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1. Introduction

One major problem in constructing a fundamental theory afngum gravity is the complete
lack of any experimental data that could be confronted withdorresponding predictions of the
theory [1-4]. Therefore, itis particularly important todiout whether some of the a priori different
candidate theories are perhaps just different formulatairthe same underlying theory or whether
they really belong to different “universality classes”| édndidates describing the same underlying
physics in different formulations must agree on the obg&ma that are within the domain of
applicability of the hitherto unknown correct theory of quam gravity. In this way one can at
least narrow down the set of independent possibilities andrich the experiment must decide in
the end. Guided by the experience with Yang-Mills theory verild expect that in particular the
comparison of continuum and lattice approaches shouldtyanvaructive and fruitful. On the side
of the continuum approaches, recently a lot of efforts wetd the exploration of the asymptotic
safety scenario [5-28] in the formulation based upon theigdional average action. It aims
at defining a microscopic quantum field theory of gravity inre of a complete, i.e., infinitely
extended renormalization group (RG) trajectory on the thspace of diffeomorphism invariant
functionals of the metric. The limit of an infinite ultravedl (UV) cutoff is taken by arranging this
trajectory to approach a non-Gaussian fixed point (NGFRjrgelscalesk(— o). This NGFP of
the effective average action is not only instrumental instarcting the quantum field theory by
dictating how all generalized couplings must “run” when thé regulator scale is sent to infinity,
it also determines the physical properties of the resultegulator-free theory at largehysical
scales, the behavior of propagators at large momenta, $tarine. We refer to this quantum field
theory of the metric, defined in the continuum by means of ffeetive average action, as Quantum
Einstein Gravity (QEG).

In the following we are going to review how the mere existeota non-Gaussian fixed point
allows us to draw inevitable conclusions about the potenfighe conformal factor at small dis-
tances. Since this result is not restricted to a specificctttion of the full theory and is related
to the very notion of asymptotic safety it is a remarkablyustiprediction. In particular it should
be possible to confirm it by the corresponding lattice apgnea. In this way it might provide an
opportunity to transfer the successful cross-fertilmatbetween continuum and lattice approaches
in Yang-Mills theory [30-33] to the context of gravity.

2. The Effective Potential of the Confor mal Factor
in QEG

We are interested in the standard effective potential,(itree one with vanishing infrared
cutoff, k = 0) for the conformal factor of metrics on maximally symmetspacetimes with the
topology of ad-dimensional spher&. The starting point is thexact gravitational effective
average action [6] along some RG trajectory]g,,d,v], and the related reduced functional
r_k[guv} = [9uv.9uv]. (The ghost arguments are set to zero and are not indicafaitity)
The latter functional is assumed to have a representatitimedbrm

guv z Uq (K) 1o (9] (2.1)
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where{l,[g,y]} is an infinite set of local and nonlocal “basis” functionaisariant under diffeo-
morphisms acting og,,,, and theu,’s are the corresponding running coupling constants. We de-
note their canonical mass dimensionsdgy= [u,]. Hence, since;k is dimensionlesql,| = —dg.

The dimensionless running couplings are defined by

Ug (K) = k™% 0g (K)
so that we may rewrite (2.1) as

M) = S ua (k) k*1a[gy] (22)
a
Up to now the metric argumey,, was completely general. At this point we specialize for
metrics onS", with a variable radiugp. We parametrize them as

Ouv = @* Gy (2.3)

whereg,, is the metric on the roun8? with unit radius, and the conformal factgris position
independent. Henag,, is a metric on a round sphere with radigsWe shall denote the volume
of the unitS? by g, = [d9 /=2 4+D/2/T ((d+1)/2).

We use conventions such that the coordinateare dimensionless angl has the dimension
of alength. Henc¢g,,| = —2, andg),, is dimensionlesgg,,,] = 0.

Without having made any approximation so far, the effeciiverage potential for the confor-
mal factor,U, (@), by definition, obtains by inserting the special argumerg)(ihto F_k:

U(@) [ dxv/8 = Tlou = #6,) 24
In terms of the expansion (2.2) we have the exact represamtat

U(o) = Gd’lgua(k) K% 14 [@?G,0] (2.5)
or, more explicitly,

U (@) = U(Il Z Uq (K) (k(p)da |a[guv] (2.6)
a

To obtain equation (2.6) we exploited tHa{@?d,,] = ¢%14[d,y] Which holds true sincé, has
dimension—d,. (This relation can be regarded the definition of the caramiass dimension.)

Eg. (2.6) makes it manifest that if we know a complete RG ttajg {u, (k),0 < k < oo}
we can deduce the exact running potential from it, and iniqdar itsk — 0O limit, the standard
effective potential (@) =U,_,(¢). Usually we are not in the comfortable situation of knowing
trajectories exactly; nevertheless certain importanperties ofU (@) can be deduced on general
grounds. For this purpose we shall employ the following dgtiag argument which is standard
in the average action context [30, 32].

The basic observation is that the true, i.e. dimensionfuipting constantsi, (k) have a
significant running wittk only as long as the number of field modes integrated out dgtepends
onk. If there are competing physical cutoff scales such as reasskeld amplitudes the running
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with k stops oncek becomes smaller than the physical cutoff scales. (See Alp€h3 of [28]
for an example.) In the case at hand this situation is redlinea particularly transparent way.
The quantum metric is expanded in terms of eigenfunctiorteetovariant (tensor) Laplacidd?
of the metricg,,. This metric corresponds to a sphere of raduience all eigenvalues of the
Laplacian are discrete multiples of @. As a result, wheik has become as small ks= 1/ ¢, the
bulk of eigenvalues is integrated out, and thés no longer change much whéris lowered even
further. Therefore we can approximate

Uei(@) = U,_o(@) = Uk:1/¢((P) (2.7)

In order to make the approximation (2.7) strictly valid wesddo be slightly more specific
about the precise definition &f, (¢). The above argument could be spoiled by zero modes of
D2. Therefore we defing, andU, in terms of a functional integral over the fluctuation modés o
the metric with a non-zero eigenvalue @f only. As a result, the actual partition function would
obtain by a final integration over the zero modes which is eotggmed here. The only zero modes
relevant in the case at hand are those of the conformal fakttisrtherefore important to keep in
mind thatU () has the interpretation of an effective potential in whioh ¢tbnformal fluctuations
have not yet been integrated out.

Eq. (2.7) has a simple intuitive interpretation in termsaduse graining: By lowering below
1/¢@ one tries to “average” field configurations over a volume thaald be larger than the volume
of the whole universe. As this is not possible, the runnirgst Note that th&” topology enters
here; the finite volume of the sphere is crucial.

With the approximation (2.7) we obtain the following two aéguent representations bf (@)
in terms of the dimensionless and dimensionful running togg, respectively:

Uet (@) = O-d_lzua((p_l) la[Guv] (2.8)

Uei (@) = O-dilzaa((pil) (Pdala[guv} (2.9)

As an application of these representations we consider pecial cases.

Let us assume the RG trajectory under consideration bkssscal regime between the scales
k, andk,, meaning thati, (k) & const= Ug2for k; < k < k,. Then (2.9) implies that fok, 1 <
@ < k;', approximately,

Uer(9) = 03" Y g™ a[Gu] 9™ (2.10)
a

As expected, this potential has a nontriiatiependence governed by the classical couplig§® ~
Next let us explore the consequences which a non-Gausskuh ixint has for the effective

potential. We assume that the dimensionless coupliggk) approach fixed point valuasg, for

k — . More precisely, we make the approximatiop(k) ~ u;, for k > M with M the lower

boundary of the asymptotic scaling regime. Then the reptatien (2.8) tells us thall «(¢) =

Unga Ug la[Guv] if @ < M~L. Obviously this potential is completely independentpof

Ugg(@) = const forallg <M™? (2.11)
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In typical applications (see belowy] equals the Planck mass, = E;ﬁ so thatU is constant for
@5 lp-

Eqg. (2.11) is our main result. It shows that the existencenofilraviolet fixed point has a
characteristic impact on the effective potential of thefoomal factor: Regardless of all details of
the RG trajectory, the potential is completely flat for smgall The interpretation of this result is
that for @ < M~ the cost of energy (Euclidean action) of a sphere with ragidses not depend
on ¢. Spheres of any radius smaller thslim* are on an equal footing. This is exactly the kind of
fractal-like behavior and scale invariance one would epear the NGFP [8, 10].

We emphasize that except for the decoupling relation (2o7approximation went into the
derivation of this result. It is an exact consequence of Hselimed asymptotic safety, the existence
of a NGFP governing the short distance behavior. Neitheth®theory space been truncated nor
have any fields been excluded from the quantization (such esriformally reduced gravity the
transverse tensors, for instance, cf. [21, 22]).

On the basis of the above general argument we cannot prewicptecisely, or how quickly
the effective potential flattens when we approach the arigmwever, we expect that its derivative
with respect tog?, dU/d¢?, vanishes atp = 0. This has an important physical implication. In
general, possible vacuum states of the system (the “uit)ezan be found from the effective field
equationdl’,_,/69,, = 0. More specificallyS-type groundstate candidates have a ragjyat
which (dUg;/0¢?) (@) = 0. (Note that for metrics of the typg,, = 9?g,, the variationd/dg,,
corresponds to a partial derivative with respectpfo) Thus we see that thanks to the NGFP a
vanishing radiugg, = 0 has become a vacuum candidate, ghederivative ofU 4 vanishes there.
(To qualify as the true vacuum it should be the global minimutdence the universe has an at
least metastable stationary state wjth= 0, i.e. a state with a vanishing metric expectation value
(guv) = 0. In this state gravity is in @hase of unbroken diffeomorphism invariance, which has
already been discussed in the context of asymptotic sa2@fy [

Let us finally illustrate the above discussion in the famikatting of the Einstein-Hilbert
truncation [6] ind = 4 which is defined by the ansatz

— _ l 1
Fgu] = _16nGk/d x\/§<R(g) —2/\k) (2.12)
Inserting (2.3) withgp = ¢(x) we obtain
M Gu] = i/d“X\/é[— 26" 9,00,0 - <p2+}/\(k>cp4} (213)
KLY SHYD T 4nG (k) 2% THYTV 6 '
For x-independentp only the potential term survives, with
_ 3 21 4
_ 3 22 1 4
= 4ng(k)( K2 +6/\(k)|é‘<p)

If A(k) > 0, the case we shall always consider in the followldg,@) has a minimum at a nonzero
radius given by

@) = V/3/AK (2.15)
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This is exactly the radius of th& which solves the ordinary Einstein equation following fréme
action (2.123. In the second line of (2.14) we employed the dimensionlesstbin constang(k) =
k?G(k) and cosmological constait k) = A(k) /k?. So there are the following two equivalent ways
of writing the effective potential:

3 1 1N(p 1
Uert(@) = E[_ oD ¢2+EGE(£—1; cp“] (2.16)

g[_ 1 +})\(<P_l)}
aml glet) 69l

The RG trajectories of the Einstein-Hilbert truncation éndoeen investigated and classified
in [9]. Here we can concentrate on those with a positive césgital constant, those of “Type
llla”. Important regimes along a Type llla trajectory indki
The NGFPregime: g(k) =~ g., A(k) = A, fork > M.

Thek?* regime: G(k) =~ const,A(k) O k* for k; < k < M, wherek; is the “turning point” scale at
which 8, vanishes.

The classical regime: G(k) ~ const= G, A(K) ~ const= A for Ky < k < kr wherekg,, is the
scale at which the Einstein-Hilbert truncation breaks dewd the trajectory terminates at a singu-
larity?.

If one defines the classical Planck mass and lengtinhy= Egll = G~1/2 one finds that, approxi-
mately,M ~ m,,. (For further details see [9,41, 45]; see in particular Bigf [45].)

In the k*-regime, wherk decreases, the cosmological constant quickly becomesesmead-
portional tok*, and the radius of the sphere “on shetfi(k), increases proportional to/k2.

If the underlying RG trajectory of QEG is of Type llla théh;(¢@) is constant in the NGFP
regime@ < (g, and it equals the classical potential fgr! < ¢ < kgt Note that our ignorance
about the infrared end of the trajectory entails that we hawenformation about the effective
potentialfor large values of . The intermediaté&*-regime of the trajectory gives rise to a behavior

Ueff((p) = (2.17)

Ug(@) O (—¢?+consy for kit <o <ilp, (2.18)

In the above discussion we tacitly assumed that the trajedsosuch thatM? ~ m, >> A;
otherwise no classical regime would exist.

A qualitative sketch of the resultid,4 is shown in Fig. 1. Itis compared there to the classical
potentialU ., which would obtain ifG andA had nok-dependence at all. The crucial difference
between the two is the almost constalpt at smallg. This regime is a pure quantum gravity effect,
directly related to the existence of a NGFP. Quantum mech#wyi but not classically, the universe
can be stationary at small valuesg@fat least atp = 0.

As a consequence of our assumptiore m2,, theU 4 = const regime ends at a radigss (p,
which issmaller than the classical “on-shell” radiqc_g = /3/A. The actual “size of the universe”
corresponds to a scale in the classical regime of the RGtoajetherefore.

1Because this space is maximally symmetric, by Palais’ #medB5], inserting the ansaty,, = qozgw commutes
with deriving the critical point.

2|f one tentatively matches the trajectory against the ofeskwvalues ofG and A one finds thak; ~ 10*30mpl,
corresponding tér ! ~ 10-3cm, andkep, ~ 10-5%my, ~ Hy so thatkek | equals about the present Hubble radius [45],
[41].
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Figure 1: The effective potential for the Type llla trajectory dissad in the text. The dashed line represents

the potential . with the same values @ andA, but all quantum effects neglected.

In the region where the quantum effects modify, . most strongly the terni] ¢ is the
dominant one. We can therefore say that the key effect behanfilattening of the potential near the
origin is the running of Newton’s constant. Its consequefoc¢he shape of) can be understood
as the result of the “RG improvement” [36—47]

1 1 1
atpz — mqﬁ =3 (2.19)
with G(k) = g./Kk?, as appropriate near the NGFP.

Up to now we considered pure gravity. However, includingterathe above argument will go
through unaltered provided the matter contributions tdoita-functions do not destroy the NGFP.
A detailled analysis showed [17] that the NGFP indeed pisriis a wide class of matter systems.
In these cases we would expect the same flattenityfkp) as for pure gravity.

3. Possible Connectionsto Numerical Simulations
within the CDT Approach

The causal dynamical triangulation approach [48-51] defadiscrete version of the Wick
rotated quantum-gravitational proper-time propagator

GF 6105(0).95(1)] = [ 7ge &% (3.0

HereS: is the Euclidean Einstein-Hilbert action, and the inteigrats over all 4-dimensio-

nal Euclidean geometrieg. of topologyS® x [0, 1], each with proper-time running from 0 tpand
with prescribed spatial boundary geometrigg0) andg,(t), respectively. In the numerical evalu-
ation of (3.1), for technical reasons, periodic rather tfireed boundary conditions have been used
so that the topology of the spacetimes summed ov&t isS' rather thar8® x [0, 1]. (Furthermore,
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the Monte-Carlo simulations typically are done at consfamblumeV, rather than constam; the
corresponding propagator is related to (3.1) by a Laplaosstormation.)

Remarkably, a nontrivial point of contact between CDT and3}tas been found already [23]:
They both agree on the microscopic spectral dimension ofasaopically 4-dimensional space-
times; in either case one finds the somewhat surprisingtrésed 2 [8,23]. It is therefore tempting
to ask whether the characteristic behavior of the confoffiaztbr that we have discussed in the
previous section might also be observed in the correspgridionte-Carlo data provided by CDT.

First of all, it is instructive to visualize the typical, sitdically representative 4-geometries
contributing to the path integral. They are characterized functionV;(s), 0 < s<t, whereV;(s)
is the 3-volume of the spati&f at proper-times. If t is large enough, a “typical universe” has long
epochs with a very small; at early and late times (the “stalk”) and in between a regiath &
largeV;(s), see Fig. 1 of ref. [49].

It has been shown [49] that the dynamics of these “universasell reproduced by a minisu-
perspace effective action for Wick rotated Robertson-\fatketrics

ds® = dt? + a(t) dQ3 (3.2)

where 23 is the line element of the unit 3-sphere so tigs) 0 a¥(s). It reads

t
Sla = —%é 5 ds{ —a(s) (dZ—(SS)>2+V(a(s))} (3.3)
Classically, the potential is
V(a) = -a+ %/\a"‘ =V, (a) (3.4)

The action (3.3) with (3.4) is, up to an overall minus sign,atvbne obtains when one inserts
(3.2) into the Einstein-Hilbert action. (In simulationstiviixedV, the constant\ is a Lagrange
multiplier to be fixed such thaf dsV(s) =V,.)

The challenge is now to determine numerically the effectigiion S.«[a] for smalla where
we expect to see quantum corrections to the classical pait€Bi4). Since the flattening of the
effective potential occurs at conformal factors of the ordethe Planck length and below, the
corresponding lattice simulations require a lattice apgaevhose physical size is of the same order
of magnitude. Future simulations should be able to prokerdgime. The prediction would then
be a flattening/ (a) ~ const at smal&.

In order to be able to confront possible future Monte-Cadtadvith the prediction of QEG,
two comments are appropriate. Firstly, upon introducirey ¢bnformal timen (t) = [dt’ /a(t’)
the line element (3.2) assumes a form analogous to (2.3),

ds> = @(n)?[dn? + dQj] (3.5)

with the conformal factorp(n) = a(t(n)). Sinceg anda differ only by a time reparametrization,
which is irrelevant here, the potentidl(¢) andV (a) are almost the same object. In particular
we definedU (@) in terms of a functional integral (or the corresponding flayuation) which
does not include the conformal zero mode, i.e. fluctuatiohhvmerely change the radius of
the S*. Likewise its CDT counterpai¥ (a) results from integrating out all modes other than the
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spatially constant global scale. Furthermore, anothepndifference between the QEG and CDT
setting, respectively, is thag,; is a metric orS*, while dn? + dQ3 refers toS® x [0,1] or S x S'.
However, we do not expect such global issues to cause divaitzhanges for small conformal
factors.

4. Summary

We analyzed the effective potential of the conformal fadtoth in Quantum Einstein Grav-
ity. We demonstrated that if QEG is asymptotically safe thegives rise to a potential which
becomes flat forp — 0, allowing for a phase of gravity with vanishing metric egfaion value.
The argument assumes the existence of an underlying UV figied, out is exact otherwise. Since
the effective potential is also accessible to numericab&tions, its “measurement” by means of
Monte-Carlo techniques might provide further insight®itite relation between QEG and the lat-
tice approaches to quantum gravity [48-52].

Acknowledgement: We would like to thank J. Ambjarn, H. Hambe. Loll, and R. Williams
for helpful discussions.
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