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The Effective Potential of the Conformal Factor in Quantum Einstein Gravity Jan-Eric Daum

1. Introduction

One major problem in constructing a fundamental theory of quantum gravity is the complete
lack of any experimental data that could be confronted with the corresponding predictions of the
theory [1–4]. Therefore, it is particularly important to find out whether some of the a priori different
candidate theories are perhaps just different formulations of the same underlying theory or whether
they really belong to different “universality classes”. All candidates describing the same underlying
physics in different formulations must agree on the observations that are within the domain of
applicability of the hitherto unknown correct theory of quantum gravity. In this way one can at
least narrow down the set of independent possibilities among which the experiment must decide in
the end. Guided by the experience with Yang-Mills theory we would expect that in particular the
comparison of continuum and lattice approaches should be very instructive and fruitful. On the side
of the continuum approaches, recently a lot of efforts went into the exploration of the asymptotic
safety scenario [5–28] in the formulation based upon the gravitational average action. It aims
at defining a microscopic quantum field theory of gravity in terms of a complete, i.e., infinitely
extended renormalization group (RG) trajectory on the theory space of diffeomorphism invariant
functionals of the metric. The limit of an infinite ultraviolet (UV) cutoff is taken by arranging this
trajectory to approach a non-Gaussian fixed point (NGFP) at large scales (k ! ∞). This NGFP of
the effective average action is not only instrumental in constructing the quantum field theory by
dictating how all generalized couplings must “run” when theUV regulator scale is sent to infinity,
it also determines the physical properties of the resultingregulator-free theory at largephysical
scales, the behavior of propagators at large momenta, for instance. We refer to this quantum field
theory of the metric, defined in the continuum by means of the effective average action, as Quantum
Einstein Gravity (QEG).

In the following we are going to review how the mere existenceof a non-Gaussian fixed point
allows us to draw inevitable conclusions about the potential of the conformal factor at small dis-
tances. Since this result is not restricted to a specific truncation of the full theory and is related
to the very notion of asymptotic safety it is a remarkably robust prediction. In particular it should
be possible to confirm it by the corresponding lattice approaches. In this way it might provide an
opportunity to transfer the successful cross-fertilization between continuum and lattice approaches
in Yang-Mills theory [30–33] to the context of gravity.

2. The Effective Potential of the Conformal Factor
in QEG

We are interested in the standard effective potential (i. e., the one with vanishing infrared
cutoff, k = 0) for the conformal factor of metrics on maximally symmetric spacetimes with the
topology of ad-dimensional sphereSd . The starting point is theexact gravitational effective
average action [6] along some RG trajectory,Γk[gµν ; ḡµν ℄, and the related reduced functional
Γ̄k[gµν ℄ � Γk[gµν ;gµν ℄. (The ghost arguments are set to zero and are not indicated explicitly.)
The latter functional is assumed to have a representation ofthe form

Γ̄k[gµν ℄ = ∑
α

ūα(k) Iα [gµν ℄ (2.1)
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wherefIα [gµν ℄g is an infinite set of local and nonlocal “basis” functionals,invariant under diffeo-
morphisms acting ongµν , and the ¯uα ’s are the corresponding running coupling constants. We de-
note their canonical mass dimensions bydα � [ūα ℄. Hence, sincēΓk is dimensionless,[Iα ℄ =�dα .
The dimensionless running couplings are defined by

uα(k)� k�dα ūα(k)
so that we may rewrite (2.1) as

Γ̄k[gµν ℄ =∑
α

uα(k) kdα Iα [gµν ℄ (2.2)

Up to now the metric argumentgµν was completely general. At this point we specialize for
metrics onSd , with a variable radiusφ . We parametrize them as

gµν = φ2 ĝµν (2.3)

where ˆgµν is the metric on the roundSd with unit radius, and the conformal factorφ is position
independent. Hencegµν is a metric on a round sphere with radiusφ . We shall denote the volume
of the unit-Sd by σd � R

ddx
p

ĝ = 2π(d+1)=2=Γ
�(d +1)=2

�
.

We use conventions such that the coordinatesxµ are dimensionless andφ has the dimension
of a length. Hence[gµν ℄ =�2, and ˆgµν is dimensionless,[ĝµν ℄ = 0.

Without having made any approximation so far, the effectiveaverage potential for the confor-
mal factor,Uk(φ), by definition, obtains by inserting the special argument (2.3) into Γ̄k:

Uk(φ)Z ddx
p

ĝ � Γ̄k[gµν = φ2ĝµν ℄ (2.4)

In terms of the expansion (2.2) we have the exact representation

Uk(φ) = σ�1
d ∑

α
uα(k) kdα Iα [φ2ĝµν ℄ (2.5)

or, more explicitly,

Uk(φ) = σ�1
d ∑

α
uα(k) (kφ)dα Iα [ĝµν ℄ (2.6)

To obtain equation (2.6) we exploited thatIα [φ2ĝµν ℄ = φdα Iα [ĝµν ℄ which holds true sinceIα has
dimension�dα . (This relation can be regarded the definition of the canonical mass dimension.)

Eq. (2.6) makes it manifest that if we know a complete RG trajectory fuα (k);0 � k < ∞g
we can deduce the exact running potential from it, and in particular its k ! 0 limit, the standard
effective potentialUeff(φ) �Uk=0(φ). Usually we are not in the comfortable situation of knowing
trajectories exactly; nevertheless certain important properties ofUeff(φ) can be deduced on general
grounds. For this purpose we shall employ the following decoupling argument which is standard
in the average action context [30,32].

The basic observation is that the true, i. e. dimensionful coupling constants ¯uα(k) have a
significant running withk only as long as the number of field modes integrated out actually depends
on k. If there are competing physical cutoff scales such as masses or field amplitudes the running
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with k stops oncek becomes smaller than the physical cutoff scales. (See Appendix C.3 of [28]
for an example.) In the case at hand this situation is realized in a particularly transparent way.
The quantum metric is expanded in terms of eigenfunctions ofthe covariant (tensor) Laplacian̄D2

of the metric ¯gµν . This metric corresponds to a sphere of radiusφ ; hence all eigenvalues of the
Laplacian are discrete multiples of 1=φ2. As a result, whenk has become as small ask � 1=φ , the
bulk of eigenvalues is integrated out, and the ¯uα ’s no longer change much whenk is lowered even
further. Therefore we can approximate

Ueff(φ) � Uk=0(φ)�Uk=1=φ (φ) (2.7)

In order to make the approximation (2.7) strictly valid we have to be slightly more specific
about the precise definition ofUk(φ). The above argument could be spoiled by zero modes of
D̄2. Therefore we defineΓk andUk in terms of a functional integral over the fluctuation modes of
the metric with a non-zero eigenvalue ofD̄2 only. As a result, the actual partition function would
obtain by a final integration over the zero modes which is not performed here. The only zero modes
relevant in the case at hand are those of the conformal factor. It is therefore important to keep in
mind thatUeff(φ) has the interpretation of an effective potential in which the conformal fluctuations
have not yet been integrated out.

Eq. (2.7) has a simple intuitive interpretation in terms of coarse graining: By loweringk below
1=φ one tries to “average” field configurations over a volume thatwould be larger than the volume
of the whole universe. As this is not possible, the running stops. Note that theSd topology enters
here; the finite volume of the sphere is crucial.

With the approximation (2.7) we obtain the following two equivalent representations ofUeff(φ)
in terms of the dimensionless and dimensionful running couplings, respectively:

Ueff(φ) = σ�1
d ∑

α
uα(φ�1) Iα [ĝµν ℄ (2.8)

Ueff(φ) = σ�1
d ∑

α
ūα(φ�1)φdα Iα [ĝµν ℄ (2.9)

As an application of these representations we consider two special cases.
Let us assume the RG trajectory under consideration has aclassical regime between the scales

k1 andk2, meaning that ¯uα(k) � const� ūclass
α for k1 < k < k2. Then (2.9) implies that fork�1

2 <
φ < k�1

1 , approximately,

Ueff(φ) = σ�1
d ∑

α
ūclass

α Iα [ĝµν ℄φdα (2.10)

As expected, this potential has a nontrivialφ -dependence governed by the classical couplings ¯uclass
α .

Next let us explore the consequences which a non-Gaussian fixed point has for the effective
potential. We assume that the dimensionless couplingsuα(k) approach fixed point valuesu�α for
k ! ∞. More precisely, we make the approximationuα(k) � u�α for k & M with M the lower
boundary of the asymptotic scaling regime. Then the representation (2.8) tells us thatUeff(φ) =
σ�1

d ∑α u�α Iα [ĝµν ℄ if φ .M�1. Obviously this potential is completely independent ofφ :

Ueff(φ) = const for all φ .M�1 (2.11)
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In typical applications (see below),M equals the Planck massmPl� `�1
Pl so thatUeff is constant for

φ . `Pl.
Eq. (2.11) is our main result. It shows that the existence of an ultraviolet fixed point has a

characteristic impact on the effective potential of the conformal factor: Regardless of all details of
the RG trajectory, the potential is completely flat for smallφ . The interpretation of this result is
that forφ .M�1 the cost of energy (Euclidean action) of a sphere with radiusφ does not depend
on φ . Spheres of any radius smaller thanM�1 are on an equal footing. This is exactly the kind of
fractal-like behavior and scale invariance one would expect near the NGFP [8,10].

We emphasize that except for the decoupling relation (2.7) no approximation went into the
derivation of this result. It is an exact consequence of the assumed asymptotic safety, the existence
of a NGFP governing the short distance behavior. Neither hasthe theory space been truncated nor
have any fields been excluded from the quantization (such as in conformally reduced gravity the
transverse tensors, for instance, cf. [21,22]).

On the basis of the above general argument we cannot predict how precisely, or how quickly
the effective potential flattens when we approach the origin. However, we expect that its derivative
with respect toφ2, ∂Ueff=∂φ2, vanishes atφ = 0. This has an important physical implication. In
general, possible vacuum states of the system (the “universe”) can be found from the effective field
equationδΓk=0=δgµν = 0. More specifically,Sd-type groundstate candidates have a radiusφ0 at
which

�
∂Ueff=∂φ2

�(φ0) = 0. (Note that for metrics of the typegµν = φ2ĝµν the variationδ=δgµν
corresponds to a partial derivative with respect toφ2.) Thus we see that thanks to the NGFP a
vanishing radiusφ0 = 0 has become a vacuum candidate, theφ2-derivative ofUeff vanishes there.
(To qualify as the true vacuum it should be the global minimum.) Hence the universe has an at
least metastable stationary state withφ = 0, i.e. a state with a vanishing metric expectation valuehgµνi = 0. In this state gravity is in aphase of unbroken diffeomorphism invariance, which has
already been discussed in the context of asymptotic safety [22].

Let us finally illustrate the above discussion in the familiar setting of the Einstein-Hilbert
truncation [6] ind = 4 which is defined by the ansatz

Γ̄k[gµν ℄ =� 1
16πGk

Z
d4x

p
g
�

R(g)�2Λk

�
(2.12)

Inserting (2.3) withφ = φ(x) we obtain

Γ̄k[φ2ĝµν ℄ = 3
4πG(k) Z d4x

p
ĝ
h� 1

2
ĝµν∂µφ∂νφ �φ2+ 1

6
Λ(k)φ4

i
(2.13)

For x-independentφ only the potential term survives, with

Uk(φ) = 3
4πG(k)��φ2+ 1

6
Λ(k)φ4

�
(2.14)= 3

4πg(k)�� k2φ2+ 1
6

λ (k) k4φ4
�

If Λ(k)> 0, the case we shall always consider in the following,Uk(φ) has a minimum at a nonzero
radius given by

φ0(k) =p
3=Λ(k) (2.15)
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This is exactly the radius of theS4 which solves the ordinary Einstein equation following fromthe
action (2.12)1. In the second line of (2.14) we employed the dimensionless Newton constantg(k)�
k2G(k) and cosmological constantλ (k)�Λ(k)=k2. So there are the following two equivalent ways
of writing the effective potential:

Ueff(φ) = 3
4π

h� 1
G(φ�1) φ2+ 1

6
Λ(φ�1)
G(φ�1) φ4

i
(2.16)

Ueff(φ) = 3
4π

h� 1
g(φ�1) + 1

6
λ (φ�1)
g(φ�1) i (2.17)

The RG trajectories of the Einstein-Hilbert truncation have been investigated and classified
in [9]. Here we can concentrate on those with a positive cosmological constant, those of “Type
IIIa”. Important regimes along a Type IIIa trajectory include
The NGFP regime: g(k)� g�, λ (k)� λ� for k &M.
The k4 regime: G(k)� const,Λ(k) ∝ k4 for kT . k .M, wherekT is the “turning point” scale at
which βλ vanishes.
The classical regime: G(k)� const� Ḡ, Λ(k) � const� Λ̄ for kterm� k . kT wherekterm is the
scale at which the Einstein-Hilbert truncation breaks downand the trajectory terminates at a singu-
larity2.
If one defines the classical Planck mass and length bymPl� `�1

Pl � Ḡ�1=2 one finds that, approxi-
mately,M � mPl. (For further details see [9,41,45]; see in particular Fig.4 of [45].)

In thek4-regime, whenk decreases, the cosmological constant quickly becomes smaller pro-
portional tok4, and the radius of the sphere “on shell”,φ0(k), increases proportional to 1=k2.

If the underlying RG trajectory of QEG is of Type IIIa thenUeff(φ) is constant in the NGFP
regimeφ . `Pl, and it equals the classical potential fork�1

T . φ . k�1
term. Note that our ignorance

about the infrared end of the trajectory entails that we haveno information about the effective
potentialfor large values of φ . The intermediatek4-regime of the trajectory gives rise to a behavior

Ueff(φ) ∝ (�φ2+const) for k�1
T . φ . `Pl: (2.18)

In the above discussion we tacitly assumed that the trajectory is such thatM2 � m2
Pl � Λ̄;

otherwise no classical regime would exist.
A qualitative sketch of the resultingUeff is shown in Fig. 1. It is compared there to the classical

potentialUclasswhich would obtain ifG andΛ had nok-dependence at all. The crucial difference
between the two is the almost constantUeff at smallφ . This regime is a pure quantum gravity effect,
directly related to the existence of a NGFP. Quantum mechanically, but not classically, the universe
can be stationary at small values ofφ , at least atφ = 0.

As a consequence of our assumptionΛ̄�m2
Pl, theUeff = const regime ends at a radiusφ � `Pl

which issmaller than the classical “on-shell” radius̄φ0 =p
3=Λ̄. The actual “size of the universe”

corresponds to a scale in the classical regime of the RG trajectory therefore.

1Because this space is maximally symmetric, by Palais’ theorem [35], inserting the ansatzgµν = φ2ĝµν commutes
with deriving the critical point.

2If one tentatively matches the trajectory against the observed values ofG and Λ one finds thatkT � 10�30mPl,
corresponding tok�1

T � 10�3cm, andkterm� 10�60mPl � H0 so thatk�1
term equals about the present Hubble radius [45],

[41].
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Φ2

Ueff

lPl
2 Φ

��
0
2

Figure 1: The effective potential for the Type IIIa trajectory discussed in the text. The dashed line represents
the potentialUclasswith the same values of̄G andΛ̄, but all quantum effects neglected.

In the region where the quantum effects modifyUclass most strongly the term∝ φ2 is the
dominant one. We can therefore say that the key effect behindthe flattening of the potential near the
origin is the running of Newton’s constant. Its consequencefor the shape ofUeff can be understood
as the result of the “RG improvement” [36–47]

1
G

φ2 �! 1
G(k = φ�1)φ2 = 1

g� (2.19)

with G(k) = g�=k2, as appropriate near the NGFP.
Up to now we considered pure gravity. However, including matter, the above argument will go

through unaltered provided the matter contributions to thebeta-functions do not destroy the NGFP.
A detailled analysis showed [17] that the NGFP indeed persists for a wide class of matter systems.
In these cases we would expect the same flattening ofUeff(φ) as for pure gravity.

3. Possible Connections to Numerical Simulations
within the CDT Approach

The causal dynamical triangulation approach [48–51] defines a discrete version of the Wick
rotated quantum-gravitational proper-time propagator

GE
Λ;G�g3(0);g3(t)�= Z DgE e�SE[gE℄ (3.1)

HereSE is the Euclidean Einstein-Hilbert action, and the integration is over all 4-dimensio-
nal Euclidean geometriesgE of topologyS3� [0;1℄, each with proper-time running from 0 tot, and
with prescribed spatial boundary geometriesg3(0) andg3(t), respectively. In the numerical evalu-
ation of (3.1), for technical reasons, periodic rather thanfixed boundary conditions have been used
so that the topology of the spacetimes summed over isS3�S1 rather thanS3� [0;1℄. (Furthermore,
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the Monte-Carlo simulations typically are done at constant4-volumeV4 rather than constantΛ; the
corresponding propagator is related to (3.1) by a Laplace transformation.)

Remarkably, a nontrivial point of contact between CDT and QEG has been found already [23]:
They both agree on the microscopic spectral dimension of macroscopically 4-dimensional space-
times; in either case one finds the somewhat surprising result dS = 2 [8,23]. It is therefore tempting
to ask whether the characteristic behavior of the conformalfactor that we have discussed in the
previous section might also be observed in the corresponding Monte-Carlo data provided by CDT.

First of all, it is instructive to visualize the typical, statistically representative 4-geometries
contributing to the path integral. They are characterized by a functionV3(s), 0� s� t, whereV3(s)
is the 3-volume of the spatialS3 at proper-times. If t is large enough, a “typical universe” has long
epochs with a very smallV3 at early and late times (the “stalk”) and in between a region with a
largeV3(s), see Fig. 1 of ref. [49].

It has been shown [49] that the dynamics of these “universes”is well reproduced by a minisu-
perspace effective action for Wick rotated Robertson-Walker metrics

ds2 = dt2+a2(t)dΩ2
3 (3.2)

where dΩ2
3 is the line element of the unit 3-sphere so thatV3(s) ∝ a3(s). It reads

Seff[a℄ =�3σ3

8π
1
G

Z t

0
ds
n�a(s)�da(s)

ds

�2+V
�
a(s)�o (3.3)

Classically, the potentialV is

V (a) =�a+ 1
3

Λa3 �Vcl(a) (3.4)

The action (3.3) with (3.4) is, up to an overall minus sign, what one obtains when one inserts
(3.2) into the Einstein-Hilbert action. (In simulations with fixedV4 the constantΛ is a Lagrange
multiplier to be fixed such that

R t
0 dsV3(s) =V4.)

The challenge is now to determine numerically the effectiveactionSeff[a℄ for small a where
we expect to see quantum corrections to the classical potential (3.4). Since the flattening of the
effective potential occurs at conformal factors of the order of the Planck length and below, the
corresponding lattice simulations require a lattice spacing whose physical size is of the same order
of magnitude. Future simulations should be able to probe this regime. The prediction would then
be a flatteningV (a)� const at smalla.

In order to be able to confront possible future Monte-Carlo data with the prediction of QEG,
two comments are appropriate. Firstly, upon introducing the conformal timeη(t) = R t dt 0 =a(t 0)
the line element (3.2) assumes a form analogous to (2.3),

ds2 = φ(η)2�dη2+dΩ2
3

�
(3.5)

with the conformal factorφ(η) � a(t(η)). Sinceφ anda differ only by a time reparametrization,
which is irrelevant here, the potentialsUeff(φ) andV (a) are almost the same object. In particular
we definedUeff(φ) in terms of a functional integral (or the corresponding flow equation) which
does not include the conformal zero mode, i. e. fluctuations which merely change the radius of
the S4. Likewise its CDT counterpartV (a) results from integrating out all modes other than the

8
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spatially constant global scale. Furthermore, another minor difference between the QEG and CDT
setting, respectively, is that ˆgµν is a metric onS4, while dη2+dΩ2

3 refers toS3� [0;1℄ or S3�S1.
However, we do not expect such global issues to cause qualitative changes for small conformal
factors.

4. Summary

We analyzed the effective potential of the conformal factorboth in Quantum Einstein Grav-
ity. We demonstrated that if QEG is asymptotically safe thenit gives rise to a potential which
becomes flat forφ ! 0, allowing for a phase of gravity with vanishing metric expectation value.
The argument assumes the existence of an underlying UV fixed point, but is exact otherwise. Since
the effective potential is also accessible to numerical simulations, its “measurement” by means of
Monte-Carlo techniques might provide further insights into the relation between QEG and the lat-
tice approaches to quantum gravity [48–52].

Acknowledgement: We would like to thank J. Ambjørn, H. Hamber, R. Loll, and R. Williams
for helpful discussions.

9



P
o
S
(
C
L
A
Q
G
0
8
)
0
1
3

The Effective Potential of the Conformal Factor in Quantum Einstein Gravity Jan-Eric Daum

References

[1] For general introductions see C. Kiefer,Quantum Gravity, Second Edition,
Oxford Science Publications, Oxford (2007);
H.W. Hamber,Quantum Gravitation, Springer, Berlin (2009).

[2] A. Ashtekar,Lectures on non-perturbative canonical gravity,
World Scientific, Singapore (1991);
A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 21 (2004) R53.

[3] C. Rovelli,Quantum Gravity, Cambridge University Press, Cambridge (2004).

[4] Th. Thiemann,Modern Canonical Quantum General Relativity,
Cambridge University Press, Cambridge (2007).

[5] S. Weinberg inGeneral Relativity, an Einstein Centenary Survey,
S.W. Hawking and W. Israel (Eds.), Cambridge University Press (1979);
S. Weinberg, hep-th/9702027 and preprint arXiv:0903.0568[hep-th].

[6] M. Reuter, Phys. Rev. D 57 (1998) 971 and hep-th/9605030.

[7] D. Dou and R. Percacci, Class. Quant. Grav. 15 (1998) 3449.

[8] O. Lauscher and M. Reuter, Phys. Rev. D 65 (2002) 025013 and hep-th/0108040.

[9] M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016and hep-th/0110054.

[10] O. Lauscher and M. Reuter, Phys. Rev. D 66 (2002) 025026 and hep-th/0205062.

[11] O. Lauscher and M. Reuter, Class. Quant. Grav. 19 (2002)483 and hep-th/0110021.

[12] O. Lauscher and M. Reuter, Int. J. Mod. Phys. A 17 (2002) 993 and hep-th/0112089.

[13] W. Souma, Prog. Theor. Phys. 102 (1999) 181.

[14] M. Reuter and F. Saueressig, Phys. Rev. D 66 (2002) 125001 and hep-th/0206145; Fortschr. Phys. 52
(2004) 650 and hep-th/0311056.

[15] A. Bonanno and M. Reuter, JHEP 02 (2005) 035 and hep-th/0410191.

[16] For reviews on QEG see: M. Reuter and F. Saueressig, arXiv:0708.1317 [hep-th];
O. Lauscher and M. Reuter inQuantum Gravity, B. Fauser,
J. Tolksdorf and E. Zeidler (Eds.), Birkhäuser, Basel (2007) and hep-th/0511260;
O. Lauscher and M. Reuter inApproaches to Fundamental Physics,
I.-O. Stamatescu and E. Seiler (Eds.), Springer, Berlin (2007).

[17] R. Percacci and D. Perini, Phys. Rev. D 67 (2003) 081503;
Phys. Rev. D 68 (2003) 044018; Class. Quant. Grav. 21 (2004) 5035.

[18] A. Codello and R. Percacci, Phys. Rev. Lett. 97 (2006) 221301;
A. Codello, R. Percacci and C. Rahmede, Int. J. Mod. Phys. A23(2008) 143;
preprint arXiv:0805.2909 [hep-th].

[19] D. Litim, Phys. Rev. Lett. 92 (2004) 201301; AIP Conf. Proc. 841 (2006) 322;
P. Fischer and D. Litim, Phys. Lett. B 638 (2006) 497;
AIP Conf. Proc. 861 (2006) 336.

[20] P. Machado and F. Saueressig, Phys. Rev. D 77 (2008) 124045;
D. Benedetti, P. Machado and F. Saueressig, preprint arXiv:0901.2984 [hep-th].

10



P
o
S
(
C
L
A
Q
G
0
8
)
0
1
3

The Effective Potential of the Conformal Factor in Quantum Einstein Gravity Jan-Eric Daum

[21] M. Reuter and H. Weyer, Phys. Rev. D 79ă(2009) 105005 and arXiv:0801.3287 [hep-th].
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