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1. Introduction

At low energies, gravity can be described very well by effecQuantum Field Theory (QFT)
methods, and quantum corrections can be calculated retiataigh being strongly suppressed [1].
Proposals where quantum gravity effects can be constraineden could become visible in up-
coming experiments exist e.g. in the context of additiopalce dimensions [2], and deformed [3]
or violated Lorentz symmetry [4], in the context of renorinalion group see also [5]. However,
the perturbative QFT approach faces serious problems whertries to remove the ultraviolet
regulator [6]. Therefore it remains a challenging questfgperturbative QFT methods can de-
scribe gravity at very high energies correctly or if the useanperturbative technigues is required.
Nonperturbative tools are provided for example in Loop QuanGravity [7] based on canonical
qguantization methods together with the introduction of naables, spin foam models [8], and
Regge calculus [9] and dynamical triangulations [10] asrdi® nonperturbative approximations
to gravity, see also the corresponding contributions is Weiume. The latter discretized versions
of gravity hint at a nontrivial fixed point scaling of gravié high energies.

If gravity does display a nontrivial fixed point, also morengentional, continuum, covari-
ant quantum field theory methods are applicable by the useilsbMian renormalization group
methods along the “asymptotic safety” program [11, 12]. dadp speaking, a QFT is said to be
asymptotically safe if there exists a finite dimensionalcgpaf action functionals (called the ul-
traviolet critical surface) which in the continuum limiteaattracted towards a Fixed Point (FP) of
the Renormalization Group (RG) flow. For example, a free héas vanishing beta functions,
so it has a FP called the Gaussian FP. Perturbation theocyiloles a neighbourhood of this point.
In a perturbatively renormalizable and asymptoticallyef@FT such as QCD, the UV critical sur-
face is parameterized by the couplings that have positizea mass dimension. Such couplings
are called “renormalizable” or “relevant”. Asymptotic ef is a generalization of this behaviour
outside the perturbative domain.

In this talk we will summarize results from [28, 29] whereostg evidence for the asymptotic
safety of gravity has been obtained in different approxiomschemes for pure gravity as well as
gravity coupled minimally to matter.

2. Renormalization Group and Asymptotic Safety

New support for the asymptotic safety of gravity was obtdismce the application of a form
of Wilsonian Exact RG Equation (ERGE), which describes thpethdence of a coarse—grained
effective action functional x[®] on an infrared momentum cutoff scatenducing an RG flow
[13]. To do so, one introduces a momentum dependent regiéato R (g?) interpolating between
k? and 0 so that the propagation of fields with momemtawer thank is strongly suppressed and
functional integration will extend over fields with momeittigher thark only. Additionally one
requires that its derivative with respectkds peaked sharply arouridd Doing so, one can define
an action functional x which fulfills exactly the partial functional differentiagquation

1 52T,
A= _STr(aqnescp

1
: +Rk> AR (2.1)
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wheret = log(k/ko), @ are all the fields present in the theory, STr is a generalimadtional trace
including a minus sign for fermionic variables and a factdoi2complex variables, anB is the
regulator that suppresses the contribution to the tracaucfufitions with momenta belolw For
R« = k? the RG flow would basically correspond to the one as obtairmd the Callan-Symanzik
equations, the RG-time derivative would however not be pdaltoundk [14]. This peak ofd; R«
aroundk is necessary to certify that the trace will give finite cdmitions. Then also beta functions
obtained from the ERGE will stay finite. In gravity, this etjoa has been applied in a number of
works [15, 16], for reviews see [17, 14].

Ik will include all coupling constants, so also all beta fuons will be obtained from this
equation. To solve this equation, a suitable method is tamapy[®P] in field monomials with the
general form

M) = 3 6(K 6i[) (2.2)

where Gi[®] are operators constructed with the fields and their devisatthat have the required
symmetries and; are running couplings of mass dimensirf Then

arde] = 3 Ak o[ (2:3)

wheref5 = d:gi. In general the functional (2.1) will contain infinitely makerms and infinitely
many couplings; the easiest way of extracting nonpertiubanformation from the ERGE is to
retain only a finite number of terms, introduce them in (2eMgluate the trace and read off the
beta functiong3;. To analyze the fixed point structure of the RG flow, one haseasure the in
general dimensionful couplingg with respect to some mass scale. One can choose for example
the momentum cutoff scalkewhich leads to the dimensionless quantitigs-gik~% and

B = a6 = —dg+ Bk, (2.4)

where the first term comes from the classical, canonical a&oe3 A FP is defined by the condi-
tion Bi = 0. Its existence is essential to give a well-defined behatimthe coupling constants up
to arbitrarily high energy scales. In general, physicaleotsbles will remain finite if the coupling
constants do so.

Apart from the well-defined behaviour assured by the existesf a FP, it is also important
that a theory depends only on a finite number of parameter®duncing an infinite number of
counterterms to absorb all occuring infinities is not hdlpfAsymptotic safety therefore requires
a second condition which is that the surface called the Utcatisurface obtained from those
points whose trajectories are attracted towards the FP wheno, has finite dimensionality. If
this condition is met, the requirement of being attractetth&éoFP, which guarantees a sensible UV
behaviour, fixes all couplings up to a finite number of freeapagters that have to be determined
by experiment. This ensures that the theory will be predici

1An exhaustive list of references can be found also on hitpaW. percacci.it/roberto/physics/as/biblio.html

2Another way is to reduce the symmetries of the theory as itKéling-vector reduction [19].

3A discussion on the role of systems of units can be found ih [18

4For a discussion regarding how much of the nontrivial FPcstime can be seen already in perturbation theory see
the contribution of M. Niedermaier in this volume.
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The attractivity properties of a FP are determined by thassigf the critical exponents;,

defined to be minus the eigenvalues of the linearized flowiratr
B

Mi = 5.1 (2.5)
The couplings corresponding to negative eigenvaluest{pesiitical exponent) are called relevant
and parameterize the UV critical surface; they are attdaicievards the FP in the UV and can have
arbitrary values. The ones that correspond to positiveneaaes (negative critical exponents) are
called irrelevant; they are repelled by the FP and must béosetro. One can show from (2.4)
that at the Gaussian F® = d;, so the relevant couplings are the ones that are power-+ogunt
renormalizable (or marginally renormalizable). In a lottedory they are usually finite in number.
The structure of a nontrivial FP should agree in continuurmidations and the continuum limits
obtained from discrete or lattice approaches. This shoelthb same for the continuum formu-
lation we are using here for gravity and the discretizedigassof Regge calculus and dynamical
triangulations.

At a nontrivial FP the canonical dimensions receive loogaxiions. However, such correc-
tions are expected to be finite, in which case at most finitedyyrcritical exponents could have
different sign from the canonical dimensidn Therefore, it is generically expected that at any FP
in a local theory there will only be a finite number of relevaatiplings [11].

3. Einstein—Hilbert action

As we are not able to solve the ERGE exactly to obtain the steggpendent actioRy, this ac-
tion has to be approached successively. A good first appadidmis the known low-energy action
for gravity, the Einstein-Hilbert action. The stability thfe results obtained in this approximation
and the following ones against the addition of further congs will indicate its quality. Working
with a background gauge (the metric is split into a backgdofield g, and a (not necessarily
small) quantum fieldh,y: guv = 9uv + huy) One starts by inserting into the ERGE an action of the
form

1 d
rk[hacﬂ—m/d XVO(2NA-R) + Sor + & (3.1)
where the couplings are scale-dependent. The gauge fixlhigave the general form
— 1 d ~HV
SoF = 336 / d%vgxug"" Xv 3.2)

wherey, = O!hy, — ”TpDvh‘L (all covariant derivatives are with respect to the backgdmet-

ric). The ghost action contains the Fadeev—Popov term

S = / d%/GGy (028", + RY,)cH. (3.3)

Performing the calculation for different cutoff schemesd gauges leads to the general form

2N kd
O (R) = ET(A1+A2’7 + AzaN\) (3.4)
1 kd—2
— & (16716) = 167_[(Bl+|32'7 +Bza\) (3.5)
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by comparing the coefficients, whefg and B; are rational functions of the couplings and=
—0d,G/G. Note that the one-loop approximation will follow by segfin = 0, g;//A = 0 on the right
hand side of the equation. Separating the beta-functiotishenfixed point analysis were the topic
of a number of publications during the last years [15, 16]ffdpént types of regulator-functions
R« and gauges have been tried. In [29] we classified and anatjiffedent ways of choosingR«

to include or exclude curvature terms or couplings in theoda'natorrl((z) + R¢ on the r.h.s. of the
ERGE and modifying the RG-scale dependenc®oby including more or less couplings. The
results presented there are in the gasige 1, p = 1. The quite general result that is again and again
confirmed in the different cutoff schemes and gauges is tistemce of a FP with two attractive
directions whose eigenvalues form a complex conjugatedipdicating a spiralling around the
non-Gaussian FP.

4. Curvature squared terms

In the next approximation step, one will include furthervature terms into the action, e.g.
curvature squared terms. To study the influence of the Newdaostant on the different curvature
squared couplings all couplings except the Newton consti@nset to zero. If one neglects also its
renormalization group time derivatives on the r.h.s., &ponding to the one-loop approximation,
one obtains in the gauge= 1, p = 1 the famous result

%sz = Flnz/d“x\/g [%RWR“V—F 60R2+ 2:E— %DZR] (4.1)
as e.g. in [21, 22] which corresponds to the logarithmic jgacies of the curvature squared
couplings. Note that [21] found that pure gravity was ongploenormalizable whereas the addition
of matter spoiled the renormalizability. Will the non-Gaias FP exist in this case?
The full beta functions obtained with the ansatz
drk 4y 1, 1
/d [anG(z/\ R)+5-C +ER2+pE+
have been calculated in [20]. There it has been found thdidteefunctions for the dimensionless
couplings agree with those obtained in dimensional re@aiion at one-loop (are asymptotically
free), whereas the beta functions fsrand G contain additional terms coming from tligy and
B, heat-kernel coefficients. However, only with these addalaerms exists a non-Gaussian FP
where all coupling directions are attractive.
How will the inclusion of matter effect these results? Adpiminimally coupled scalar, Dirac,
and Maxwell fields

1 — 1
rk[g7 fp,w,A] ’matter = /d4x\/g‘[§Du(pD“(p—|— WV”DHLIH‘ ZFHVFHV} (4-3)

to the curvature squared action will give the following aimition to the r.h.s. of the ERGE

DZR} (4.2)

drk| . nSTr<S) o Rk Mo - o) o Rk
matter = - FZoE Y 8,  p LR
dt 2 s5+R ) 2 3065 + R+ §
+n7MTr(M) < 52l dtRk R ) - nMTr(gh) <5zraktRk ) (44)
5% + R+ Ricci 3909 T Rk
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where the last term stems from the ghost figjdbtained from the Maxwell fields. Then the beta
functionsp; receive corrections from the matter content proportioad & where the coefficients
g are functions of the numbers of the different particle specihe result is that the FP still exists
and theR?>—couplings remain asymptotically free. This is an impadrtesult: at a level where
perturbation theory indicated the breakdown of the theloeyrton-Gaussian FP does exist.

At the current stage we are not yet able to perform the exaupadson with the results by
Goroff-Sagnotti [6] where it is shown that also pure gravétyot perturbatively renormalizable at
two-loop level. However, we take our results as a good ininghat the non-Gaussian FP could
also exist at that level.

Our analysis showed the existence of the FP for several typapproximations to the full
action. At this stage we still ended up with as many relevanptings as included into the approx-
imation. But the necessary conditions for asymptotic gadet of course not only the existence of
the FP, but also that there will only remain a finite numbeetdévant couplings leaving only a finite
number of free parameters in the theory. Therefore we carated further on pure gravity and
included higher curvature terms. From this calculationilt e possible to conclude that indeed
many of the higher-curvature couplings will become irraleyv

5. f(R)-gravity

Including higher curvature operators we restrict here twesipal backgrounds. Then in the
trace arguments of the ERGE will only occur Laplacians afedifitial operators and the heat-
kernel expansion for the trace evaluation can be used. Theargature invariants reduce to the
Ricci scalar times a numerical factor so that one has to tacedccount only operators of the
type 0 = fd“x\/gR‘ with some power of the Ricci scal& Such theories belong to tHeR)-
type and have attracted much attention recently in cosnuabgpplications (see e.g. [23] and
references therein). The quantization of such theoriesed@op has been discussed in [24]. Here
we analyze the RG flow of this type of theories, assuming thiata polynomial of orden < 8.
The (Euclidean) action is approximated by

0] = 5 60 [ d/BR+ S+ S )

where® = {h,,,c,,Cy} and the last two terms correspond to the gauge fixing and thst gbctor
as given in egs. (3.2) and (3.3) and again the backgroundegemmdition is used. In the ansatz
(5.1) the beta functions can be obtained from a calculaticthetrace in the r.h.s. of (2.1) on a
spherical (Euclidean de Sitter) background.

The propagator can be partly diagonalized by the decomposit

1
hyy :hE-\';—I—Dufv+DVEH—I—DHDVG+ZgW(h—Dza). (5.2)

The inverse propagator, including the Jacobians due tohithege of variables (5.2), is given ex-
plicitly in [24]. The Jacobians can be formally exponeméhintroducing appropriate auxiliary
fields and a cutoff is introduced on these variables, too.

The cutoff operators are chosen so that the modified inverggapgator is identical to the in-
verse propagator except for the replacemeutof-02 by P(z) = z+Rk(2); we use exclusively the
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n A, G, | AG, 10%x
Go« | Gus | G2 | @3 | G4 | G5 | Goc | Grx | s
0.130| 0.990| 0.128| 5.23| -20.1
0.130| 1.566| 0.202| 3.29| -12.7| 1.51
0.132| 1.015| 0.134| 5.18| -19.6| 0.70| -9.7
0.123] 0.966| 0.119| 5.06| -20.6| 0.27| -11.0| -8.65
0.124| 0.969| 0.120| 5.07| -20.5| 0.27| -9.7| -8.03| -3.35
0.122| 0.958| 0.117| 5.05| -20.8| 0.14 | -10.2| -9.57 | -3.59 | 2.46
0.120| 0.949| 0.114| 5.04| -21.0| 0.03| -9.78| -10.5| -6.05| 3.42| 5.91

0.122| 0.959| 0.117| 5.07| -20.7| 0.09| -8.58 | -8.93| -6.81| 1.17| 6.20| 4.70

00 ~NO O WDNPRF

Table 1: Position of the FP for increasing numbeof couplings included. The first three columns give the
FP values in the form of cosmological and Newton constantlagid dimensionless product. The valugs
(and only them) have been rescaled by a factor 1000.

optimized cutoff functiondR(z) = (k* — 2)8(k? — z) [25]. This has the advantage that knowledge
of the heat kernel coefficients which contain at m@sand which we take from [27] is sufficient
to calculate all the beta functions. A major simplificaticandoe performed by choosing another
gauge than in the previous sections by setping 0, o = 0.°> This gauge has the advantage that
many of the field components cancel away with each other. iBdtave been given elsewhere
[28, 29].

This simplified form allows us to calculate the r.h.s. of §2ri de Sitter space exactly: it
is a rational function oR and the couplingg;.” The beta functions can be extracted from this
function by comparing equal powers of curvature on each gitlss has been done using algebraic
manipulation software, and the limit< 8 was set by the hardware (a standard single—processor
machine).

The result is that a nontrivial FP does indeed exist. Itstimpsand the corresponding critical
exponents are given in tables | and Il respectively for astianging frorm = 1 (the Einstein—
Hilbert action) ton = 8. For convenience, we give also the FP values for the cogitallcconstant
and the Newton constant related to the coupliggandg; by A = —go/(29;) andG = —1/(167mg; )
as well as the dimensionless prodiet at the FP which remains very stable under all changes in
the approximation. These results have been confirmed in [BB§ slight numerical differences
arise from a different treatment of zero-modes in the traces the contributions from the ghost
fields. Both methods have been used repeatedly in the litetaThe one applied in [28, 29] and
presented also here is chosen because with that choicertbel&tion between equal contributions
from thehy,,-decomposition and the ghost parts is complete.

One sees that a FP with the desired properties exists ungléndlusion of more and more
couplings. When a new coupling is added, new unphysical &R to appear; this is due to the
approximation off by polynomials. However, among the FPs it has always beesilgego find
one for which the lower couplings and critical exponentsehealues that are close to those of the

SNote thatar = 0 corresponding to Landau gauge is a fixed point of the RG floma froof in Yang-Mills theories
see e.g. [26].
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A I P 93 Ja 5 I6 7 Jg
2.38| 2.17
1.38| 2.32| 26.9
2.71) 2.27| 2.07| -4.23
2.86|2.45|155| -3.91| -5.22
253|269 1.78| -4.36| -3.76 | -4.88
241)|242|150| -4.11| -4.42| -5.98| -8.58
251|244 1.24| -397| -457| -4.93| -7.57| -11.1
241|254 140\ -4.17| -3.52| -5.15| -7.46| -10.2| -12.3

0O NO Ol WN K|S

Table 2: Critical exponents for increasing numbreof couplings included. The first two critical exponents
are a complex conjugate pair of the foii438"i. The same is the case for the fourth and fifth critical
exponentd, + Jsi.

previous action ansatz. That FP is then identified as theim@ht-P for the action including more
couplings.

Looking at the columns of Tables | and Il we see that in gendéralproperties of the FP
are remarkably stable under improvement of the approxonatEspecially the FP values for the
couplingsgp andg;, including the cosmological constant and Newton’s cortistamain extremely
stable against the inclusion of more couplings, indicativg an important part of the physics can
be catched already by these two couplings in agreement igithg made in [16] about the validity
of the Einstein—Hilbert action. The stability of the resulinder variation of the gauge parameters
has been checked, further details can be found in [29].

The most important result of this calculation is that foraadtions the operators froR® up-
wards are irrelevant. One can conclude that in this classt@fraansatz the UV critical surface is
three—dimensional. Its tangent space at the FP is spannixt lblyree eigenvectors corresponding
to the eigenvalues with negative real part. In the paragston (5.1), it is the three—dimensional
subspace iR® defined by the equation:

Gz = +0.00061243+ 0.06817374)5 -+ 0.4635196@ + 0.89500872)3
s = —0.00916502- 0.8365146@)5 — 0.20894019; + 1.6207513@;3
s = —0.01569175- 1.23487788)5 — 0.72544946); + 1.0174969%);
G = —0.01271954- 0.622648275 — 0.82401181); — 0.64680416)3
g7 = —0.00083040r 0.81387198)5 — 0.14843134); — 2.01811163)5
s = +0.00905830+ 1.25429854)5 -+ 0.50854002) — 1.90116584); (5.3)

Of course, we cannot yet conclude from this calculation thatoperators; with i > 3 would

be irrelevant if one considered more general actions thas Hehe couplings used here are com-
binations of all the couplings of different curvature ireats which are proportional to the Ricci
scalar on a spherical background. But the definite conalusithat at least the number of relevant
couplings will be significantly lower than the number of héglturvature invariant.

6Recently, the authors of [31] succeeded to distinguish detwhe different curvature squared invariants and found
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With a finite dimensional critical surface, one can make defipredictions in quantum grav-
ity. The real world must correspond to one of the trajectotlat emanate from the FP and lie
in the critical surface. Thus, at some sufficiently large finite value ofk one can choose arbi-
trarily three couplings, for examplg), G:, §» and the remaining six are then determined by (5.3).
These couplings could then be used to compute the prolebitf physical processes, and the
relations (5.3), in principle, could be tested by experitaeiihe linear approximation is valid only
at very high energies, but it should be possible to numdyicallve the flow equations and study
the critical surface further away from the FP.

Extending the results to higher polynomigR)-actions seems to be only a matter of comput-
ing power. In view of the results obtained here, we expedtftirathis class of action ansatz a FP
with three attractive directions will be maintained.

6. Conclusions

At this stage, one can conclude from the systematic anabfdise ERGE in gravity that a
nontrivial FP does exist in a large variety of approximatgmihemes. Our work pointed out that
this is the case even in examples where the perturbativiertesd gives nonrenormalizability as for
the one-loop calculation for matter coupled minimally tagty. Further more we gave substantial
evidence to the fact that the UV critical surface tends toaienfinite dimensional - introducing
more and more couplings into the approximation scheme woodldequire more and more free
parameters in the theory. This gives strong optimism thatityr can indeed be asymptotically
safe.
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