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1. Introduction

Cosmology is a natural setting to study quantum gravity,ciwimay provide answers to fun-
damental questions as why is the expansion of the unives®|c, can the initial singularity be
avoided, why does the vacuum energy “gravitate” so littlegi@ological Constant problem)?

In recent years it has emerged that the asymptotic safetyasog1—-3] could provide the right
framework to address the above questions. According toaghisoach the ultraviolet (UV) be-
havior of quantum gravity is controlled by a fixed point at a+aero value of the (dimensionless)
coupling constant, so that the dimensionful Newton’s camisteduces its strength at higher ener-
gies, it is thusantiscreened The non-perturbative renormalization group (RG) equatimployed
in this investigation predicts that the dimensionless amegical constant reaches a non-gaussian
fixed point (NGFP) in the infinite cutoff limit, so that the Flinstein-Hilbert Lagrangian is renor-
malizable at a non-perturbative level around this fixed poin

The gravitational antiscreening behavior is very similarthe running of the non-Abelian
gauge coupling in Yang-Mills Theory, but only after the oduction of the effective average ac-
tion and its functional renormalization group equationdoavity [4] detailed investigations of the
scaling behavior of the Newtons'’s constant have becomehpedd—19]. The non-perturbative
renormalization group equation underlying this approagfings a Wilsonian RG flow on a theory
space which consists of all diffeomorphism invariant fimals of the metrigy,,.

This framework turned out to be an ideal setting for invegtitg the asymptotic safety sce-
nario in gravity [1-3] and, in fact, substantial evidencesvieund for the non-perturbative renor-
malizability of Quantum Einstein Gravity. The theory emeggfrom this construction (“QEG") is
not a quantization of classical general relativity. Indtgts bare action corresponds to a nontrivial
fixed point of the RG flow and therefore ispgediction The effective average action [4, 20] has
crucial advantages as compared to other continuum impletiems of the Wilson RG, in particu-
lar it is closely related to the standard effective actiod defines a family of effective field theories
{Ik[guv],0 < k < o} labeled by the coarse graining sckleThe latter property opens the door to
a rather direct extraction of physical information from @ flow, at least in single-scale cases: If
the physical process or phenomenon under consideratiolvés/only a single typical momentum
scalepy it can be described by a tree-level evaluatiof gfy,v], with k = pg. The precision which
can be achieved by this effective field theory descriptiopethels on the size of the fluctuations
relative to the mean values. If they are large, or if more thae scale is involved, it might be
necessary to go beyond the tree analysis.

The qualitative scale dependence of Newton’s constant eagrdisped with the help of the
following physical argument. Let us imagine that in the éadistance limit the leading quantum
effects of the geometry are described by quantizing thelfiflactuations of the metrigy,. The
resulting theory is a minimallu coupled theory in a curveddgiound spacetime whose elementary
guanta, the gravitons, carry energy and momentum. The waaididhis theory will be populated
by virtual graviton pairs, and the problem is to understaog these virtual gravitons respond to
the perturbation by an external test body which we immergkarnvacuum. Assuming that also in
this situation gravity is universally attractive, the gtams will be attracted towards the test body.
It will thus become “dressed” by a cloud of virtual gravitosisrounding it so that its effective
mass seen by a distant observer is larger than it would besienalk of any quantum effects. This
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means that while in QED the quantum fluctuatisoseenexternal charges, in quantum gravity they
have anantiscreeningeffect on external test masses. The consequence of thises(Bgolanken
experiment entails Newton'’s constant becoming a scalerdiepe quantityG(k) which is small at
small distances ~ 1/k, and which becomes large at larger distances.

In QED the screening behavior is well-known but it is inté¢ireg to recall how this result is
obtained from the "renormalization group improvement'taadard device, in particle physics, in
order to add the dominant quantum corrections to the Bormoxppation of a scattering cross
section for instance. One starts from the classical pateatiergyV, (r) = € /4mr and replaces?
by the running gauge coupling in the one-loop approximation

(k) = &(ko)[1—bIn(k/ko)] ", b= € (ko)/6T. (1.1)

The crucial step is to identify the renormalization pdiwith the inverse of the distangeso that
result of this substitution reads

V(r) = —€(rgh)[1+blIn(ro/r) + O(e*)] /4w (1.2)

where the IR reference scalg= 1/ky has to be kept finite in the massless theory. We empha-
size that eq.(1.2) is the correct (one-loop, massless)itughbtential which is usually derived by
more conventional perturbative methods [21]. Obviousky plsition dependent renormalization
group improvemen#” — €?(k), k[ 1/r encapsulates the most important effects which the quantum
fluctuations have on the electric field produced by a pointgga

The effective field theory techniques proved useful for ateustanding of the scale dependent
geometry of the effective QEG spacetimes [22—-24]. In paldicit has been shown [6, 22] that
these spacetimes have fractal properties, with a fractaknsion of 2 at small, and 4 at large
distances. The same dynamical dimensional reduction veasaserved in numerical studies
of Lorentzian dynamical triangulations [25—-27] and in [Z8Connes et al. speculated about its
possible relevance to the non-commutative geometry oftdredard model.

In order to extract all the relevant information from the R@lation, it is thus necessary
to relate the cutoff scalk which corresponds to the resolution of the RG flow, to the sfiae
properties. This procedure is called “cutoff identificatidor which the relevant energy scatds
related to a characteristic length scale where the quariteemergyk propagate. In the case of
massless QED the choi&dl 1/r was clearly the only possible one, as there are no otheramgiev
scales in the problem. When several scales are presentdbeription which emerges from the
general theory of the Effective Average Action [20] is thatis defined at a scalke which is the
largestone of the various competing scales in the fluctuation deiemm of the Average Action,
Fl(f), namely

2 07Ty
N =5 (1.3)
where® is the so-called “blocked” field [29].
The difficulty arises when we decide to apply the same “rédipgravity by writing
k~1/0(x+)), £={(9uv) (1.4)

being/ a characteristic length where the fluctuations with endérgyopagate. The reason is that
the flow equation is by construction diffeomorphism invatiat anyk so that the RG flow itself
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does not know anything about the background field mejricthat has been used for projecting on
a finite-dimensional subspace of the “theory space”.

There are two possible strategies to overcome this issue.fifigt one amounts to choose a
fiducial metric which is aolutionof the Einstein equations and RG-improve it by substituthe
Newton constan® with the runningG(k) together with a cutoff identification of the type (1.4). The
limitation of this approach lies in the fact that in genetad improved metric may not be a solution
of Einstein equation, but one can imagine that this is a sofTbomas-Fermi” approximation
where only the leading quantum corrections are taken intout [30, 31]. The improvedy (k)
metric represents then a sort of “emergent” spacetime ig¢iser of the effective geometry [32—34]
according to the scale dependence of the Newton constant.

A second possibility is to consider the energy sdakessociated to the field strength itself
rather than to an observational scél@ his is motivated by the analogy with the QED (and QCD)
case, where higher loop contributions to the Uehling paéeisire obtained by renormalization
group improvement of the QERBctionby using the field strengttFWF“")l/4 as a cutoff instead
than I/r [35-37]. In this case the short distance correction to tatcspotential is obtained from
the non-linear differential equations

0.-D=J, D=EgE), E=—-0A° (1.5)

eE)=1- e log(eE/K3) + ...

whose solution reproduces the Uehling potential in the ldistance limit, but in general the solu-
tions of EQ.(1.5) include higher loop effects due to the hoearities of the effective action in the
short distance limit.

The two approaches discussed above are obviously reldtlegsain some limit. In the case
of Robertson-Walker spaces it will be shown that due to thg kiegh degree of symmetry of the
spacetime, the time-scale defined by “Hubble parameterdym=hessentially like the characteristic
time scale associated to the relevant curvature invar[@8ts40]. In the case of spherically sym-
metric spacetimes [30, 31,41, 42], near the singularityptioper distance of a radially free falling
observer behaves essentially ds/2,, beingW, the “Coulombian” component of the Weyl tensor.

From the above discussion it is then clear that in generaétisenot a preferred strategy to
perform the RG improvement in gravity. In some case it mightripre interesting to RG improve
solutionsand to make contact with an emergent spacetime descripitibie effective geometry. In
some other cases it could be more convenient to work with arR@dvement at the level dield
equationsor actions[42—-45].

Itis important to remark that it is not surprising that diffat cutoff might provide quantitavely
different evolutions, as usually thg-functions are not “universal” quantities. For instancésit
well known [46] that different realizations of the blockisfRG transformation applied to the Ising
model may provide different values for fixed points, as we essgentially using different type
of “microscopes®. On the other hand truly universal quantities, like theicaltexponents, are
essentially insensitive to the cutoff choice.

1From this point of view the criticism expressed in [47] shibnbt be seriously considered.
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In this review recent results obtained with the RG improvetad Einstein theory will be dis-
cussed in the framework QEG will be reviewed, with partica@laphasis on recent results obtained
in cosmology [40]. In particular in Sec.2 the RG evolutiortlef Newton constant and Cosmolog-
ical constant describing our Universe are described. In3Secovariant formalism to improve the
Einstein field equation is presented while in Sec.4 the RGawgd Robertson-Walker Cosmology
is discussed. In Sec.5 the basic mechanism to produce ttopgmtf the Universe is presented. In
Sec.6 the properties of a class of solutions of the RG equative discussed. In Sec.7 a mecha-
nism to produce a power-law inflation is studied. In Sec.8%@cl9 the properties of RG improved
Black Hole metric is studied. In Sec.10 the possibility iQaantum Gravity effects are present on
Astrophysical distances is reviewed. Sec.11 is devoteldg&bnclusions.

2. The RG trajectory of our Universe

It is possible to show that there exists a class of RG trajmstmbtained from QEG in the
Einstein-Hilbert approximation [4], namely those of theyfiE llla” [9] which possesses all the
gualitative properties one would expect from the RG trajgctiescribing gravitational phenomena
in the real Universe we live in. In particular they can havergl classical regime and a small,
positive cosmological constant in the infrared. Determgnits parameters from observations, one
finds [40] that, according to this particular QEG trajectahg running cosmological constaitk)
changes by about 120 orders of magnitude betweeslues of the order of the Planck mass and
macroscopic scales, while the running Newton cons&ik) has no strong-dependence in this
regime. Fork > mp;, the non-Gaussian fixed point which is responsible for tmemaalizability
of QEG controls their scale dependence. In the deep ultedvib— «), A(k) diverges ands(k)
approaches zero.

Is there any experimental or observational evidence thaddvbint at this enormous scale
dependence of the gravitational parameters, the cosneallogonstant in particular? As it was
stressed before, even though it is always difficult to giveezige physical interpretation to the RG
scalek it is fairly certain that any sensible identification lofn terms of cosmological quantities
will lead to ak which decreases during the expansion of the Universe. Aasecience/)\(K) will
also decrease as the Universe expands. Already the puraliyatjue assumption of positiveand
decreasingcosmological constant supplies an interesting hint as iolwphenomena might reflect
a possible\-running.

To make the argument as simple as possible, let us first @rsidniverse without matter, but
with a positive/A. Assuming maximal symmetry, this is nothing but de Sitteacsp of course. In
static coordinates its metric® = — (14 20y (r))dt2 + (1+2®y (1)) ~1dr2+r2(d62 +sin’ 6d¢?)
with ®n(r) = —% A r2. In the weak field and slow motion limiby has the interpretation of
a Newtonian potential, with a correspondingly simple pbgbkinterpretation. The left panel of
Fig.1 shows®y as a function ofr; for A > 0 it is an upside-down parabola. Point particles in
this spacetime, symbolized by the black dot in Fig.1, “ralivh the hill” and are rapidly driven
away from the origin and from any other particle. Now assunag the magnitude df\| is slowly
(“adiabatically”) decreased. This will cause the potdndig (r) to move upward as a whole, its
slope decreases. So the changé imcreases the particle’s potential energy. This is the Estp
way of understanding that@ositive decreasingosmological constant has the effect of “pumping”
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Figure 1: The left panel shows the quasi-Newtonian potential coording to de Sitter space. The curve
moves upward as the cosmological constant decreases. @ghhpanel the “realistic” RG trajectory.

energy into the matter degrees of freedom. More reali$ficale will describe the matter system
in a hydrodynamics or quantum field theory language and oliénwiude its backreaction onto

the metric. But the basic conclusion, namely that a slowehes® of a positivé transfers energy

into the matter system, will remain true.

We are thus led to suspect that, because of the decreasinmlogscal constant, there is a
continuous inflow of energy into the cosmological fluid caméa in an expanding Universe. It will
“heat up” the fluid or, more exactly, lead to a slower decreddbe temperature than in standard
cosmology. Furthermore, by elementary thermodynamigesillitincreasethe entropy of the fluid.

If during the timedt an amount of headQ > 0 is transferred into a volumé at the temperaturé
the entropy changes by an amoat8= dQ/T > 0. To be as conservative (i.e., close to standard
cosmology) as possible, we assume that this process isitgeerf not,dSis even larger.

In standard Friedmann-Robertson-Walker (FRW) cosmolbgyexpansion is adiabatic, the
entropy (within a comoving volume) is constant. It has alsvegen somewhat puzzling therefore
where the huge amount of entropy contained in the presentetsd comes from. Presumably
it is dominated by the CMBR photons which contribute an anairabout 188 to the entropy
within the present Hubble sphere. (We use units suchkgat 1. ) In fact, if it true that no
entropy is produced during the expansion then the Univemddihave had an entropy of at least
10°8 immediately after the initial singularity which for varisueasons seems quite unnatural. In
scenarios which invoke a “tunneling from nothing”, for iaste, spacetime was “born” in a pure
guantum state, so the very early Universe is expected to éssentially no entropy. Usually it
is argued that the present entropy is the result of some §6cbarse graining” which, however,
typically is not considered as an active part of the cosniokbglynamics in the sense that it would
have an impact on the time evolution of the metric.

In [40] it was argued that in principle the entire entropy lod tmassless fields in the present
universe can be understood as arising from the mechaniscnilatss above. If energy can be ex-
changed freely between the cosmological constant and thtemadiegrees of freedom, the entropy
observed today is obtained precisely if the initial entrapyhe “big bang” vanishes. The assump-
tion that the matter system must allow for an unhinderedggnexchange witl\ is essential.

There is another, more direct potential consequence of ge@gog positive cosmological
constant, namely a period of automatic inflation during theyvirst stages of the cosmological
evolution. It is not surprising, of course, that a positivean cause an accelerated expansion, but
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in the classical context the problem witi\adriven inflation is that it would never terminate once it
has started. In popular models of scalar driven inflatios pinoblem is circumvented by designing
the inflaton potential in such a way that it gives rise to a shinig vacuum energy after a period of
“slow roll”.

There will thus be reviewed generic RG cosmologies based thmQEG trajectories which
have an era of\-driven inflation immediately after the big bang which endsoanatically as a
consequence of the RG running &fk). Once the scal& drops significantly belowng, the
accelerated expansion ends because the vacuum energly ggnisialready too small to compete
with the matter density. Clearly this is a very attractiversario: no ad hoc ingredients such as an
inflaton field or a special potential are needed to triggeratifin. It suffices to include the leading
quantum effects in the gravity + matter system. Furthermibreill be shown that asymptotic
safety offers a natural mechanism for the quantum mecHhagéeeeration of primordial density
perturbations, the seeds of cosmological structure foomst

3. A covariant approach to RG improvement in cosmology

In the following we shall present the improved RG equatiothi 3+ 1 formalism. Letgy
be the space-time metric with signature,+,+,+). A “cosmological fundamental observer”
comoving with the cosmological fluid has 4-velocitlyy = dx* /dt with u#u, = —1, wherer is the
proper time along the fluid flow lines. The projection tensotocthe tangent 3-space orthogonal
to u* is hyy = guy + UyUy, with W,h"; = h*; andh*,u” = 0. We denote by a semicolon the
standard covariant derivative and by an over-dot the diffgation with respect to the proper time
1. The covariant derivative af* reads as

1 .

whereawy, = h®,hP, uq.g is the vorticity tensorgy,, = h?,hP U5 — 30y, is the shear tensor,
© =u*., is the expansion scalar and = ut;,u" is the acceleration four-vector; square and round
brackets denote anti-symmetrization and symmetrizatespectively.

One can introduce a representative leng#hong the particle world-lines by the equation

.1
tjt=30 (3.2)

In fact £ represent completely the volume behavior of the fluid as anyaving volume element is
proportional to/®. The net effect 0B is in fact to change fluid sphere into another fluid sphere with
the the same orientation but with different volume. One ¢emtdefine the “Hubble parameter”
and the deceleration parameter by

H=2¢/0, q=1{/(H? (3.3)
The Einstein equations read

RuvtHu’ = 41G(p +3p) ~ A, Ragh®uhPy = [47G(p — p) + | (3.4)



Asymptotic Safety in Astrophysics Alfio Bonanno

where/A = A(x!) is the position-dependent cosmological term &d G(x*) the position-dependent
Newton parameter. The energy-momentum tensor is assuniealéothe the perfect fluid form
THY = (p+ p) uHu¥ 4+ p g*¥. The Bianchi identities lead to the conservation law alatig

. 1 . .
p+O(p+p) =—5—= [Snep +/\], (3.5)
and onto the orthogonal hypersurface
.,  h*p, h¥
H R L S, _
NIl [/\.V 8rrpG.V] (3.6)

TheRaychaudhuri equatiois obtained with the help of the Einstein field equations &g
(3.1),

1 .
G)+§G)2+2(02—w2)—u“;u+4nG(p—|—3p)—/\:O, (3.7)
where 22 = 0,,,0*¥ and Z20? = w,, wH". The scalar curvature of the tangent space is given by

2

which leads, by using the field equations (3.4), todkaeralized Friedmann equation
H =202 —20w% - §OZ+16nGp+2/\. (3.9)

In homogeneous spaces, Eq.(3.6) is identically satisfiddlevieq.(3.9) reduces to the familiar
Friedmann equation which is coupled to the energy balanoatin (3.5). In order to integrate
the previous equations in a general spacetime, the evoletipations for shear and vorticity are
needed, together with the dynamical equationsGandA which are obtained by the RG equa-
tions. The latter are obtained in the Einstein—Hilbert ¢tation as a set oB8-functions for the
dimensionless Newton constant and cosmological consiamgA

kakg = Bg(gv)\ )7 kak)\ = B/\ (gv)\ )7 (310)
and the link with the spacetime dynamics is provided byciheoff identification
k=k(1,0,0,0,0,...). (3.11)

The dots stand for all possible physical or geometrical riaveis which can act as IR regulators
in the fluctuation determinant &f,. The knowledge of the precise functional dependence in Eq.
(3.11) would then provide a dynamical evolution which is gietent with the full effective action
atk = 0. In Ref. [48] the simple choick [ 1/t can be justified on the ground that, if there are no
other scales in the system when the Universe had afjigctuations with frequency greater than
1/t may not have played any role as yet, and the running must Ippeddoatk O 1/t. On the
other hand, recent works [38—40] have argued that the Hytdbigmeter defined in Eq.(3.3) is a
physically meaningful cutoff as it measures the curvatirh® spacetime, and it also reproduces
the 1/t cutoff for any power-law dependence &f) in Eqg.(3.2). In fact the scalar curvature the
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square of the Ricci tenso? = R,sR*F and the Kretschmann invariakit= Ry 5,5R*P¥® can all be
expressed in terms of the Hubble parameter and its dergtiv

R=6(2H’+H), %2 =12(3H*+3H?H+H?), K =12(2H*+2H?H +H?) (3.12)

On the other hand, the second functional derivative of tfiectfe average action reads [14]
Fl((2> g, g]“"pa = 2K?ZyK[—KHY oD% +UHY o] where

1

KK oo = 104 85 + 85 8} — 9" Gpa (3.13)

and

1 - 1
UK pe = 1[5553 + 5#5;‘)} — 9" 9po] (R—2A) + E[g“vaa +gpoRM]

1 1
_Z[aijva +05RYp+ Oy RH 5 + Oy RH | — E[Rvp“a +R'GH] (3.14)

which clearly shows the Ricci scalar, the Ricci tensor amdRRemann tensor enters in the fluctua-
tion determinant as mass-type regulators. As from (3.12haée terms are essentially expressible
in terms of the Hubble parameter, it is then clear that oneccameniently parameterize the field

strength dependence in terms of the single sddlatt is important to stress that this is a conse-
guence of the very high degree of symmetry of our spacetiotenka generic spacetime the actual
cutoff can be different.

4. The improved Robertson-Walker cosmology

Let us now specify our spacetime to describe a spatiallyflat 0) Robertson-Walker metric
with scale factor(t), so that the shear, rotation and acceleration are idelyticahishing. We can
takeT," = diag—p, p, p, p] to be the energy momentum tensor of an ideal fluid with eqnaifo
statep = wp wherew > —1 is constant.

Then the improved Einstein equation boils down to the madlifeedmann equation and a
continuity equation:

H2 = 8—7TG(t) p—|—1'/\(t) (4.1)
3 3

. A+81p G

p+3H(p+p) = _TGP (4.2)

The modified continuity equation above is the integrabitibndition for the improved Einstein
equation implied by Bianchi’s identityp [—A(t)gyy + 81G(t)T,y] = 0. It describes the energy
exchange between the matter and gravitational degreegeddm (geometry). For later use let
us note that upon defining the critical density;(t) = 3H(t)2/8mG(t) and the relative densities
Qm = p/perit andQa = pa/peric the modified Friedmann equation (4.1) can be writte@gs$t) +
Qp(t) =1

It is possible to obtairG(k) and A(k) by solving the flow equation in the Einstein-Hilbert
truncation with a sharp cutoff [4, 39]. It is formulated inrtes of the dimensionless Newton and
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cosmological constant, respectivelg(k) = k* G(k), A (k) = A(k)/k?. Quantum corrected cos-
mologies are computed by (numerically) solving the RG imptbevolution equations. The cutoff
identification

k(t) = EH(t) (4.3)

whereé is a fixed positive constant of order unity will be employeds discussed in the previ-
ous section this is a natural choice since in a RobertsokéNgleometry the Hubble parameter
measures the curvature of spacetime which is related toctbalaegulator. Thus we have
c) = LM A = e2HEAEH W) (4.4)
§2H(t)

Let us briefly review how the type llla trajectories of the &win-Hilbert truncation can be
matched against the observational data. This analysidrlg fabust and clearcut; it does not
involve the NGFP. All that is needed is the RG flow linearizémbw#t the Gaussian fixed point
(GFP) which is located &g = A = 0. In its vicinity one has [40\(k) = Ao+ V GK +--- and
G(k) = G+---. Or, in terms of the dimensionless couplindsgk) = Ag/kK2+ v G+ ---, g(k) =
G K+ ---. In the linear regime of the GFR, displays a running] k* and G is approximately
constant. Here is a positive constant of order unity [39],= id)%(O). These equations are valid

am
if A(k) < 1 andg(k) < 1. They describe a 2-parameter family of RG trajectorieslzbby the

pair (Ao, G). It will prove convenient to use an alternative labeliidg, kr) with At = (4v\oG)Y/2
andkr = (No/vG)Y4. The old labels are expressed in terms of the new onég as3At k& and
G=Ar/2v k%. It is furthermore convenient to introduce the abbreviatip = At/2v.

When parameterized by the péirr, kr) the trajectories assume the form

A(K) = % M K [1+ (k/kT)"'] = Ao [1+ (k/kT)“] (4.5)
A
- =

or, in dimensionless form,
Mo=3m[(0) ()] aw=ar(ie) 4.6)

As for the interpretation of the new variables, it is cleaatthr = A(k = k) andgr = g(k =
kt), while kr is the scale at whiclf$, (but not ;) vanishes according to the linearized running:
By (kr) = kdA (k) /dKk—k, = 0. Thus we see thdgr,At) are the coordinates of the turning point
T of the type llla trajectory considered, akglis the scale at which it is passed. It is convenient to
refer the “RG time”t to this scale1(k) = In(k/ky). Hencetr > 0 (1 < 0) corresponds to the “UV
regime” (“IR regime”) wherek > ky (k < k).

Let us now hypothesize that, within a certain rang&-galues, the RG trajectory realized in
Nature can be approximated by (4.6). In order to determmpatameters/\o,é) or (Ar,kt) we
must perform a measurement@iandA. If we interpret the observed valu€gpserved— m;lz, Mp) ~
1.2 x 10Y9GeV, andAgpserved= 3Qr0HZ ~ 10-12°m2, as the runnings(k) andA(k) evaluated at
a scalek < kt, then we get from (4.5) thaltg = /\observedandé = Gobserved Using the definitions
of At andkr along withv = O(1) this leads to the order-of-magnitude estimajgs: At ~ 10~

10
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andkr ~ 1073° mp, =~ (10-3cm)~1. Because of the tiny values gf andAt the turning point lies
in the linear regime of the GFP.

Up to this point we discussed only that segment of the “ttajgcrealized in Nature” which
lies inside the linear regime of the GFP. The complete R@dtejy is obtained by continuing this
segment with the flow equation both into the IR and into the Wkere it ultimately spirals into
the NGFP. While the UV-continuation is possible within thiedtein-Hilbert truncation, this ap-
proximation breaks down in the IR whar{k) approaches /2. Interestingly enough, this happens
neark = Hp, the present Hubble scale. The right panel of Fig.1 showsensatic sketch of the
complete trajectory on thg-A—plane and Fig.2 displays the resultikglependence d& andA.

5. Primordial entropy generation

Let us return to the modified continuity equation (3.5). Afteultiplication bya® it reads

[o+3H(p+p)a®=2(t) (5.1)
where we defined ) )
S_ (N8mp Gy 3
e (Ve S)e 62
Without assuming any particular equation of state eq.@ah)be rewritten as
9 (pa?) + pt(a®) = (1) 5.3
at P Pat'®/ = '

The interpretation of this equation is as follows. Let ussider a unitcoordinate i.e. comoving
volume in the Robertson-Walker spacetime. Its correspmngioper volume isV = a® and its
energy contents id = pa®. The rate of change of these quantities is subject to (5.3):

c;_ltJ + pc:j—\t/ = 2(1) (5.4)

In classical cosmology where = 0 this equation together with the standard thermodynamic re
lation dU + pdV = T dSis used to conclude that the expansion of the Universe ibati@ i.e. the
entropy inside a comoving volume does not change as the kdeivxpandslS/dt = 0.

Here and in the following we writ§ = s& for the entropy carried by the matter inside a unit
comoving volume and for the corresponding proper entropy density.

WhenA and G are time dependemz;?7 is nonzero and we interpret (5.4) as describing the
process of energy (or “heat”) exchange between the scalds fieandG and the ordinary matter.
This interaction causeSto change:

ds d —~
T = T5(s8) =20 (5.5)
The actual rate of change of the comoving entropy is
ds d
i a(sa?) = 2(t) (5.6)
where -
P=L2|T (5.7

11
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If T is known as a function of we can integrate (5.5) to obtaB®= S(t). In the RG improved
cosmologies the entropy production rate per comoving velum

A+8mp G}a_3

@(t):_[ 8nG 1T

(5.8)
is nonzero because the gravitational “constattsindG have acquired a time dependence.
Clearly we can convert the heat exchangeds to an entropy change only if the dependence
of the temperaturg@ on the other thermodynamical quantities, in particglamdp is known. For
this reason we shall now make the following assumption abimeitmatter system and its (non-
equilibrium!) thermodynamics:
The matter system is assumed to consistptnn, + %nf species of effectively massless de-
grees of freedom which all have the same temperature T. Tieieq of state is p= p/3, i.e.
w=1/3, andp depends on T as

p(T)=k*T4 k= (1 ne/30)%4 (5.9)

No assumption is made about the relatioa s(T).

The first assumption, radiation dominance and equal terpetas plausible since we shall
find that there is no significant entropy production any mareedd (t) has dropped substantially
belowmp,. The second assumption, eq.(5.9), refer to the hypothesistte injection of energy into
the matter system disturbs its equilibrium only very weakiyne approximation is that thequi-
librium relations among, p, andT are still valid in the non-equilibrium situation of a cosrogy
with entropy production.

By insertingp = p/3 and (5.9) into the modified continuity equation the entrppyduction
rate can be seen to be a total time derivatigét) = %[%‘Ka3p3/ 4. Therefore we can immediately
integrate (5.6) and obtaif(t) = 2ka*p%* + &, s(t) = 4kp(t)¥4 + % HereS is a constant of
integration. In terms of, using (5.9) again,

s(t) = % Nesr T (1) + % (5.10)

The final result (5.10) is very remarkable for at least twesoss. Firstly, fois; = 0, eq.(5.10)
has exactly the form valid for radiatiom equilibrium Note that we did not postulate this re-
lationship, only thep(T)-law was assumed. The equilibrium formaal T3 wasderivedfrom
the cosmological equations, i.e. the modified conservdéan This result makes the hypothesis
“non-adiabatic, but as little as possible” selfconsistent

Secondly, if lim_q a(t)p(t)¥/4 = 0, which is actually the case for the most interesting class
of cosmologies we shall find, the3ft — 0) = S. As we mentioned in the introduction, the most
plausible initial value ofSis S= 0 which means a vanishing constant of integratiinere. But
then, with&, = 0 theentire entropy carried by the massless degrees of freedom is dbe R®
running. So it indeed seems to be true that the entropy of MBR photons we observe today is
due to a coarse graining. Unexpectedly, not a coarse geaofithe matter degrees of freedom but
rather of the gravitational ones which determines the backgl spacetime the photons propagate
on.

12
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6. Solving the RG improved Einstein Equations

In [40] the improved Einstein equations (4.1, 4.2) have bedued for the trajectory with
realistic parameter values which was discussed in Sectiohh@ solutions were determined by
applying the algorithm described at the end of Section 2. indafixed the RG trajectory, there
exists a 1-parameter family of solutiofid (t), p(t)). This parameter is conveniently chosen to be
the relative vacuum energy density in the fixed point regifig,

The very early part of the cosmology can be described analijti Fork — o the trajectory
approaches the NGFRy,A) — (g.,A.), so thatG(k) = g./k? andA(k) = A,k?. In this case the
differential equation can be solved analytically, with teeult

HO =aft, at)=Al, o= %(3+3w)(1-9;)]71 (6.1)

andp(t) = pt=4, G(t) = Gt2, A(t) = A/t2. HereA, p, G, andA are positive constants. They
depend o2}, which assumes values in the interyal1).

Summarizing the numerical results one can say that for alweat Q3 the UV cosmologies
consist of two scaling regimes and a relatively sharp cramsegion neak, H ~ mp| corresponding
to x =& —34.5 which connects them. At highé&rscales the fixed point approximation is valid, at
lower scales one has a classical FRW cosmology in whichn be neglected.

N A 2 C
2
n]Dl A ~k2
G=const

U N m—z

Pl

2
G~1/k
4
N ~k
10 120n}23| A= const
; \ ; ; .
k
Ho K, Pl

Figure 2: The dimensionful quantitie&(k) andG(k) for the RG trajectory with realistic parameter values.

As an example, Fig.(3) shows the crossover cosmology @jth= 0.98 andw = 1/3. The
entropy production raté” is maximum aty and quickly goes to zero for> ty; it is non-zero for all
t < ty. By varying theQj-value one can check that the early cosmology is indeed idescby the
NGFP solution (5.1). For the logarithmit vs. a- plot, for instance, it predict® = —2(1— Q7 )x
for x < —34.4. The left part of the plot in Fig.3a and its counterpartshwdifferent values of2}
indeed comply with this relation. R} € (1/2,1) we havea = (2—2Q3;)"1 > 1 anda(t) Ot®
describes a phase of accelerated power law inflation.

13
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a)

80[

Uso}

40~

Figure 3: The crossover epoch of the cosmology 5 = 0.98. The plots a), b), c) display the logarithmic
Hubble parametet/, as well agy, Qa, g andA as a function of the logarithmic scale factorA crossover
is observed near~ —34.5. The diamond in plot d) indicates the point on the RG trajgctorresponding
to thisx-value. (The lower horizontal part of the trajectory is niilble on this scale.) The plots €) and f)
show thex-dependence of the anomalous dimension and entropy pioduate, respectively.

The phase of power law inflation automatically comes to a batte the RG running has
reducedA to a value where the resulting vacuum energy density no looge overwhelm the
matter energy density.

7. Inflation in the fixed point regime

Next we discuss in more detail the epoch of power law inflatitnich is realized in the NGFP
regime if Q3 > 1/2. Since the transition from the fixed point to the classid@8WFregime is
rather sharp it will be sufficient to approximate the RG inyaw UV cosmologies by the following
caricature : For <t < ty, the scale factor behaves a$) 0t%, a > 1. Herea = (2—2Q;) !
sincew = 1/3 will be assumed. Thereafter, for- t;;, we have a classical, entirely matter-driven
expansiora(t) Ot%2 .

The transition time, is dictated by the RG trajectory. It leaves the asymptotadisg regime

14
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neark ~ mp;. HenceH (ty) ~ mp; and since§ = O(1) andH (t) = o/t we find the estimate
tr = a tpy (7.1)

Here, as always, the Planck mass, time, and length are définedns of the value of Newton’s
constant in the classical regimepj = £p = My = GY2 = GL2_ . Let us now assume thex;,

is very close to 1 so that is large: a > 1. Then (7.1) implies that the transition takes place at a
cosmological time which is much later than the Planck timithA transition thélubble parameter

is of ordermp;, but thecosmological timeis in general not of the order &f. Stated differently,

the “Planck time” isnot the time at whictH and the related physical quantities assume Planckian
values. The Planck time as defined above is well within the R@&gimeitp = ty/a < t;.

At t =ty the NGFP solution is to be matched continuously with a FRWrnmbsgy (with
vanishing cosmological constant ). We may use the claskicalulaa [ /t for the scale factor,
but we must shift the time axis on the classical side suchaHdt and then as a result of (4.1) also
p are continuous af. Thereforea(t) O (t —tag) /2 andH (t) = 3 (t—ta9 ™1 for t > t,. Equating
this Hubble parameter at=t; to H(t) = a//t, valid in the NGFP regime, we find that the shif§
must be chosen dgs= (o — %)tm =(1- %)ttr < ty. Here the subscript 'as’ stands for “apparent
singularity”. This is to indicate that if one continues thHassical cosmology to times< ty, it has
an initial singularity (“big bang”) at =t,s. Since, however, the FRW solution is not valid there
nothing special happens @t the true initial singularity is located &t= 0 in the NGFP regime.

(See Fig. 4.)

7.1 Crossing the Hubble radius

In the NGFP regime & t < t; the Hubble radiugy (t) = 1/H(t), i.e. {4 (t) =t/a , increases
linearly with time but, fora > 1, with a very small slope. At the transition, the slope jurfrpsn
1/a to the value 2 sincél = 1/(2t) and/y = 2t in the FRW regime. This behavior is sketched in
Fig. 4.

Let us consider some structure of comoving lerfykh a single wavelength of a density per-
turbation, for instance. The corresponding physical,greper length id (t) = a(t)Ax then. In the
NGFP regime it has the time dependergé) = (t/ty)” L(ty). The ratio ofL(t) and the Hubble
radius evolves according t}aH% = (tf—r)o’*1 gj({{[,))- Fora > 1, i.e. Q) > 1/2, the proper length of
any object grows faster than the Hubble radius. So objecishwdre of “sub-Hubble” size at early
times can cross the Hubble radius and become “super-Hubblater times, see Fig. 4.

Let us focus on a structure which, ta ty, is €\ times larger than the Hubble radius. Before
the transition we have(t) /¢4 (t) = N (t/ty)? 1. Assuminge > 1, there exists a timg < t; at
which L(ty) = ¢n(tn) So that the structure considered “crosses” the Hubble saatithe timey. It
is given by

tn =t exp( — %) (7.2)

What is remarkable about this result is that, even with ratihederate values af, one can easily
“inflate” structures to a size which is by mamyfolds larger than the Hubble radidsiring a very
short time interval at the end of the NGFP epoch

Let us illustrate this phenomenon by means of an exampleglyeime choiceQ, = 0.98 used
in Fig. 3. Corresponding to 98% vacuum and 2% matter energgityein the NGFP regime, this
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Figure 4: Shown is the proper lengthand the Hubble radius as a function of time. The NGFP and FRW
cosmologies are valid far< t; andt > ty, respectively. The classical cosmology has an apparerdlini
singularity att,s outside its domain of validity. Structures of sid/p, atty cross the Hubble radius &, a
time which can be larger than the Planck time.

value is still “generic” in the sense th@f, is not fine tuned to equal unity with a precision of many
decimal places. It leads to the exponent 25, the transition tim&, = 25tp), andt,s= 24.5tp).

The largest structures in the present Universe, evolvekiizrd in time by the classical equa-
tions to the point wherél = mp), have a size of abowf? /p| there. We can use (7.2) with = 60
to find the timetgg at which those structures crossed the Hubble radius. With25 the result is
tso = 2.05tp; =ty /12.2. Remarkablytso is smaller thart; by one order of magnitude only. As a
consequence, the physical conditions prevailing at the tifithe crossing are not overly “exotic”
yet. The Hubble parameter, for instance, is only one ordenajnitude larger than at the transi-
tion: H(tso) ~ 12mp;. The same is true for the temperature; one can showTtttgs) ~ 12T (ty)
whereT (t;) is of the order ofmp). Note thattsg is larger thartp).

7.2 Primordial density fluctuations

QEG offers a natural mechanism for generating primordiaitdiations during the NGFP
epoch. They have a scale free spectrum with a spectral indse ton = 1. This mechanism
is at the very heart of the “asymptotic safety” underlying tion-perturbative renormalizability
of QEG. A detailed discussion of this mechanism is beyondsttupe of the present review; the
reader it referred to [6, 7, 40, 48]. Suffice it to say that thargum mechanical generation of the
primordial fluctuations happens on sub-Hubble distanclescilowever, thanks to the inflationary
NGFP era the modes relevant to cosmological structure fimmavere indeed smaller than the
Hubble radius at a sufficiently early time, fok tgo.

8. RG improved Black Hole spacetimes

In [30], a “RG-improvement” of the Schwarzschild metric baen performed and the proper-
ties of the corresponding “quantum black hole" have beefoexg. The improvement was based
upon the scale dependent (“running") Newton cons&(k) obtained from the exact RG equation
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for gravity describing the scale dependence of the effecixerage action. In this case the effect
of the cosmological constant has been neglected, and thenguof G is approximately given by
Go

Glk) = 14 w Gy k2
whereGg denotes the laboratory value of Newton’s constant,afg&la constant. At large distances
(k — 0), G(k) approachesS,, and in the ultraviolet limitk — ), it decreases a&(k) 0 1/k?.
This is the fixed point behavior responsible for the conjeiinon-perturbative renormalizability
of Quantum Einstein Gravity, in the approximation of neglagthe running of the Cosmological
Constant.

In the RG improvement scheme of [30] the information aboetktdependence db is ex-
ploited in the following way. The starting point is the clasé Schwarzschild metric

(8.1)

de? = —f(dt?+ f(r) " 1dr? 4 r2dQ? (8.2)

with dQ? = d6? + sir? 8d¢@? and the classical lapse functidiir) = 1 — 2GoM /r = feasdf). The
RG improvement is effected by substituting, fis{r), Go by ther-dependent Newton constant
G(r) = G(k = k(r)) which obtains fromG(k) via an appropriate “cutoff identificatiork = K(r).

In flat space the natural choice would bél 1/r. In [30] it was argued that in the Schwarzschild
background the correct choice, in leading order at leas(ris= £/d(r) where¢ is a constant
of the order of unity, andi(r) = [y dr'|fuas{r’)| ¥/ is the proper distance from a point with
coordinater to the center of the black hole. While the integral defind{g) can be evaluated
exactly, it is sufficient to use the following approximatishich becomes exact for both— « and
r—o0:

r3 2
d(r) = <7r+yGo |v|> (8.3)
The resultings(r) = G(k= & /d(r)) reads

Go l‘3

=556, [r + yGoM]

(8.4)

where® = wé?2. In these equations the paramegdras the valug = 9/2 if one setk = & /d(r)
as above. It turns out, however, that most of the qualitatiaperties of the improved metric, in
particular all those related to the structure of its horigare fairly insensitive to the precise value
of y. In particular,y = 0 (corresponding t& = & /r) andy = 9/2 where found [30] to lead to rather
similar results throughout. For this reason one can adapthivicey = 0 in the present paper.
It has the advantage that with this choice many calculateamsbe performed analytically which
require a numerical treatment otherwise.

The metric of the RG improved Schwarzschild black hole iegiby the line element (8.2)
with

2G(r)M
f(ry=1 (r ) (8.5)
Let us briefly list its essential features
a) There exists a critical mass value
Mer = 1/ @/Go = V@ mp (8.6)
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such thatf (r) has two simple zeros at andr >r_ if M > M, one double zero at, =r_ =
v/ WGg if M = M, and no zero at all iIM < M. ForM > M, the zeros are at

r=GoM[1+vI—Q] (8.7)

with the convenient abbreviation )
2
- % s (%) (8.8)
The spacetime has an outer horizom aiand in inner (Cauchy) horizon at . At M, the black
hole is extremal, the two horizons coincide, and the spaeeis free from any horizon if the mass
is sufficiently smallM < M.
b) The Bekenstein-Hawking temperatukgy = k /21 is given by the surface gravity at the

outer horizonk = 3 f/(r,.). Explicitly,

Ten(M) 1 1-Q 1 JO1-Q) My /Q1-9Q) (6.9)

T 4GM 11 v/1-Q 4mGMy 1+vI_Q 4mwlivioQ

This temperature vanishes fod \ M, i.e. Q 1, thus motivating the interpretation of the
improved Schwarzschild metric witkl = M, as describing a “cold" remnant of the evaporation
process.

¢) The energy flux from the black hole, its luminositycan be estimated using Stefan’s law.
It is given byL = 0.7 (M)Tg(M)* whereo is a constant and” = 4rr2 denotes the area of the
outer horizon. With (8.7) and (8.9) we obtain

_ oMZ  Q(1-Q)?
M) = (4m)3 6* [1+V1-QJ? (6.10)

For a single massless field with two degrees of freedom onerkasr/60.

9. The quantum-corrected Vaidya metric

Animportant issue is to find a metric which describes theohysbf an evaporating Schwarzschild
black hole and its gravitational field [31]. In the small lurosity limit (L — O) this metric is sup-
posed to reduce to the static metric of the RG improved Sctseghild spacetime.

By reexpressing the metric (8.2) with the improved lapsecfion (8.5) in terms of ingoing
Eddington-Finkelstein coordinatégr, 8, @) it is convenient to trade the Schwarzschild titrfer
the advanced time coordinate

V=t+4r17", r*z/rdr’/f(r’) (9.1)

Herer* is a generalization of the familiar “tortoise” radial cowrate to which it reduces iB(r) =
const ForG(r) # constthe functionr* = r*(r) is more complicated, but its explicit form will not
be needed here. Eq.(9.1) impliée= dt+dr/f(r), turning (8.2) with (8.5) into

ds? = —[1—2G(r)M/r] dV? + 2dvdr+ r?dQ? (9.2)
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Figure 5: The ratioM /M, the Bekenstein-Hawking temperature and the BH luminasta function of
v/t for various initial massed /Mcqr = 1,2, 3, respectively.

Eq.(9.2) is exactly the Schwarzschild metric in Eddingkonkelstein coordinates, witlsg re-
placed byG(r). Itis thus reassuring to see that the two operations, theniffBovemenGy — G(r)
and the change of the coordinate system, can be performéitiém erder, they “commute”.

The thermodynamical properties derived in [30] and sunmmedrin the previous section refer
to the metric (9.2). In the exterior of the hole the spacetisngtatic, and while we can deduce a
temperature and a corresponding luminosity from its péeitydin imaginary time (or by comput-
ing the surface gravity at, directly) the backreaction of the mass-loss due to the eadipa is
not described by (9.2). From the static metric we obtainednlass dependence of the luminos-
ity, L =L(M). Using this information we can compute the mass of the hokeas by a distant
observer at time, M(v), by solving the differential equation

~IMw) =L M) 03)
dv

In our caseL(M) is given by Eq.(8.10). To first order in the luminosity, thetrieewhich incor-
porates the effect of the decreasing mass is obtained bgaiaglthe constaril in (9.2) with the
M(v) obtained from Eq.(9.3):

ds? = —[1—2G(r)M(v) /r] dV? + 2dvdr+ r?dQ? (9.4)

For G(r) = const EQq.(9.4) is the Vaidya metric which frequently had beendueexplore the
influence of the Hawking radiation on the geometry. It is aisoh of Einstein’s equatios,, =
8nGo T,y WhereTy,, describes an inward moving null fluid. In this picture therdese oM is due
to the inflow of negative energy, as it is appropriate if thédfiethose quanta are radiated off is in
the Unruh vacuum.

The metric (9.4) can be regarded as a RG improved Vaidya endtrencapsulates two dif-
ferent mechanisms whose combined effect can be studied therdolack hole radiance, and the
modifications of the spacetime structure due to the quantawvityg effects, the running of in
particular.

It is instructive to ask which energy-momentum ten$gy would give rise to the improved
Vaidya metric (9.4) according to the classical equat@f = 8nGoT,". Computing the Einstein

19



Asymptotic Safety in Astrophysics Alfio Bonanno

tensor of (9.4) one finds that its only non-zero componerds ar

G (r)M(v)

v _ r _

Th=T,= “81Gor2 (9.5a)
G(r)M(v)

r__

TV_78 2 (9.5b)

G"(r)M(v)
6 = ® = -
T7g=T% 167Gor (9.5¢)

Here the prime (dot) denotes a derivative with respeat(®p. The non-zero components (9.5)
contain either- or v-derivatives but no mixed terms. The terms wittlerivatives ofG, also present
for M(v) = const describe the vacuum energy density and pressure of thewsgiSchwarzschild
spacetime in absence of radiation effects. AllowingNtiv) # const the new feature is a nonzero
componenfr", # 0 which, forM < 0, describes the inflow of negative energy into the black.hole

Taking advantage of the luminosity functi@iM), Eq.(8.10), we can solve the differential
equation (9.3) numerically and obtain the mass funckiba: M(v). (We have set’/(4m)w = 1
in the numerical calculations in order to reach the almostiplete evaporation for= 200 in units
of r¢r.) The result is shown in Fig.(5) for various initial massesthe domainv > 0. In fact, for
definiteness we assume that the black hole is formed=ad by the implosion of a spherical null
shell. HenceM(v) is given by Fig.(5) together witiv = 0 for v < 0. We observe that, for any
initial mass,M(v) approaches the critical malk, for v— c. This behavior is the most important
manifestation of the quantum gravity effects: according&do(8.9), the temperatuisy (M) goes
to zero wherM approached/c, from above. Hence the luminosity vanishes, too, the evdipora
process stops, ard (v) ~ M, remains approximately constant at very late times; M;%. In
Fig.(5) we also plot the advanced time dependence of thegenpeTgy (V) = Tgy(M(V)) and the
luminosity L(v) = L(M(v)), respectively. They are obtained by inserting the numkesiglaition of
Eq.(9.3) into (8.9)

The global structure of the spacetime is depicted in thearomdl diagram in Fig.(6). Region
| is a flat spacetime, while & =V, (V is the Kruskal advanced time coordinate, defined as
—exp(—kV) beingk the surface gravity of the outer horizon) an imploding ntikéls is present
(strictly speaking it must have a negative tension in orddraiance the flux of negative energy on
its future side. Region Il is the evaporating black hole stiate. The apparent horizon AH is a
timelike hypersurface which “meets” the event horizon EHusiire null infinity in the conformal
diagram. The null ray which is tangent to the earliest partibthe apparent horizad would have
been the EH if the hole were not radiating. The final state efitfack hole is an extremal black
hole whose inner and outer horizons have the same rddiusr¢;) and are located at the event
horizonEH and the inner (Cauchy) horiz@H in Fig.(6).

It is instructive to compare the areas of the various horizons. They are defined by intersect-
ing the EH, AH, and TLS with the incoming null surfaces- const Thus.es(V) = 4, (v)?
and.oen(V) = 4y (v)2. From Eq.(8.7) we obtain fosr s = </an

s = 4rGIVZ[L4 /1 (Me/M)2] (9.6)
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Figure 6: The conformal diagram of the evaporating quantum black:hrelgion | is a flat spacetime, and
region Il is the evaporating BH spacetint& is the event horizorCH is the inner (Cauchy) horizon, and
A'is the apparent horizon.

and for the event horizon implies

(9.7)

«Q/EH:«Q/TLS[]-— 40 Q(l—Q)]

(4mBw1+v1I-Q

where a term of second orderdry (41)3@ has been neglected. The differede’ = .o s — &n

is given by
o

A
During the early stages of the evaporation procésg,~ al3,/(2m?) = 128mB¢3, which coincides
with the known result for the Hawking regime, whide# vanishes proportional tV2 —M2,) — 0

for v— . It had been emphasized by York [49] that in the Hawking reghe considered)./

is a universali(e. M independent) quantity which depends only mnthus counting the degrees
of freedom of the field quanta which can be evaporated off.kirmpat Eq.(9.8) we see that this
universality does not persist beyond the semiclassicaloxppation.

In conclusion the renormalization group improvement otklhole spacetimes according to
Quantum Einstein Gravity leads to concrete predictionserfihal state of the evaporation process.
Unlike previous studies based ad hocmodifications of the equation of state of matter at very
high (Planckian) densities, or models based on loop quagtawity, the mass of the remnant can
be calculated explicitlyMc = v@/p. Its precise value is determined by the valuemivhich is a
measurable quantity in principle. No naked singularityrfsr so that the remnant is a mini-black
hole of Planckian size (See also [50] for an approach basespedial resummations of higher
order graviton loops, and [51] for an “emergent” spacetipgraach).

o 3 (1-Q)[1+V1-Q] (9.8)
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It is intriguing to note that remnants of this kind of TeV mislack holes can have observable
signatures at LHC [52-54].

10. Quantum Gravity at astrophysical distances

The realistic RG trajectory described in Fig.1 terminatefote the lineA = 1/2 as at this
point theB-functions become singular. It is interesting to see thisn@menon in detail, using for
instance the proper-time formulation of the flow equatiofi[1

9= PBy(9,A) =[d—2+nn]g (10.1a)
OA =By (9.A) (10.1b)

beingg(k) = k3-2Gy = k?-2Z,1G and the dimensionless cosmological consteit) = k2. The
anomalous dimensiony = —a&InZyk is given by

B pord(7=5d) . ¢ o, dt67 T(M+2-9)
N = 8(47) 2[ o5 (1-2A) 6 } r(m+1) (10.2)
and the beta-function of reads
o 1grdd+l) o em gl l(ME1-5)
By =—(2— A +4(4m* 2| (1-24)8 ol}gW (10.3)

wherem > 1 is an integer linked to proper-time regulator [14].

The presence of an IR pole is signaling that the Einsteibétil truncation is no longer a
consistent approximation to the full flow equation, and npstably a new set of IR-relevant
operators is emerging dd— 0. The pole is in fact present in any type of cutoff in the Ednst
Hilbert truncation and it is due to the presence of negatigevalues in the spectrum ﬁff). As
discussed in [41] the dynamical origin of these strong IR@fis due to an “instability driven
renormalization”, a phenomenon well known from many othHgrgical systems [55-57].

In order to illustrate this point let us look at a scalar mdded simple truncation:

Mol = [dx{10,00"¢+§mP10 97+ HA(K) ¢°}. (10.4)

Here ¢ denotes a realZ>—symmetric scalar field, and the truncation ansatz (10td4)ngonly a
running mass ang*—coupling. In a momentum representation we have

M=p? + mA(k) + A (K) ¢2. (10.5)

Always assuming that > 0, we see that f(z) is positive if? > 0; but when? < 0 it can become
negative forg? small enough. Of course, the negative eigenvaluepfer0, for example, indicates
that the fluctuations want to grow, to “condense”, and thuhtfi the field from the “false vacuum”
to the true one. This gives rise to the instability inducetbrenalizations. In fact, the standafd-
functions form? andA can be found by inserting (10.5) into the flow equation, tgkimo and four
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derivatives with respect t, respectively, and then setting= 0 in order to project oud;n? and
dA. As aresult, thg8—functions are given bp—integrals over (powers of) the propagator

[p2+ MR (K) + k2] - (10.6)

In the symmetric phaser€ > 0) this (euclidean!) propagator has no pole, and the resufi-
functions are relatively small. In the broken phas® & 0), however, there is a pole @€ =
—m(k)? — k? providedk? is small enoughk? < |m(k)?|. Fork? \, |m(k)?| the B—functions become
large and there are strong instability induced renormtidina.

In a reliable truncation, a physically realistic RG tragegtin the spontaneously broken regime
will not hit the singularity ak? = |m(k)?|, but rather maken(k) run in precisely such a way that
Im(k)?| is always smaller thak?. This requires that

—m(k)? O k2. (10.7)

In order to “cure" the singularity, a mass renormalizatismécessary in order to evolve a double-
well shaped symmetry breaking classical potential intoffective potential which is convex and
has a flat bottom.

Unfortunately the two—parameter truncation (10.4) is tmtimentary for a reliable description
of the broken phase. Its RG trajectories actually do run theosingularity. They terminate at a
finite scalekierm With k&, = |M(kerm)?| at which theB—functions diverge. Instead, if one allows for
an arbitrary running potenti&ly (@), containing infinitely many couplings, all trajectoriesndae
continued tdk = 0, and fork ™\, 0 one finds indeed the quadratic mass renormalization ({®¢7T.)

Let us return to gravity now wherg corresponds to the metric. In the Einstein—Hilbert trun-
cation it suffices to insert the metric corresponding to aspl$(r) of arbitrary radiug into the
flow equation in order to disentangle the contributions fithia two invariants/ d4x\/§ Or% and
fd“x\/gRD r2. Thus we may think of the Einstein—Hilbert flow as being a rfestation of the
dynamics of graviton fluctuations off@®). This family of backgrounds, labeled byis “off-shell”
in the sense thatis completely arbitrary and not fixed by Einstein’s equaiioterms ofA.

It is convenient to decompose the fluctuatlgp, on the sphere into irreducible (TT, TL,-)
components [6] and to expand the irreducible pieces in tefmtise corresponding spherical har-
monics. Forhy, in the transverse-traceless (TT) sector, the opeﬂ'a\férJr R« equals, up to a
positive constant,

—D?+8r24+k?>—2A(k) (10.8)

with D2 = gHV DD, the covariant Laplacian acting on TT tensors. The spectriu¥, denoted
{p?}, is discrete and positive. Obviously (10.8) is a positiverajor if the cosmological constant
is negative. In this case there are only stable, boundedlatixsis, leading to a mild fluctuation
induced renormalization. The situation is very differemt/A > 0 where, fork? sufficiently small,
(10.8) has negative eigenvalues, i. e. unstable eigenmtéact, expanding the RHS of the flow
equation to orders? andr* the resulting8—functions are given by traces (spectral sums) containing
the propagator

[p2+K2—2A(K)] . (10.9)
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The crucial point is that the propagator (10.9) can have a wblen/\(k) is too large and positive.

It occurs forA(k) > k?/2, or equivalentlyA (k) > 1/2, at p? = 2A(k) — k?. Upon performing
the p?~sum this pole is seen to be responsible for the tefhds (1—2A) and In1—2A) in
the S—functions which become singular at=1/2. The allowed part of thg-A—plane § <
1/2) corresponds to the situatid® > 2/ (k) where the singularity is avoided thanks to the large
regulator mass. Whek? approaches &(k) from above theB—functions become large and strong
renormalizations set in, driven by the modes which would gstable ak? = 2A.

In this respect the situation is completely analogous tcstaar theory discussed above: Its
symmetric phasen > 0) corresponds to gravity with < O; in this case all fluctuation modes
are stable and only small renormalization effects occunversely, in the broken phaseq < 0)
and in gravity withA > 0, there are modes which are unstable in absence of the IRategu
They lead to strong IR renormalization effects k8r\, |m(k)?| andk? \, 2A(k), respectively. The
gravitational Type la (Type llla) trajectories are analogto those of the symmetric (broken) phase
of the scalar model.

In view of the scalar analogy it is a plausible and very inting speculation that, fdc— 0, an
improved gravitational truncation has a similar impact lo& RG flow as it has in the scalar case.
There the most important renormalization effect is the imgof the mass=—m(k)? O k2. If gravity
avoids the singularity in an analogous fashion the cosnmcdbgonstant would run proportional to
k2,

A(k) = AIRK2 (10.10)

with a constanA/R < 1/2. In dimensionless units (10.10) readligk) = AR, i.e. AR is a in-
frared fixed poinf the A—evolution. If the behavior (10.10) is actually realizetk tenormalized
cosmological constant observed at very large distant@s,— 0), vanishes regardless of its bare

value.

The above discussion has thus lead to the conjecture th#R thehavior of the Newton con-
stant and the cosmological constant is regulated by an HBc#tte fixed point. Several inves-
tigations [38, 58—61] have shown that in this framework aisoh of the “cosmic coincidence
problem” arises naturally without the introduction of ampeissence field. In particular in the fixed
point regime the vacuum energy densgly = A/8nG is automatically adjusted so as to equal
the matter energy densitye. Qx = Qu = 1/2, and that the deceleration parameter approaches
g= —1/4. Moreover, an analysis of the high-redshift SNe la datddea the conclusion that this
infrared fixed point cosmologg in good agreement with the observations [60].

More recent works have instead considered the possililitthe “basin of attraction” of the
IR fixed point can act already at galactic scale, thus pragidin explanation for the galaxy rotation
curve without dark matter [41-43,62], but a detailed arialgased on available experimental data
is still missing.

In conclusion, although the existence of iafrared fixed pointcan only be conjectured on
the basis of the above argument, the RG cosmologies dengedif are promising candidates to
explain the Dark Energy and Dark Matter issue.
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11. Conclusions

In these notes some important astrophysical consequehtes Asymptotic Safety Scenario
have been reviewed.

In particular it was advocated the point of view that the scdpendence of the gravitational
parameters has an impact on the physics of the Universe wénlignd, in particular, it has been
possible to identify known features of the Universe whichldgossibly be due to this scale de-
pendence. Three possible candidates for such featuresaesed: the entropy carried by the
radiation which fills the Universe today, a period of autamak-driven inflation that requires no
ad hoc inflaton, and the primordial density perturbations.

Moreover, the impact of the leading quantum gravity effectshe dynamics of the Hawking
evaporation process of a black hole have also been invastighs spacetime structure is described
by a renormalization group improved Vaidya metric. Its d@vieorizon, apparent horizon, and
timelike limit surface have been obtained taking the scalgeddence of Newton’s constant into
account. The emergence of a quantum ergosphere is discuBsedinal state of the evaporation
process is a cold, Planck size remnant.

It would be interesting to investigate the possible astysal implications of a population of
stable Planck size mini-black holes produced in the Earlivéfse or by the interaction of cosmic
rays with the interstellar medium. | hope to address thisass a subsequent publication.
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