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1. Introduction

The Friedmann-Robertson-Walker model of the universe, based on the Einstein’s field equa-
tions gives an explanation of why the Universe is in an acceleration phase. This is supported by data
observations on type I supernovae[1]. Nevertheless, to obtain such an expansion we need almost
76% of what is known asDark Energy. Dark Energy is based on the following equation of state
P = ωρ (whereP andρ are the pressure of the fluid and the energy density, respectively). When
ω < −1/3, we are in the Dark energy regime, while we have a transitionto Phantom Energywhen
ω <−1. The particular case ofω =−1 corresponds to a cosmological constant. Nevertheless, nei-
ther Dark Energy nor Phantom Energy models appear to be satisfactory to explain the acceleration.
A proposal to avoid Dark and Phantom energy comes form the so-called modified gravity theo-
ries. In particular, one could consider the following replacement in the Einstein-Hilbert action[2]
(κ = 8πG)

S=
1

2κ

∫

d4x
√−gR+Smatter → S=

1
2κ

∫

d4x
√−g f (R)+Smatter. (1.1)

It is clear that other more complicated choices could be donein place of f (R)[4]. In particular,
one could considerf

(

R,RµνRµν ,Rαβγδ Rαβγδ , . . .
)

or f (R,G) whereG is the Gauss-Bonnet in-
variant or any combination of these quantities1. One of the prerogatives of af (R) theory is the
explanation of the cosmological constant. Nevertheless, nothing forbids to consider a more general
situation where af (R) is combined with a cosmological constantΛc, especially in the context of
the Wheeler-DeWitt equation (WDW)[5]. For af (R) = R, one gets

H =(2κ)Gi jkl π i j πkl −
√

g

2κ
(3R−2Λc

)

= 0, (1.2)

where 3R is the scalar curvature in three dimensions. The main reasonto work with a WDW
equation becomes more transparent if we formally re-write the WDW equation as[9]

1
V

∫

D [gi j ]Ψ∗ [gi j ]
∫

Σ d3xΛ̂ΣΨ [gi j ]
∫

D [gi j ]Ψ∗ [gi j ]Ψ [gi j ]
=

1
V

〈

Ψ
∣

∣

∫

Σ d3xΛ̂Σ
∣

∣Ψ
〉

〈Ψ|Ψ〉 = −Λc

κ
, (1.3)

whereV =
∫

Σ d3x
√

g is the volume of the hypersurfaceΣ andΛ̂Σ = (2κ)Gi jkl π i j πkl −√
g3R/(2κ) .

Eq.(1.3) represents the Sturm-Liouville problem associated with the cosmological constant. The
related boundary conditions are dictated by the choice of the trial wavefunctionals which, in our
case are of the Gaussian type. Different types of wavefunctionals correspond to different boundary
conditions. We can gain more information if we considergi j = ḡi j + hi j ,whereḡi j is the back-
ground metric andhi j is a quantum fluctuation around the background. Thus Eq.(1.3) can be
expanded in terms ofhi j . Since the kinetic part of̂ΛΣ is quadratic in the momenta, we only need
to expand the three-scalar curvature

∫

d3x
√

g3R up to the quadratic order. However, to proceed
with the computation, we also need an orthogonal decomposition on the tangent space of 3-metric
deformations[10, 11]:

1For a recent riview onf (R), see Refs.[3, 4], while a recent review on the problem off (G) and f (R,G) can be
found in Ref.[6, 7].
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hi j =
1
3

(σ +2∇ ·ξ )gi j +(Lξ )i j +h⊥i j . (1.4)

The operatorL mapsξi into symmetric tracefree tensors(Lξ )i j = ∇iξ j + ∇ jξi − 2
3gi j (∇ ·ξ ), h⊥i j

is the traceless-transverse component of the perturbation(TT), namelygi j h⊥i j = 0, ∇ih⊥i j = 0 andh
is the trace ofhi j . It is immediate to recognize that the trace elementσ = h− 2(∇ ·ξ ) is gauge
invariant. If we perform the same decomposition also on the momentumπ i j , up to second order
Eq.(1.3) becomes

1
V

〈

Ψ
∣

∣

∣

∣

∫

Σ d3x
[

Λ̂⊥
Σ + Λ̂ξ

Σ + Λ̂σ
Σ

](2)
∣

∣

∣

∣

Ψ
〉

〈Ψ|Ψ〉 = −Λc

κ
Ψ [gi j ] . (1.5)

Concerning the measure appearing in Eq.(1.3), we have to note that the decomposition(1.4) in-
duces the following transformation on the functional measure Dhi j → Dh⊥i j DξiDσJ1, where the
Jacobian related to the gauge vector variableξi is

J1 =

[

det

(

△gi j +
1
3

∇i∇ j −Ri j
)]

1
2

. (1.6)

This is nothing but the famous Faddev-Popov determinant. Itbecomes more transparent ifξa

is further decomposed into a transverse partξ T
a with ∇aξ T

a = 0 and a longitudinal partξ ‖
a with

ξ ‖
a = ∇aψ , thenJ1 can be expressed by an upper triangular matrix for certain backgrounds (e.g.

Schwarzschild in three dimensions). It is immediate to recognize that for an Einstein space in
any dimension, cross terms vanish andJ1 can be expressed by a block diagonal matrix. Since
detAB= detAdetB, the functional measureDhi j factorizes into

Dhi j =
(

det△T
V

)
1
2

(

det

[

2
3
△2+∇iR

i j ∇ j

])
1
2

Dh⊥i j Dξ T
Dψ (1.7)

with
(

△i j
V

)T
= △gi j −Ri j acting on transverse vectors, which is the Faddeev-Popov determinant.

In writing the functional measureDhi j , we have here ignored the appearance of a multiplicative
anomaly[8]. Thus the inner product can be written as

∫

Dh⊥i j Dξ T
DσΨ∗

[

h⊥i j
]

Ψ∗ [

ξ T]

Ψ∗ [σ ]Ψ
[

h⊥i j
]

Ψ
[

ξ T]

Ψ [σ ]
(

det△T
V

)
1
2

(

det

[

2
3
△2+∇iR

i j ∇ j

])
1
2

.

(1.8)
Nevertheless, since there is no interaction between ghost fields and the other components of the
perturbation at this level of approximation, the Jacobian appearing in the numerator and in the
denominator simplify. The reason can be found in terms of connected and disconnected terms.
The disconnected terms appear in the Faddeev-Popov determinant and these ones are not linked
by the Gaussian integration. This means that disconnected terms in the numerator and the same
ones appearing in the denominator cancel out. Therefore, Eq.(1.5) factorizes into three pieces. The
piece containinĝΛ⊥

Σ is the contribution of the transverse-traceless tensors (TT): essentially is the
graviton contribution representing true physical degreesof freedom. Regarding the vector term̂ΛT

Σ ,
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we observe that under the action of infinitesimal diffeomorphism generated by a vector fieldεi, the
components of(1.4) transform as follows[10]

ξ j −→ ξ j + ε j , h−→ h+2∇ ·ξ , h⊥i j −→ h⊥i j . (1.9)

The Killing vectors satisfying the condition∇iξ j +∇ jξi = 0, do not changehi j , and thus should be
excluded from the gauge group. All other diffeomorphisms act on hi j nontrivially. We need to fix
the residual gauge freedom on the vectorξi . The simplest choice isξi = 0.This new gauge fixing
produces the same Faddeev-Popov determinant connected to the JacobianJ1 and therefore will not
contribute to the final value. We are left with

1
V

〈

Ψ⊥
∣

∣

∣

∫

Σ d3x
[

Λ̂⊥
Σ
](2)

∣

∣

∣
Ψ⊥

〉

〈Ψ⊥|Ψ⊥〉 +
1
V

〈

Ψσ
∣

∣

∣

∫

Σ d3x
[

Λ̂σ
Σ
](2)

∣

∣

∣
Ψσ

〉

〈Ψσ |Ψσ 〉 = −Λc

κ
Ψ [gi j ] . (1.10)

Note that in the expansion of
∫

Σ d3x
√

gR to second order, a coupling term between the TT com-
ponent and scalar one remains. However, the Gaussian integration does not allow such a mixing
which has to be introduced with an appropriate wave functional. Extracting the TT tensor contri-
bution from Eq.(1.3) approximated to second order in perturbation of the spatialpart of the metric
into a background term ¯gi j , and a perturbationhi j , we get

Λ̂⊥
Σ =

1
4V

∫

Σ
d3x

√
ḡGi jkl

[

(2κ)K−1⊥ (x,x)i jkl +
1

(2κ)

(

△̃L

)a
j K⊥ (x,x)iakl

]

, (1.11)

where
(

△̃Lh
⊥
)

i j
=

(

△Lh
⊥
)

i j
−4Rk

ih
⊥
k j +

3Rh⊥i j (1.12)

is the modified Lichnerowicz operator and△Lis the Lichnerowicz operator defined by

(△Lh)i j = △hi j −2Rik jl h
kl +Rikhk

j +Rjkhk
i △ = −∇a∇a. (1.13)

Gi jkl represents the inverse DeWitt metric and all indices run from one to three. Note that the term
−4Rk

ih
⊥
k j+

3Rh⊥i j disappears in four dimensions. The propagatorK⊥ (x,x)iakl can be represented as

K⊥ (−→x ,−→y )iakl = ∑
τ

h(τ)⊥
ia (−→x )h(τ)⊥

kl (−→y )

2λ (τ)
, (1.14)

whereh(τ)⊥
ia (−→x ) are the eigenfunctions of̃△L. τ denotes a complete set of indices andλ (τ) are a

set of variational parameters to be determined by the minimization of Eq.(1.11). The expectation
value ofΛ̂⊥

Σ is easily obtained by inserting the form of the propagator into Eq.(1.11) and minimiz-
ing with respect to the variational functionλ (τ). Thus the total one loop energy density for TT
tensors becomes

Λ
8πG

= −1
2 ∑

τ

[

√

ω2
1 (τ)+

√

ω2
2 (τ)

]

. (1.15)

The above expression makes sense only forω2
i (τ) > 0, whereωi are the eigenvalues of̃△L. Con-

cerning the scalar contribution of Eq.(1.10), in Ref.[20] has been proved that the cosmological
constant contribution is

Λσ

8πG
=

1
4

√

2
3∑

τ

[

√

ω2(τ)

]

, (1.16)

whereω (τ) is the eigenvalue of the scalar part of the perturbation. In the next section, we will
explictly evaluate Eqs.(1.15,1.16) for a specific background.
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2. One loop energy Regularization and Renormalization for a f (R) = R theory

If we consider a background of the form

ds2 = −N2(r)dt2 +
dr2

1− b(r)
r

+ r2(

dθ2 +sin2θdφ2) , (2.1)

then, with the help of Regge and Wheeler representation[12],
(

△̃Lh
⊥)

i j can be reduced to

[

− d2

dx2 +
l (l +1)

r2 +m2
i (r)

]

fi (x) = ω2
i,l fi (x) i = 1,2 , (2.2)

where we have used reduced fields of the formfi (x) = Fi (x)/r and where we have defined two
r-dependent effective massesm2

1(r) andm2
2 (r)















m2
1(r) = 6

r2

(

1− b(r)
r

)

+ 3
2r2 b′ (r)− 3

2r3 b(r)

m2
2(r) = 6

r2

(

1− b(r)
r

)

+ 1
2r2 b′ (r)+ 3

2r3 b(r)

(r ≡ r (x)) . (2.3)

In order to use the WKB approximation, from Eq.(2.2) we can extract two r-dependent radial wave
numbers

k2
i (r, l ,ωi,nl) = ω2

i,nl −
l (l +1)

r2 −m2
i (r) i = 1,2 . (2.4)

Whenb(r) = rt = 2MG, the effective masses can be approximated in the range wherer ∈ [rt ,5rt/2]

with m2
1(r) = −m2

2(r) = m2
0(r). Such a restriction comes from the fact that the effective masses,

in this range, represent short distance contribution. Indeed, we expect to receive large contribution
from quantum fluctuations at short distances. It is now possible to explicitly evaluate Eq.(1.15) in
terms of the effective mass. To further proceed we use the W.K.B. method used by ‘t Hooft in the
brick wall problem[13] and we count the number of modes with frequency less thanωi , i = 1,2.
This is given approximately by

g̃(ωi) =
∫ lmax

0
νi (l ,ωi) (2l +1)dl, (2.5)

whereνi (l ,ωi), i = 1,2 is the number of nodes in the mode with(l ,ωi), such that(r ≡ r (x))

νi (l ,ωi) =
1
π

∫ +∞

−∞
dx

√

k2
i (r, l ,ωi). (2.6)

Here it is understood that the integration with respect tox andlmax is taken over those values which
satisfyk2

i (r, l ,ωi) ≥ 0, i = 1,2. With the help of Eqs.(2.5,2.6), Eq.(1.15) becomes

Λ
8πG

= − 1
π

2

∑
i=1

∫ +∞

0
ωi

dg̃(ωi)

dωi
dωi . (2.7)

This is the graviton contribution to the induced cosmological constant to one loop. The explicit
evaluation of Eq.(2.7) gives

Λ
8πG

= ρ1 + ρ2 = − 1
4π2

2

∑
i=1

∫ +∞
√

m2
i (r)

ω2
i

√

ω2
i −m2

i (r)dωi , (2.8)
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where we have included an additional 4π coming from the angular integration. The use of the zeta
function regularization method to compute the energy densitiesρ1 andρ2 leads to

ρi (ε) =
m4

i (r)
64π2

[

1
ε

+ ln

(

4µ2

m2
i (r)

√
e

)]

i = 1,2 , (2.9)

where we have introduced the additional mass parameterµ in order to restore the correct dimension
for the regularized quantities. Such an arbitrary mass scale emerges unavoidably in any regular-
ization scheme. The renormalization is performed via the absorption of the divergent part into the
re-definition of the bare classical constantΛ, namelyΛ → Λ0 + Λdiv. The remaining finite value
for the cosmological constant reads

Λ0

8πG
= (ρ1(µ)+ ρ2(µ)) = ρTT

e f f (µ , r) , (2.10)

whereρi (µ) has the same form ofρ1(ε) but without the divergence. The quantity in Eq.(2.10)
depends on the arbitrary mass scaleµ . It is appropriate to use the renormalization group equation
to eliminate such a dependence. To this aim, we impose that[14]

1
8πG

µ
∂Λ0 (µ)

∂ µ
= µ

d
dµ

ρTT
e f f (µ , r) . (2.11)

Solving it we find that the renormalized constantΛ0 should be treated as a running one in the sense
that it varies provided that the scaleµ is changing

Λ0 (µ , r)
8πG

=
Λ0 (µ0, r)

8πG
+

m4
0(r)

16π2 ln
µ
µ0

. (2.12)

Substituting Eq.(2.12) into Eq.(2.10) we find

Λ0 (µ0, r)
8πG

= − 1
32π2

{

m4
0(r)

[

ln

(

m2
0(r)

√
e

4µ2
0

)]}

. (2.13)

If we go back and look at Eq.(1.3), we note that what we have actually computed is the oppo-
site of an effective potential (better an effective energy). Therefore, we expect to find physically
acceptable solutions in proximity of the extrema. We find that Eq.(2.13) has an extremum when

1
e

=
m2

0(r)

4µ2
0

=⇒ Λ̄0 (µ0, r̄)
8πG

=
m4

0(r̄)

64π2 =
µ4

0

4π2e2 . (2.14)

Actually Λ̄0 (µ0, r̄) is a maximum, corresponding to a minimum of the effective energy. Note also
that there exists another extremum when

m4
0(r) = 0 =⇒ M = 0. (2.15)

This solution corresponds to Minkowski space, producing noeffect on the vacuum. For this reason
it will be discarded. On the other hand, the effect of the gravitational fluctuations is to shift the
minimum of the effective energy away from the flat solution leading to an induced cosmological
constant. If we apply the same procedure to the scalar part ofthe perturbation, we find that the only

6
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consistent solution is thatΛσ = 0. Therefore, the whole contribution is due to the physical degrees
of freedom: the graviton[15]. Plugging Eq.(2.14) into Eq.(2.12), we find

Λ0 (µ , r̄)
8πG

=
Λ̄0(µ0, r̄)

8πG
+

m4
0 (r̄)

16π2 ln
µ
µ0

=
m4

0(r̄)
64π2

(

1+4ln
µ
µ0

)

. (2.16)

If we setµ0 = mP, wheremP is the Planck mass, we can find that

Λ0 (µ̃ , r̄)
8πG

= 0 when µ̃ = exp

(

−1
4

)

µ0. (2.17)

Nevertheless,̃µ is of the order of the Planck mass again, but unfortunately isa scale which is very
far from the nowadays observations. However, it is interesting to note that this approach can be
generalized by replacing the scalar curvatureR with a generic function ofR. Although a f (R)

theory does not need a cosmological constant, rather it should explain it, we shall consider the
following Lagrangian density describing a genericf (R) theory of gravity

L =
√−g( f (R)−2Λ) , with f ′′ 6= 0, (2.18)

where f (R) is an arbitrary smooth function of the scalar curvature and primes denote differentiation
with respect to the scalar curvature. A cosmological term isadded also in this case for the sake
of generality, because in any case, Eq.(2.18) represents the most general lagrangian to examine.
Obviously f ′′ = 0 corresponds to GR.[17]. The semi-classical procedure followed in this work
relies heavily on the formalism outlined in Refs.[20, 16]. The main effect of this replacement is
that at the scaleµ0, we have a shift of the old induced cosmological constant into

Λ′
0 (µ0, r)

8πG
=

1
√

h(R)

[

Λ0 (µ0, r)
8πG

+
1

16πGV

∫

Σ
d3x

√
g

R f′ (R)− f (R)

f ′ (R)

]

, (2.19)

whereV is the volume of the system. Note that whenf (R) = R, consistently it ish(R) = 1 with

h(R) = 1+
2[ f ′ (R)−1]

f ′ (R)
(2.20)

We can always choose the form off (R) in such a wayΛ0(µ0, r). This implies

Λ′
0 (µ0, r)

8πG
=

1
√

h(R)

1
16πGV

∫

Σ
d3x

√
g

R f′ (R)− f (R)

f ′ (R)
. (2.21)

A comment is in order. We have found that our calculation is inagreement with Ref.[15], where
only the graviton contribution is fundamental. Note also the absence of a Faddeev-Popov de-
terminant. This is in agreement with Ref.[15] but also with Ref.[10], where the Faddeev-Popov
determinant appears when perturbations of the shift vectors are considered. The second comment
regards our one loop computation which is deeply different form the one loop computation of
Refs.[18, 19], where the analysis has been done expanding directly f (R). In our case, the expan-
sion involves only the three dimensional scalar curvature.Note that with the metric(2.1) and the
effective masses(2.3), in principle, we can examine every spherically symmetric metric. Note also
the absence of boundary terms in the evaluation of the induced cosmological constant.
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