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1. Introduction

The Friedmann-Robertson-Walker model of the universeedas the Einstein’s field equa-
tions gives an explanation of why the Universe is in an acaétn phase. This is supported by data
observations on type | supernovae[l]. Nevertheless, @imisuich an expansion we need almost
76% of what is known aBark Energy Dark Energy is based on the following equation of state
P = wp (whereP andp are the pressure of the fluid and the energy density, respBgti When
w < —1/3, we are in the Dark energy regime, while we have a transitiéthantom Energwhen
w < —1. The particular case @b = —1 corresponds to a cosmological constant. Nevertheless, ne
ther Dark Energy nor Phantom Energy models appear to béesatis/ to explain the acceleration.
A proposal to avoid Dark and Phantom energy comes form theabed modified gravity theo-
ries. In particular, one could consider the following regment in the Einstein-Hilbert action[2]
(k = 81G)

S:%/.d4x\/_—gR+snatter N S:%/d“x /_—gf(R)—l—Snatter. (1_1)

It is clear that other more complicated choices could be dorgace of f (R)[4]. In particular,
one could considef (R, R, RHY,Ryp,sR*FY2,...) or f(R,G) whereG is the Gauss-Bonnet in-
variant or any combination of these quantitie©One of the prerogatives of &(R) theory is the
explanation of the cosmological constant. Neverthelesthimg forbids to consider a more general
situation where & (R) is combined with a cosmological constaky, especially in the context of
the Wheeler-DeWitt equation (WDW)[5]. Forfa R) = R, one gets

H = (2K) Gija 1) 1 — §(3R— 2\¢) =0, (1.2)

where R is the scalar curvature in three dimensions. The main retseovork with a WDW
equation becomes more transparent if we formally re-whigdWWDW equation as[9]
12095 ¥ (9] s AsW[gi) _ 1(W[zd¥Az|¥) A
Vo [ 2]gi] V(6] Wgij] v (W|w) K’

(1.3)

whereV = [; d%,/gis the volume of the hypersurfageandAs = (2k) Gij 1) ' —  /g°R/ (2K ) .
Eq.(1.3) represents the Sturm-Liouville problem associated withabsmological constant. The
related boundary conditions are dictated by the choice etrial wavefunctionals which, in our
case are of the Gaussian type. Different types of wavefoinals correspond to different boundary
conditions. We can gain more information if we considgr= gi; + hij,whereg;; is the back-
ground metric andh;j is a quantum fluctuation around the background. ThuglR). can be
expanded in terms dfjj. Since the kinetic part ohs is quadratic in the momenta, we only need
to expand the three-scalar curvatg'rd3x\/§3R up to the quadratic order. However, to proceed
with the computation, we also need an orthogonal decomposin the tangent space of 3-metric
deformations[10, 11]:

LFor a recent riview orf (R), see Refs.[3, 4], while a recent review on the problenf @8) and f (R,G) can be
found in Ref.[6, 7].
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h :%(G+ZD'5)gij+(Lf)ij+hﬁ. (1.4)

The operatol. mapsé; into symmetric tracefree tenso(lsé)ij = 0ié; +0éi — %gij (O0-¢), hﬁ
is the traceless-transverse component of the perturb@kiby) namelyg'! hﬁ =0, D‘hﬁ =0 andh
is the trace ohy;. It is immediate to recognize that the trace element h—2(0- &) is gauge
invariant. If we perform the same decomposition also on tlenentumr!, up to second order

Eq.(1.3) becomes
@] [Ad + AL+ Ag] | w
1 2 z z z ¢

Concerning the measure appearing in(E®), we have to note that the decompositidn4) in-
duces the following transformation on the functional measuh;; — .@hﬁ.@fi 20J,, where the
Jacobian related to the gauge vector varidbie

1
.. . .. 2
)= [det(Ag” +%D'DJ - R”)] . (1.6)

This is nothing but the famous Faddev-Popov determinanbetomes more transparent&f

is further decomposed into a transverse @grtwith 02&] = 0 and a longitudinal pard with

E;,U = [ay, thenJ; can be expressed by an upper triangular matrix for certatkgraunds (e.g.
Schwarzschild in three dimensions). It is immediate to geixe that for an Einstein space in
any dimension, cross terms vanish ahdcan be expressed by a block diagonal matrix. Since
detAB = detAdetB, the functional measur@h;; factorizes into

L. 2
Phij = (detA\T,)% <det[§ A?1OR! D,-D Ih; DET DY (1.7)

NT L

with (Ay) = Ad! —RI acting on transverse vectors, which is the Faddeev-Popevrdimant.

In writing the functional measur&h;j, we have here ignored the appearance of a multiplicative
anomaly[8]. Thus the inner product can be written as

1
[t 28T 20w [ W [€T]w o)W [t | WET] wlo] (deta])? (detE A24ORID ,D g
(1.8)
Nevertheless, since there is no interaction between gteldsfand the other components of the
perturbation at this level of approximation, the Jacobippearing in the numerator and in the
denominator simplify. The reason can be found in terms oheoted and disconnected terms.
The disconnected terms appear in the Faddeev-Popov deserand these ones are not linked
by the Gaussian integration. This means that disconneeteustin the numerator and the same
ones appearing in the denominator cancel out. Therefor€]l.Byfactorizes into three pieces. The
piece containing\f is the contribution of the transverse-traceless tensor$. @ssentially is the
graviton contribution representing true physical degaddseedom. Regarding the vector tefkﬁ,
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we observe that under the action of infinitesimal diffeonmisp generated by a vector fiedd the
components of1.4) transform as follows[10]

§—¢&+g, h—h420-&  hj—hj. (1.9)

The Killing vectors satisfying the conditian;; + ;& = 0, do not changdy;, and thus should be
excluded from the gauge group. All other diffeomorphismisomdy; nontrivially. We need to fix

the residual gauge freedom on the vedorThe simplest choice i& = 0.This new gauge fixing

produces the same Faddeev-Popov determinant connectesliadobiad; and therefore will not

contribute to the final value. We are left with

(W XA wh) g (W ax AP we) A

v (Wi v (W9 o) =% Pl (1.10)
Note that in the expansion g§d3x\/§Rto second order, a coupling term between the TT com-
ponent and scalar one remains. However, the Gaussianatitgagdoes not allow such a mixing
which has to be introduced with an appropriate wave funatioBxtracting the TT tensor contri-
bution from Eq(1.3) approximated to second order in perturbation of the sppdietlof the metric
into a background termy;;, and a perturbatioh;j, we get

R 1 .. B 1 -
A = v /z dx,/gG [(ZK) K™ (%, X)ijq + @(AL)";‘KL (X X)iaud | (1.11)
where
(ALhi) = (ALhi) — 4R+ PRN; (1.12)
ij ij
is the modified Lichnerowicz operator any is the Lichnerowicz operator defined by
(ALh); = Ahjj — 2Ry b + Rehf + Ryhl A = —020, (1.13)

Gk represents the inverse DeWitt metric and all indices rumfome to three. Note that the term

—4R}‘hkij+ 3Rfﬁ disappears in four dimensions. The propag#ténx,X);,,, can be represented as

KL 7’7 ) — la kl ’ (114)
( )|akl ET 2 (.[)
wherehll* (X) are the eigenfunctions dk,. T denotes a complete set of indices angr) are a

set of variational parameters to be determined by the maaitiin of Eq(1.11). The expectation
value off\% is easily obtained by inserting the form of the propagattw Bqg(1.11) and minimiz-
ing with respect to the variational function(t). Thus the total one loop energy density for TT

tensors becomes A 1
o =23 [V + /3] (1.15)

The above expression makes sense onlydd(r) > 0, wherew are the eigenvalues cf&L. Con-
cerning the scalar contribution of E4.10), in Ref.[20] has been proved that the cosmological

constant contribution is
N° 1 /2
_=. /- 2 1.16
8NG 4\/;ZT {V“’ (T)}’ (1.16)

wherew(T) is the eigenvalue of the scalar part of the perturbation.hértext section, we will
explictly evaluate Eq$1.15,1.16) for a specific background.
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2. Oneloop energy Regularization and Renormalization for a f (R) = Rtheory

If we consider a background of the form

+12(d6? +sir? 6d¢?) , (2.1)

dr?
_ N2 2
ds? = N(r)dt+1 TG}

r

then, with the help of Regge and Wheeler representation[fQL‘nL)ij can be reduced to

a2 1(1+1) 5 .

[—W—F 2 +mz(r)} fiX=afix i=12 , (2.2)
where we have used reduced fields of the fdiiix) = F (x) /r and where we have defined two
r-dependent effective masseg (r) andms (r)

me(r) = & (1= %2) + B0/ (1) - b(r)
(r=r(x)). (2.3)
mB(r) = & (1= 20) + 2L/ (1) + S5b (1)

In order to use the WKB approximation, from E22) we can extract two r-dependent radial wave
numbers

(1) =y~ ey =12 2.4)

Whenb(r) =r; = 2MG, the effective masses can be approximated in the range whkere, 5r; /2]
with m2 (r) = —ma(r) = mg(r). Such a restriction comes from the fact that the effectiveses,
in this range, represent short distance contribution. dddeve expect to receive large contribution
from quantum fluctuations at short distances. It is now fbsso explicitly evaluate EQ1.15) in
terms of the effective mass. To further proceed we use the BVikdethod used by ‘t Hooft in the
brick wall problem[13] and we count the humber of modes withgfiency less tham, i = 1, 2.
This is given approximately by

@<m>=/0'"mvi (l@) (2 +1)dI, (2.5)

wherev; (I, @), i = 1,2 is the number of nodes in the mode withaw ), such tha(r =r (x))

" (I,m):%/:wdx\/k?(r,l,m). (2.6)

Here it is understood that the integration with respecatdadl .« is taken over those values which
satisfyk? (r,1, @) > 0, i = 1,2. With the help of Eq$2.5,2.6), Eq(1.15) becomes

A 12 e dglaw)
%__71;/0 0 Gt 2.7)

This is the graviton contribution to the induced cosmolagiwonstant to one loop. The explicit
evaluation of Eq2.7) gives

N I A P
%—PH-Pz——HiZi/ -6y~ P (nda (2.8)
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where we have included an additionat doming from the angular integration. The use of the zeta
function regularization method to compute the energy diessi, andp, leads to

pi(s)z%[%+ln<#;@>] i=12 | (2.9)

where we have introduced the additional mass paranugteorder to restore the correct dimension
for the regularized quantities. Such an arbitrary masssealerges unavoidably in any regular-
ization scheme. The renormalization is performed via thsogiiion of the divergent part into the
re-definition of the bare classical constantnamelyA — A+ A%Y. The remaining finite value
for the cosmological constant reads

8/\—71(23 = (p1 () + P2 (1)) = Pars (H,T), (2.10)

wherep; (i) has the same form gf; (¢) but without the divergence. The quantity in Ej10)
depends on the arbitrary mass sqaldt is appropriate to use the renormalization group equation
to eliminate such a dependence. To this aim, we impose #lat[1

1 ONo(u) _d o7
%IJ ou —“@peff(IJ»r)- (2.11)
Solving it we find that the renormalized constégtshould be treated as a running one in the sense

that it varies provided that the scalels changing

/\0 (l—’l>r) _ AO(”Ovr) rné(r) U
G~ BrG 162 Inm. (2.12)
Substituting Eq2.12) into Eq(2.10) we find
No(ko,r) 1 mg(r)ve
snG 32w {mg“) {'” (T&)H &1

If we go back and look at E@L.3), we note that what we have actually computed is the oppo-
site of an effective potential (better an effective energiherefore, we expect to find physically
acceptable solutions in proximity of the extrema. We find B@(2.13) has an extremum when

1m0 . Aol (0 (2.14)

e 4 8nG 64 4mPe?’

Actually No (o, ) is @ maximum, corresponding to a minimum of the effectivergyneNote also
that there exists another extremum when

m(r)=0 — M =0. (2.15)

This solution corresponds to Minkowski space, producingfifiect on the vacuum. For this reason
it will be discarded. On the other hand, the effect of the gational fluctuations is to shift the

minimum of the effective energy away from the flat solutioadig to an induced cosmological
constant. If we apply the same procedure to the scalar ptregferturbation, we find that the only
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consistent solution is th&t® = 0. Therefore, the whole contribution is due to the physiegjrdes
of freedom: the graviton[15]. Plugging Eg.14) into Eq(2.12), we find

No(K,7) _ Mo(po, ) () —u _ mg(P) u
e G~ 81G + 162 In o oA 1+4In o) (2.16)
If we setpp = mp, wheremp is the Planck mass, we can find that
/\O(ﬂvr_) _ ~ 1
8IG =0 when I =exp ~1 Uo. (2.17)

Neverthelessji is of the order of the Planck mass again, but unfortunatedysisale which is very
far from the nowadays observations. However, it is intémgsto note that this approach can be
generalized by replacing the scalar curvatBravith a generic function oR. Although af (R)
theory does not need a cosmological constant, rather itidgleoglain it, we shall consider the
following Lagrangian density describing a genef{d) theory of gravity

Z=y=g(f(R)—27),  with f” £0, (2.18)

wheref (R) is an arbitrary smooth function of the scalar curvature airdgs denote differentiation
with respect to the scalar curvature. A cosmological termdded also in this case for the sake
of generality, because in any case, Rdl8) represents the most general lagrangian to examine.
Obviously f” = 0 corresponds to GR.[17]. The semi-classical procedutewel in this work
relies heavily on the formalism outlined in Refs.[20, 16heTmain effect of this replacement is
that at the scalgp, we have a shift of the old induced cosmological constaut int

Ny(kor) 1 [Aolkor) R (R)— (R

1 3
81G  /h(R) | 81C T AR I R

whereV is the volume of the system. Note that whiefR) = R, consistently it ih(R) = 1 with

_ 4 2R -1
h(R) =1+ PR (2.20)
We can always choose the form bfR) in such a way\q (Lo, r). This implies
No(or) 11 o RFR-F(R)
81G  /h(R) 16nGV/zd e rmw (2.21)

A comment is in order. We have found that our calculation iagneement with Ref.[15], where
only the graviton contribution is fundamental. Note alse #bsence of a Faddeev-Popov de-
terminant. This is in agreement with Ref.[15] but also witefIRLO], where the Faddeev-Popov
determinant appears when perturbations of the shift veetr considered. The second comment
regards our one loop computation which is deeply differemmf the one loop computation of
Refs.[18, 19], where the analysis has been done expandiedlgif (R). In our case, the expan-
sion involves only the three dimensional scalar curvattete that with the metri¢2.1) and the
effective masse&.3), in principle, we can examine every spherically symmetratnn. Note also
the absence of boundary terms in the evaluation of the imtloesmological constant.
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