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Jets of high energy particles can be used as probes to study dense and hot phases of nuclear
matter [1, 2, 3, 4, 5, 6]. Experiments at the Relativistic Heavy Ion Collider (RHIC) have shown that
quark gluon plasma just above the phase transition temperature is a very opaque substance. These
measurements usually compare single particle spectra and two-particle correlations at intermediate
and high transverse momentapT in nuclear collisions to those in elementaryp+ p collisions. The
quantitative outcome of these studies are estimates for thetransport coefficient ˆq = µ2/λ in hot
nuclear matter, the average momentum transfer squared per mean free path. Recently, it has been
suggested that studying the yield of particles at highpT can yield much more information by adding
the flavor of hadrons as an additional observable [7].

Obviously, fast quarks and gluons passing through nuclear matter can change identity through
conversion processes. In other words, the “flavor” (looselyused as a notation for the identity of a
particle) of a leading jet parton is not conserved. This has avariety of observable consequences. Let
us first point out that the rate at which conversions between different flavors occur depends mainly
on the total cross section of a conversion channel. It is therefore sensitive to the mean free pathλ
of a particle, and the chemical composition of the medium, rather than to the transport coefficient
q̂.

It was first pointed out in 2002 that light quarks and gluons passing through quark gluon
plasma can “convert” into real and virtual photons through Compton and annihilation processes
with thermal partons,q+ q̄→ γ +g andg+q→ γ +q, resp. [8]. Here, we use a notation where the
momentum of the first particle mentioned on both sides of the reaction equation is much larger than
the momentum of the second particle in the lab frame and it is therefore considered to be either
the leading parton of a jet or another high-pT particle. This source of photons has been studied by
several authors since [9, 10, 11, 12, 13]. It appears to make anon-negligible contribution to the
total direct photon spectrum for transverse momenta of several GeV/c.

Flavor changing channels and conversions for gluons into quarks and vice versa,q+g↔ g+q
andq+ q̄↔ g+g, have been discussed by several authors [14, 15, 16] in the past. Recent interest
in this process was fueled by the idea that partonic energy loss predicts a color factor 9/4 for
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Figure 1: Left panel: The nuclear modification factorRAA for direct photons with and without conversions
switched on, calculated in the model introduced in [7] (preliminary PHENIX data from [17]). Right panel:
The ratio of nuclear modification factors for protons and pions is approaching one if conversions are allowed.
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Figure 2: RAA for neutral kaons with and without conversion processes allowed. The strangeness in the jet
sample is driven towards equilibrium by coupling it chemically to the quark gluon plasma.

the relative quenching strength of gluons and quarks. This could in principle translate into an
observable difference in quenching between various hadronspecies, depending on the branching
ratios of partons into hadrons via the fragmentation process. A primary candidate to look for
this signature is the proton over pion ratio. In some state-of-the-art fragmentation functions like
the AKK set [18] protons have a large contribution from gluonfragmentation, leading to larger
suppression of protons in this picture due to stronger gluonquenching. No such suppression was
found by the STAR experiment [19]. A lack of suppression would still be consistent with a partonic
origin of energy loss if conversions are taken into account.A typical high-pT particle on its way
out of the fireball could change identity several times between quark and gluon, leading to a rapid
fading of the difference in color factors for any observable. As a word of caution, it is clear
that the interpretation of this particular observable has alarge uncertainty due to the input from
fragmentation functions.

Examples for the nuclear modification factor of photon (left) and the ratio of proton and pion
nuclear modification factorsRAA (right) can be found in Fig. 1. Here, conversions were modeled
by propagating leading jet partons through a fireball simulation with elastic conversion processes
described by rate equations. The details of this calculation can be found in Ref. [7]. TheK factor
for the elastic parton cross sections is kept variable to illuminate different scenarios:K = 0 (no
conversions),K = 1 (conversions dominated by elastic processes), andK = 4 (mimicking conver-
sions subject to much stronger coupling than given by elastic scattering). It can be seen from Fig. 1
that conversions into photons are consistent with the observed photon yield. Conversions between
quarks and gluons with largeK factor are needed to avoid a larger relative suppression of protons.

It was pointed out in Ref. [7] that strangeness at RHIC energies could be the perfect observable
to measure conversions of leading jet partons. The bigger picture here is as follows. It is reasonable
to believe that strange quarks are chemically equilibratedin the quark gluon plasma at RHIC, with a
ratio of strange to light quarks,wmed= s/(u+d)≈ 0.5. On the other hand, at RHIC energies, initial
jet production at intermediate and large momenta proceeds mostly through Compton scattering of
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Figure 3: Left panel: The azimuthal asymmetryv2 for light quarks, strange quarks and gluons without
conversions. Right panel: the same with conversions. Thev2 for light quarks and gluons is not similar, while
strange quarks exhibit a suppression.

quarks out of the initial parton distributions, hence suppressing strange quarks in the initial jet
sample,wjet < 0.1. This large chemical imbalance in the jet sample has an opportunity to equilibrate
through their coupling to the quark gluon plasma. Indeed, the ratio of strange to light quarks in
the jet sample increases significantly if conversions are allowed. This translates naturally into an
enhancement of kaons over pions — or actually into less suppression of kaons vs pions in the
nuclear modification factorRAA. Fig. 2 shows the change inRAA for neutral kaons expected with
conversions.

This mechanism is obscured at LHC energy where the initial jet sample is already close to
equilibrium due to the dominance of theg+g fusion channel in initial jet production. It also turns
out that heavy quarks can not play the same role as conversionsignatures at LHC that strangeness
holds at RHIC. The obstacle is that charm quarks will not equilibrate chemically in the quark gluon
plasma at LHC. With both low- and high-pT charm quarks produced perturbatively in initial hard
scatterings the chemical gradient is not large enough to seea noticable enhancement at highpT

[20].

Yet another signature for conversions of highpT particles in the medium should be seen in
their azimuthal asymmetryv2. It had first been realized for photons [21] that conversionslead to a
higher conversion yield on the thicker side of the medium. This is opposite to the suppression driven
v2 which would lead to less yield on the thicker side of the medium. Hence a conversion driven
azimuthal asymmetry should lead to negativev2. Of course, all sources of a given particle have to
be added up for the total yield, leading to cancellations inv2. For direct photons it was forecast
that the cancellation is rather complete and thatv2 should be numerically very small [21, 7, 22, 23].
This is in accordance with first measurements of direct photon elliptic flow.

We also find that the conversion mechanism leads to a reversedazimuthal asymmetry for
additional strange quarks [24] at highpT at RHIC energies. After adding the effect of energy loss
the totalv2 stays positive but is still significantly suppressed compared to light quarks and gluons.
This is shown in Fig. 3. Without conversions, light and strange quarks exhibit the same azimuthal
asymmetry, while gluons show larger values due to the largercolor factor (left). With conversions
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Figure 4: The resulting azimuthal asymmetryv2 for kaons which is expected to be suppressed compared to
that of pions. Data from [25, 26].

enabled, light quarks and gluons exhibit comparablev2 while the asymmetry for strange quarks is
suppressed (right). Details of the calculation can be foundin [24]. Finally, Fig. 4 shows the effects
translated into thev2 for neutral kaons. It is expected that theirv2 shows a noticable suppression
starting at about 6 to 7 GeV/c compared with pions.

To summarize, we have argued that conversions of leading jetparticles is a natural conse-
quence of their interactions with a surrounding medium. In particular, we expect additional pho-
tons and strange hadrons at RHIC energies. While the new photon source will increase in relative
brightness at LHC we predict the reduced kaon suppression todissappear at the larger collider
energy. v2 suppression at largepT for both photons and kaons could provide additional insight.
Measuring effects from conversion processes could providecomplementary information about the
mean free path of fast partons in quark gluon plasma.

RJF would like to thank the organizers of the WorkshopHigh-pT physics at LHCfor their kind
invitation.
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