / dCx/ g%, 3.1)

where 2<(24) = 2(2m)? Gy. Ignoring renormalisation issues it is possible to makeran& quanti-
zation of this action. It is conventional to ugg, = nuv + K4y hyy and work in harmonic gauge:
(0% hux = 2a“hA) For this gauge choice the vertex rules for the three- andpoint Einstein
vertices can be found to be [52, 53]. However this traditiamay of constructing amplitudes in
gravity lead to very cumbersome and unmanageable resuigicBHy we have for instance

3
Ve .oy (ke ko ks) =
1
EK(A') sym|— P3(ky - ko riuarivﬁriay) - PG(klvklﬁ NuaNay) + Pa(K1 - k2 riuvnaﬁriay)

+ 2Ps(k1 - k2 NuaNvongy) +4Ps(KavkiyNpa Npa) — 2P3(KygkepNavoy) + 2P3(KigkeyNuvag)

+ 2Ps(kioKiyNuvNap) +4Ps(KivkoyNguNaa) +4P3(KuwkepNgoNya) — 4P3(Ke - K2 NavNpeNyu) | -
(3.2)

Here 'sym’, denotes a symmetrization of each pair of indidesx), (vB3), ... and the mo-
mentum factors: ki, ko, ...) are to be associated with the index pairgo( v, ...) correspond-
ingly. The symbol: Px) means that a #-permutation of indices and correspondingenta has to
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carried out for this particular term. As seen the algebraigcture for the three-point vertex is al-
ready rather involved and complicated. At the level of Fegnrdiagram computations this vertex
structure combined with the generic factorial increaseomglexity with an increasing number of
external legs makes it extremely difficult to compute arogdits. Furthermore possible simplicity
of expressions are hidden in very involved cancelationgéeh a factorially increasing number of
terms as the number of external legs increases.
In the on-shell amplitude the three-point vertex can bettyraamplified using the mass-shell

relationsk; -k; = 0 fori, j = 1,2,3, and imposing the tracelessness condih% =0

K4

VP(1,2,3) = PRIV (K ko ke) = Thf“h‘z’ﬁhgy(klunw+ permg (kiq N, +perms .

We see that the three points vertex in the on-shell amplititigally takes the very suggestive form
Vo iy~ (Va2 with iy ~ gyt h5hg (ke v + perms. This is a factorization which is highly
surprising from the Lagrangian perspective (3.2). Suctediom indicates clearly that the structure
of on-shelln-graviton amplitudes will take a simpler form than naivekpected.

Field theory tree-level amplitudes can be derived in aniiefit@nsion limit @’ — 0) of string
graviton amplitudes. A generatpoint scattering amplitude for a closed string will be cecied

to that of two open strings through [54]:

///rsclosed string _ , n—2 zeindn(a,g/)ALeft(open string(a(l)’ . ’a(n))Aﬂght(open string(a/(l)’ -..,d'(n)).
0,0'€S/Zn
(3.3)

Here o and g’ are permutations i%,/Zn of the set of all permutations, but with cyclic rotations
removed andpb(o,0’) is a phase factor depending on the kinematics invariants. open string
amplitudes are the tree-level color-ordered gauge theanjap amplitudesAl®°Pe" '8 qefined
as

dntrQE(l’ 27 EEEE) n) = g$Rﬂ2 z Tr (Tacr(l)Taa(z) e Tao(n) ) Ageempen String(a(l)v EER) O'(n)) . (34)
0€S/Zn

TheT?# are fundamental representation matrices for the YangsMaluge grouU(N.), normal-
ized so that TfT2TP) = 52°.
In the field theory limita’ — 0 this expression becomes

Y12, ) =K"2 S 179 (s)) AR(0(1), 0 (n) A*(a’(1), -+, a"(n)), (3.5)
0,0'€S,/Zn

where f,f;g’ (sj) is a homogeneous rational function of order 3 in the kinematic invariants
sj = (ki +kj)2, such thatf %% (A2s;) = A20-3) £9:7 (), assuring that the gravity tree amplitude
has the correct pole structures, aiff%(o (1), -- ,0(n)) is the field theory limit of the open string
n-point amplitude.

The origin of the functionf,f_’g/ (sj) can be understood as follows. If one rescales the external
momenta ag; — A k; then-gluon Yang-Mills amplitude scale as

ATee~ A, (3.6)
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expressing the fact that the three- and four-point ampisudad to local interactions of respective
form tr([A,,Ay]0FAY)) and t([A,, A)][A¥,AY]). In the case of gravity since the Einstein-Hilbert
action (3.1) gives contributions of ordét(k?) to any number of external graviton we must have,

M A2 (3.7)

This implies that in the KLT relation (3.5) a rational furatiof ordem— 3 in the external momenta
must multiply the product of Yang-Mills amplitudes. Trem#| amplitudes are presented in [54]
in this form. The functionf U’a/(Sj) is a polynomial of orden— 3.

A particular case of the expression (3.5) is a left-right syetric presentation of the gravity
amplitude [55,56] that is obtained by using the same badisnations for the left and right moving
open string amplitudes

ME®(1,2,3) = —i k |AY®Y(1,2,3)]2, (3.8)

Using that
1 4 .
AT, j k| :—t"‘l‘“"‘*rlF('? . 3.9
a- (s J, K1) S5 8 1 Mpi_1 My (3.9)

(with Fin = K hi. —Kihi and (i, j,k,1) being a permutation of the labels of the external states
{1,2,3,4}), it is immediate to massage the four-point KLT relationoir left/right-symmetric
form

AMEE(1,2,3,4) = —iK? (s13]A5*%(1,2,3,4)| +512|AGP(1,3,2,4) ° + 514 |A;°%(1,4,2,3)?) .
(3.10)

At five-point order a left/right symmetric form valid for dflelicity configurations has been pre-
sented in [56]

AME(1,2,3,4,5) = —ik3 [c1 |AI*%(1,2,3,4,5)7 + ¢, |AL®%(1,4,3,2,5) 2 (3.11)
+ c3(Al%(1,2,3,4,5)A%%(1,4,3,2,5) + AI*%(1,4,3,2,5)Al%%(1,2,3,4,5))] ,

where|An(1,---,n)|2 = An(1,--- ,n) Ay(1,---,n). In this form the coefficients; (depending only
on the kinematic variables) are not always polynomials lauit loe rational functions of degree
n—3.

Such relations in field theory between gravity amplitudesuass of left/right products of color
stripped gauge theories have been confirmed [4, 54, 57] golitidy presented for an arbitrary
number of legs in [22]. These relations do not require theterice of an underlying consistent
string theory and hold in any dimensions or massless md&8&5p]. In particular field theoretic
derivations of relations of the form (3.5) have been praskint [56] and using helicity formalism
in four dimensions in [55, 60].

3.1 Relations between .4 = 4 Super Yang-Millsand .4 = 8 Supergravity

The KLT relations presented in the previous section indi¢hat at the field theory level the
relation between gravity amplitudes and Yang-Mills amyalés amounts to replacing gauge degree
of freedom of the Yang-Mills fields by Lorentz degrees of ttems as follows

A= 7,0, (3.12)
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Such a correspondence is compatible with extended supersymn and can be used naively to
promote. 4" = 4 super-Yang-Mills invariants into higher-derivativé& = 8 super-invariants.

Since the full diffeomorphism invariance carries even mgymmetry (For example Ricci
cycling identitiesR,ypo] = 0) it is however not possible to capture all of these by suctap [&1].
The naive application of the above substitution rule onahE* operator would for instance lead
to a.# = 8 supergravity amplitude with an apparent factorizatiorthef operatoD?R*. This
would consequently make the= 2 four-graviton amplitude diverge iD = 6 dimensions. This is
however contrary to explicit knowledge as this amplitude been shown to be finite up < 6
dimensions [62].

The main cause for this is that diffeomorphism invarianae 6 = 8 supergravity implies a
summation over all permutations of external legs. TherébyirvariantD’R* ~ (s+t+u)R* =0
vanish by on-shell momentum conservation (the correspondfang-Mills operatord?tr(F4) =
utr(FiRFRsFy) +t tr(FiRF4Fs) + str(FiFsFoF,) does not vanish on-shell because different color
orderings have different kinematic factors). The first manishing contribution is therefore of
orderD*R*. This provides a suitable structure for the two-loop ampl kinematic factor. For the
higher-loop amplitudes which hay& > 3 for L > 3 [13, 16] this does however neither give the
correct form.

One thus have to be careful with such arguments since gréhdtyries carry symmetries be-
yond what is provided via two copies of the gauge transfaiematof Yang-Mills theories.

An important consequence of the full crossing symmetry awvily theories is that infrared
divergences in quantum gravity can be treated as in QED. Bheyalso much milder than in
color ordered theories like QCD. Hence although it looke [i)kavitational interactions are much
more complicated than gauge theory ones they have in fadiadd simplicity. This is also the
case in QED which similarly has full crossing symmetry. Thés the consequence that one-loop
QED and.#" = 8 supergravity loop amplitudes enjoy extra cancelatioadifeg to the no-triangle
property [11, 26].

3.2 No-triangle property of .4 = 8 supergravity amplitudes

Historically computations of one-loop amplitudes far = 4 super Yang-Mills and+ =8
supergravity was first carried out by Green, Schwarz andkBnimef. [63]. They obtained the four
point one-loop amplitude in both theories by taking the lowengy limit of string theory:

/%P (1,2,3,4) = Kopenx la(s 1),

| (3.13)
%Oop(:L? 27 37 4) = Kclosed(|4(57t) + |4(S> U) + |4(t7 U)) .

Here we have given the partial amplitude for the orderinghef éxternal leg¢l,2,3,4) and set
Kopen= St x Ale(1,2 3, 4) =t ™ 4 R4 . and definecKgoseq= Stux .Z¢(1,2,3,4) =
Kope,Kopen: K*tgtgR?. In this formulals(s,t) denotes the scalar box integral with legs attached
in the leading in color order 1234s, t andu denotes the usual Mandelstam variables (coupling
constants have here been suppressed).

In the case of /" = 8 supergravity the loop momentum factor in the numeratorhefrt
graviton one-loop amplitude in eq. (2.3) is given by a polyma of degree at mostr— 8. Eight
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powers of momenta are canceled by supersymmetry. Thisasfiie factorization of the operator
of dimension eight in front of the loop amplitude

Pon(l) ~ Og 17778, for L~ oo, (3.14)

A power counting of infrared divergences based on the trawdit color ordered Passarino-Veltman
reduction (see figure 2) of#" = 8 supergravity imply that the one-loop amplitude with> 7
gravitons would contain integral functions other than acabx integralsi.e. scalar triangles and
bubbles and rational polynomials. However explicit conagiohs in ref. [22] of the five and six-
point MHV amplitudes evaluated using unitarity techniques surmglgishowed the amplitude to
consist solely of box integral functions. It was conjectutbat this behavior should hold for all
MHYV amplitudes via consistency of factorizations and amalhsatz consisting of box functions
in the MHV case was presented. In ref. [23] = 8 supergravity were reanalyzed in the context
of new results and it was postulated that the ‘only boxespprty was a general feature of all
/= 8 amplitudes in all helicity configurations. In ref. [24, 28]s was phrased the “no-triangle
hypothesis” for.#” = 8 and it was explicitly checked to hold for six-poiRMHYV amplitudes and
higher.

The non-presence of all contributions more singular thansitalar box amplitude has the
same origin as in the case of the QED amplitude [10-12]. Itsfljidue to crossing symmetry and
secondly to the decoupling of longitudinal modes from tiféeedmorphism gauge invariance. For
theories with crossing symmetry the unordered reductiomtdita depicted (see figure 3) should be
applied.

A generalization of this result for multi-loop amplitudesiot straightforward since no generic
basis of integral functions are known for an arbitrary nundddegs. The requirement of crossing
symmetry in colorless theories demands the presence oplatar and non-planar integrals in the
amplitude. This makes the construction of a basis of intdgrections that captures the ultraviolet
and infrared behavior of higher loop amplitudes even mansiet [64—67].

3.3 Higher-loop Amplitudes

At L loop order linearized on-shell supersymmetry implies thatcritical dimension for ul-
traviolet divergences in the four-graviton amplitude igegi by
c
D > 2+T”, (3.15)
indicating that supergravity theories are always finitewo dimensions. In the case when
is bounded from above the loop order for the appearance ofirftdogarithmic divergence is
determined by the value of6 c » < 18. ¢ 4 depends on the implementation of the linearized on-
shell supersymmetries and determines also the mass dionesfdhe first possible counter-term to
the theory [14,68-71].
A L loop n-graviton amplitude has mass dimension
4] = mas§®-24+2, (3.16)

The low energy limit of the four-graviton amplitude latoops reads

4,7 = mas§® AL~ (6+20) g2Rpt (3.17)

10
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where we have used that” = 8 supergravity four-graviton amplitudes have a factoRbfand
allowed 3. powers of derivatives to be distributed on the four Riemamsors. The critical
dimension for ultraviolet divergences is given by

D> 2+ 6%2[3" . (3.18)
Whenp, =L at each loop order two extra powers of the external momemtéaatorized and

the critical dimension for ultraviolet divergences is givgy [13, 14]

D > D°:4+(_L3' (3.19)
This is the same critical dimension a§” = 4 super-Yang-Mills. By explicit evaluation of the
amplitude it has been shown to be valid in field theory up to-foap order [16-18].

As soon a$3, is bounded after some loop order, the theory will have amviltiet divergence
in four dimensions. The pure spinor formalism gives a cayntf supersymmetric zero modes
which are valid in all dimensions betweerkdD < 11 where 4" = 8 supergravity can be defined.
This construction implies [72] thgd, = L is valid for L < 6 as long as the small regulator is not
needed [40]. After six-loop order one needs to use the fellyltated version of the formalism [73]
and the question whethg still can increase is open [74]. In the case wifign= 6 for L > 6 the
critical dimension for the ultraviolet divergence is givenD > 2+ 18/L according to (3.18). This
indicates that in four dimensions the first divergence wadcur at nine-loop order [14].

The rule. = L is the optimal one for finiteness in four dimensions. Whenitioeeasing
the loop ordelL, with a growth of 3. slower thanL finiteness of the theory in four dimensions
is not possible. On the other hand@f grows faster thaih, the theory would too be finite. For
instance thd. loop (planar and non planar) ladder diagrams of the fowitma amplitudes are
all two-particle cut constructible and given by scaef diagrams with a prefactor satisfying the
rule B = 2(L —1). These diagrams are ultraviolet finite for< 6. This means that the leading
ultraviolet divergences aff” = 8 amplitudes are not contained in these ladder diagrams.

The absence of triangles and bubbles at one-loop orderampia general factorization the-
orems that higher-loop amplitudes cannot contain diagrfati®risable in one-loop amplitudes
where triangles or bubbles are present. This constraiettffthe structure of the higher loop
amplitude [15] but is not a sufficient condition for pertutiisa finiteness. For this further subtle
cancelations between triangle free contributions areireqi16].

4. Conclusions

The past two years have witnessed significant progress icottm@utation of loop amplitudes
in gauge theories. This progress for amplitude computstiam be extended, in many cases, to the-
ories incorporating gravity. Via this our understandingtpdoative maximal4” = 8 supergravity
have improved.

It is clear that the rble of extended supersymmetry in pbdtive /" = 8 supergravity is
beyond the superspace transformation properties of thdupt®f two. 4" = 4 super-Yang-Mills
theories. Actually the vacuum structure .of = 4 super-Yang-Mills and4” = 8 supergravity
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theories are very different. The one of = 8 supergravity is given in four dimensions by the
homogeneous spaceBf(7)/(SU(8)r/Z2) [75]. While the transformational properties of the local
symmetry groupSU(8)r is like a 'square’ of the grou®U(4)r (corresponding to eacht” = 4
super-Yang-Mills theory) there is no corresponding synmnet the global grouge77) in 4" =4
super-Yang-Mills.

TheEz(7) symmetry rotates the different vacua of = 8 supergravity and thus relates the per-
turbative contributions of the theory to the non-pertusteablack hole production at high-energy.
This is required for a consistent definition of the theory][76

The search for a fundamental theory of quantum gravity ik@tgoing. In these years we
are gaining a much needed understanding of the conceptsdottta formulation of such a theory.
In supergravity theories the réle of string theory duaditie important for their quantization and
thus give us a framework for gathering further knowledgeudlopmantum gravity, its fundamental
degrees of freedom and its relation to gauge theory. Regptite questions of ultraviolet finiteness
of .4 = 8 supergravity and the validity of th®& = L rule [13] would indeed be remarkable and
provide huge implications for non-supersymmetric lowsggedescriptions of quantum gravity
theories.
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