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1. Introduction

This is a review of the results obtained in [1, 2, 3] concegrtime calculation of the Hawking
radiation of a black hole with anomaly—related methods. sEhaethods use in an essential way
the effective reduction to two dimensions of the near—tworidynamics of bosonic or fermionic
matter fields in a black hole background, and the ensuingteféeconformal invariance of the
action. Under these circumstances one can use either g drahe diffeomorphism anomaly
method in order to compute the integrated Hawking radiatidme Hawking radiation [4, 5] does
not depend on the details of the collapse that gives rise tack lhole. Therefore one expects that
the methods to calculate it should have the same characteri@rsality. The anomaly method
has such characteristics. The first attempt to compute thekidg radiation by exploiting trace
anomalies was made by Christensen and Fulling, [6] (sed &lsand re-proposed subsequently
by [8, 9] in a modified form. More recently a renewed interaghie same problem has been raised
by [10], which makes use of the diffeomorphisms anomalysTdst paper has been at the origin of
a considerable activity, see [3] for references. As we dw#lthe trace and diff anomaly methods
are strictly related. As one can easily realize, they bamdrom the Virasoro algebra symmetry
underlying the theory.

However this is not the end of the story. As already pointet] ine trace and diff anomaly
methods apply to the calculation of the integrated Hawkaujation and do not describe its spec-
trum. But one of the most interesting features of the Hawkadjation is precisely its Planckian
spectrum. The latter can be ‘Fourier analyzed’ and expdesgséerms of its higher moments or
fluxes. Itis therefore of upmost interest to be able to dbsanot only the integrated Hawking radi-
ation but also such fluxes. An interesting proposal was madledoauthors of [14, 15, 16, 17], who
attributed these fluxes to phenomenological higher spireats, i.e. higher spin generalizations of
the energy—momentum tensor.

In [1, 2, 3] it was shown that such higher currents do desdtieehigher spin fluxes of the
Hawking radiation. By analogy with the case of the overallkimg radiation, one would be
tempted to attribute such predictive power to trace or dgitiraalies in the higher spin currents, but
the main result of [1, 2, 3] is that this is actually not due nomalies, but rather the the underlying
W40 algebra structure of the near horizon effective theory. alet ft was shown in the same
references that these higher spin currents cannot haveengiace nor diff anomalies (or, rather,
that, if there are anomalies, they are trivial). In [1] andl {2 analysis was limited to bosonic
higher spin currents, in [3] the analysis and the conclisioare extended to fermionic currents.
The only difference between the two is that the bosonic theocharacterized by B, while the
fermionic theory by aV; . ., algebra (the 1 stands for the extension ofi¥ig, algebra to include
a U(1) current).

Therefore the generalization to higher fluxes is not congdyehigher spin current anomalies
but by some other features of the higher spin currents. Itab-known that both diff and trace
anomaly in 2d stem from the so—called Gelfand—Fuks (or @n@scocycle, which is is constructed
by means of a Schwarzian derivative. There are infinite maglyeln spin generalizations of the
Schwarzian derivative. It is these higher Schwarzian déwigs, incorporated in the conformal
transformation properties of the higher spin currentst éina at the origin of the higher Hawking
radiation fluxes. On the other hand such higher Schwarzievatiges, contrary to original lowest
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Schwarzian derivative, are totally disconnected from aal@s.

Now, the requirement to describe higher fluxes of the Hawkaudjation does not uniquely
determine by itself the higher spin currents. But if we adelrémuest that the currents be anomaly
free (as they must) we come to the conclusion that they must &IV, )., algebra. The main
conclusion of our series of papers is that the Hawking ramiaand, in particular its Planckian
spectrum, points toward the existence in the near horizgiomeof a symmetry much larger than
the Virasoro algebra, that isl&, or al1. ., algebra.

In this review we will start (section 2) from a Kerr—like mietin 4D and consider bosonic or
fermionic matter coupled to the relevant background. Weé neiliew how to reduce the problem
to two dimensions. Then the boson or spinor field will be exigahin the appropriate spherical
harmonics. After integrating the action over the polar aagbne is left with infinite many free
two—dimensional boson or spinor fields interacting with liaekground gravity specified by the
metric
1

f(r)
as well as to the electromagnetic field(r) near the horizon behaves likgr) ~ 2k(r — rg),
wherek is the surface gravity.

ds® = f(r)dt* — dr? (1.1)

2. Reduction to two dimensions
In [3] we have shown that if the 4 dimensional action
5= [ dtay=give 2.1)

represents a spinor in the background of a Kerr metric

.2 2
ds® = % (dt — asin? 9d¢)2 — SH; i (adt — (7‘2 + az) d¢)2 — (r2 + a® cos? 9) (d% + d92>

with ¥ = r2 4+ a?cos?0, A = r> — 2Mr + a?) the near horizon(~ ., wherer, +r_ = 2M and

ror_ = a?) dynamics becomes effectively two—dimensional. This caséden by expanding as

V=" Ui (t,7)Sin (0)e~™?, where the functions),,, are normalized so thgtdf /S sin 6 S}, () Sy, (0) =
26y Integrating the action ovérand¢ on finally gets

2
S=Y" % ar [ dtdr o mPxcoim 2.2)
s=1 Ilm

where the covariant derivative includes the gauge part= v, —igA,, and the charge of
X(s)im 1S M. This is the2 D action for an infinite number of two components fermians,,,, in the
background given by the dilatch

® =\/r2+a?, (2.3)

the gauge fieldd,

A, =0 (2.4)
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and the metric of the type (1.1)

1
ds® = f(r)dt* — mdrz

where
A(r)

f(T):ma A=(r—ry)(r—r-)

We are interested in the near horizon region. In this redierdilaton is approximately constant, so
we may disregard it: the equations of motion are those offigrions in two dimensions, coupled
to the metric and the gauge field. This theory is conformadriiant.

A similar conclusion was obtained in [13] by considering alacfield in 4D instead of a
spinor: in the near horizon region the dynamics is descriteihfinite many two—dimensional
scalar free fields in a background similar to the above one.

3. The Diff and Trace anomaly method

Having reduced the problem to two dimensions let us review the two anomaly methods
used to compute the integrated Hawking radiation. To stiéintwe consider the simplified situation
in which the electromagnetic background field is decougled= 0). The method employed in
[10] is based on the diffeomorphism anomaly in a two—dimamali effective field theory near the
horizon of a radially symmetric static black hole. The bamigument is that, since just outside
the horizon the ingoing modes cannot classically influehegtysics outside the black hole, they
can be integrated out, giving rise to an effective theorywtfy outgoing modes. So the physics
in that region can be described by an effective two—dimersichiral field theory (of infinite
many fields). This implies an effective breakdown of theadifhorphism invariance. The ensuing
anomaly equation can be utilized to compute the outgoingdfumdiation. The latter appears as
the quantum agent that restores the diffeomorphism symmetr

3.1 Diff anomaly method

Let us describe in detail the corresponding derivation @srmgiin a somewhat simplified form,
in [11]. The range of- contains two relevant regions: the regiondefined byr > rg +¢€, rg
being the horizon radius, and the regifi defined byry < r < rg 4+ €. The regionH is where
the ingoing modes have been integrated out, therefore fibetige field theory there is anomalous,
while in o we expect a fully symmetric theory. This is expressed by @stmy energy momentum
tensor covariant divergence

V. T",00) =0, (3.1)
while in the H region we have
her
VMT'LLV(H) = 96—71'6’/#8#1% (32)

This is the covariant form of the diffeomorphism anomalythva coefficient appropriate for chiral
(outgoing or right) matter with central chargg. In (3.2)¢,, = \/—ge ., Wheree is the numerical
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antisymmetric symbolgp; = 1). In the case of the background metric we are considerirg, th
determinant is -1. Since the metric is also static, the twaaggns above take, fdf}’, a very
simple form:

1) =0 (3.3)

and

her, ..n 1, .,
S5 @9

T}y = OrN{ = 0y (
respectively. Now we integrate these equations in the oispaegions of validity
Ti(o) = o (3.5)
and

Ty (r) = am + Ni (r) = N{ (r#) (3.6)

We remark that,,, being constant, determines (together with the conditiai there is no ingoing
flux from infinity) the outgoing energy flux. This is the quaptive would like to know. To this
end we define the overall energy—momentum tensor.

T =Ty 0(r —ra —€) + Ty (1= 0(r =1 —€)) (3.7)

It is understood that is a small number which specifies the size of the region wheseehergy—
momentum tensor is not conserved. If we take the divergeh(®0, we get

0T = (ao—am+N{(ru))o(r—ry—€)+ 0, (N (r) H(r)) (3.8)

whereH (r) = 1—6(r —rg — €). We can now define a new overall tensor

T} (r) =T} (r) = N{ (r)H (r) (3.9)
which is conserved
8,17 =0 (3.10)
provided that
ao—ag+ N/ (rg)=0 (3.11)

Now, the condition that at the horizon the energy—momentmsdr vanishes, leadsdg = 0 (see
(3.6)). Therefore
hk?

Ao = NtT(T‘H) = 48—7TCR (312)

This is the outgoing flux at infinity and coincides with thealoHawking radiation (see below)
emitted by the black hole specified by the metric (1.1). Wealdawmatfg“ is constant everywhere.
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3.2 Trace anomaly method

The method based on the trace anomaly was put forward longya@bristensen and Fulling,
[6] (see also [7]) and has been re-proposed in different $om{8, 9] and, in particular, in [15]
and [17] (see also [1, 2]). This approach is based on the aguthat the near—horizon physics
is described by a two—dimensional conformal field theorg @eove). Classically the trace of the
matter energy momentum tensor vanishes on shell. Howeigg#nerally nonvanishing at one
loop, due to the anomalyf'y = ;< R, whereR is the background Ricci scalaris the total central
charge of the matter system. The idea is to use this piecdahation in order to compute the
same constant, calculated with the previous method. Here we do not havelibtep space in
different regions, but we consider a unique region outdigehbrizon.

With reference to the metric (1.1) it is convenient to transf it into a conformal metric.
This is done by means of the ‘tortoise’ coordinatedefined viaaa—ﬂ = f(r). Next it is useful to
introduce light—cone coordinates=t—r,,v =t+r,. Letus denote b¥,, (u,v) andT,, (u,v) the
classically non vanishing components of the energy—monmertensor in these new coordinates.
Our black hole is now characterized by the background metrc= e¥n,3, wherep = log f. The
energy—momentum tensor can be calculated by integratengdhservation equation and using the
trace anomaly. The result is (see below)

hCR

Touu (’LL, U) = %

(o 5(0ue?) + 72 ) (319

whereTéZ"l) is holomorphic, whileT;,, is conformally covariant. Namely, under a conformal

transformatioru — a = f(u)(v — © = g(v)) one has

2

Since, under a conformal transformatigi(ji, o) = ¢ (u,v) — In (% %) , it follows that

-2
Té’gd’(a):(%) (Téﬁ“() e u}) (3.15)

where{a,u} denotes the Schwarzian derivative. Near the horizon goodigtates are the Kruskal
ones,(U,V), defined byU = —e™"" andV = e"*. Under this transformation we have

2
Ty (U) = (%) (TéZ"l (u) + hCR{U }) (3.16)
Now we require the outgoing energy flux to be regular at thermhorizonU = 0 in the Kruskal
coordinate. Therefore at that poﬁﬁﬁh(’l ) is given by <& CR“ . We remark that this implies in
particular thatl’,, (r = rg) = 0.

Since the background is stat (hOZ)( ) is constant irt and therefore also in. So atr = oo it
takes the same valdgﬂ On the other hand we can assume that-atoo there is no incoming
flux and that the background is trivial (so that the vevTéﬁ ) and T, (u,v) asymptotically
coincide).
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Finally the asymptotic flux is

<Ttr> = (Tuu) — (Tow) = 5—Cr (3.17)

This outgoing flux coincides with the constantcalculated above.
Summarizing we can say that the basic ingredients of the tethods are:

e (a) in the first case the integration of the anomalous andam@malous conservation of
the energy-momentum tensor, in the second case the integadtthe energy—momentum
conservation in the presence of a trace anomaly;

e (b) in both cases we have the condition that the energy—mtmetensor vanishes at the
horizon and there is no incoming energy flux from infinity.

What energy—momentum tensor vanishes at the horizon wdldydied below.

3.3 Comparison between the two methods

The generic case of a chiral two—dimensional theory withireérchargecg and ¢y, for the
holomorphic and anti-holomorphic part, respectively,haracterized by the presence of both dif-
feomorphism and trace anomaly, i.e.

h cr—cy

/J, - T & /J,
V,TH, = 15 5 evuO'R (3.18)
and
T = —h (cr+cL)R (3.19)
@ 487 CRTCL '

Let us rewrite these equations in terms of the light—conedinatesu, andv introduced before.
In this basis the nonvanishing metric elements take the:form

1
Guo = 367 = —€w, g =2 =" (3.:20)

and eq.(3.18) becomes

o h CRr —CjJ,
Viluw+ViTlyy = AST 5 €uwOu R (321)
_ h cp—rcp
Vil + Vol = 48T 9 €Oy R (322)
On the other hand (3.19) becomes
h cp+cp
Tw=-——Re” 3.23
& 4 ° (3.23)
Replacing this withR = —40,,0,0e~ % in (3.22), we get
O Ty = N 0T (3.24)
vhuu = 5 CROyJuu .
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where
1
Tuw = 0ip = 5 (Oup)” (3.25)

Integrating (3.24) we get

T (1,0) = — ' e T (11,0) + T (1) (3.26)

’ 241 ’ u
whereTu(ZOl) depends only om.
Similarly, integrating (3.21), one obtains
Ty (,0) = L T (1, 0) + T30 (1) (3.27)

247

whereT,, = 020 — $(3,¢)?, and7 """ depends only on. The two equations (3.26) and (3.27)

are our basic result. They are equivalent to the two equa(®:118) and (3.19).

In the “trace anomaly” method we have utilized eq.(3.26)uneed that the energy—momentum
tensor be conserved and imposed the conditions (b) of theéopie section. This, in particular,
amounts to requiringr = cz, in the region outside the horizon. We see now that the pdisgita
integrate (3.18) in the presence of (3.19) is actually isiee to the relation betweety, andcp *.

In the "diff anomaly" approach we integrated (3.18) in themkorizon region and the con-
served energy—momentum divergence away from the horizdmen e imposed vanishing of
energy—momentum tensor at the horizon. It is obvious thausexl again (3.26) and (3.27) in
disguise.

It is actually possible to be more specific. We have alreadiced that in the trace anomaly
method7,,(r = rx) = 0. On the other hand we point out thﬂﬁ‘;_}wl) is constant in- andt, for
the same reason aéﬁ"” is, and thus vanishes upon the request of no ingoing flux frdmity. It
is also easy to see that,df; = ¢y, Ty = Tyy. Thereforel] =T, — T, iS constant everywhere
and equals the outgoing flux (3.17) at infinity. Therefore Tlieof subsection 2.2 equalﬁ[ of
subsection 2.1. And it is also clear that the energy—monmernénsor vanishing at the horizon in
subsection 2.1 is to be compared with, (u,v) of subsection 2.2.

It was important to stress the basic role of (3.26) and (302cause, as we will see, when we
come to higher spin currents, it is not possible to desctigehigher flux moments by means of
anomalies (either trace or diff), but the analogues of (8d2&l (3.27) still hold and provide the
desired description.

4. Higher moments of the Hawking radiation
The bosonic spectrum of the black hole is given by the Plaimstkiloution

Nw) = —5— (4.1)

LIn other words we can integrate the trace anomaly ever if: c;,. This is clearly only a characteristic of two
dimensions
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wherel/ is the Hawking temperature and= |k|, the absolute value of the momentug.is the
number of physical degrees of freedom in the emitted ramhiatin two dimensions we can define
the flux moments as follows

FB _ g_* +oo wkn—2
"odr o ePv—1

They vanish fom odd, while forn even they are given by

(_1)n+1

Bop k" (4.2)
&mn

FB = L /OO dww®™ I N(w) = g.
2 Jo
whereB,, are the Bernoulli numbers3, = #, By = —45,..). Therefore the outgoing flux (3.17) is
seen to correspond 8 wheng, = cg. FP is the total integrated outgoing flux.
The fermionic spectrum of the Kerr black hole (per degreeeddom) is given by the Planck
distribution

1
Nw) = Fomm
where(} is the total angular momentum, in our cd3e- A; evaluated at the horizon amd is the

charge.
Let us consider first the case = 0. In two dimensions we can define the flux momehts
which vanish fom odd, while forn even they are given by, [18],

1 00 w2n—1 KQnB2
— / dw = n
27 Jo efw +1 47n

Fon = (12172 (— 1)+ (4.3)
whereB;,'’s are the Bernoulli numberB; =1/6 , By =—1/30, ...) andx = 27/( is the surface
gravity of the black hole.

Whenm # 0 we do not have similar compact formulas, however it makesesém sum over
the emission of a particle (with charge) and the corresponding antiparticle (with charge). In
this case the flux moments become

1 00 " () o
9 _ _(_1\n
Fn+1 N 2 </0 dx eﬁ(m—mﬂ) +1 ( 1) /0 dz e,@(:v—i—mQ) + 1)

(mayn+t (R nl (1 — 21-2k) 2k

T 2r(n+1) (= )k27r(2k)'(n+1—2k:)
k=1 ’

+ Boy, (m@Q)" 12 (4.4)

Unlike the bosonic case, once we kndﬁéj2 we do not have enough information to reconstruct the
full spectrum withm # 0, but if one is able to reproduce the momeff$it is anyhow an important
positive test.

5. A W14)s algebraand higher spin currents

In order to derive the higher Hawking fluxes we postulate tkistence of conserved higher
spin spin currents. The latter can be either bosonic or famimi In [1, 2] the case of currents
constructed out of a chiral bosonic field was dealt with, e/iil[3] we considered currents bilinear
made of chiral fermions of the 2D effective field theory ndw horizon. These currents will play
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a role analogous to the energy—momentum tensor for therateradiation (the lowest moment).
For reasons of brevity here we limit ourselves to reviewhwydase of fermionic currents.

To construct the fermionic currents we start frola., ., algebra defined in an abstract flat
space spanned by a local coordinatd hese currents were introduced in [12]:

.(s)z__B(S)s k(51 2,s—sz F1 () -
0.0 = EE (L) o e) 5.
s—3
B(S)Ei(;s_;;”qs_z s=1,2,3,... (5.2)

whereq is a deformation parameter. These currents fori¥i,a ., algebra.
The spins currentsjgf’_)_z(z) are linear combinations of bilinears
JE) =0 O = tim (950 (20) 9,0 (22) — 00T, (W (1)U (=2) ))
We wish to relate the currents written in two different capade systems, connected by coordinate

change: — w(z). Thatis, our aim is to obtain a relation analogous to the oned for the energy
momentum tensor,

RW

1.6~ () (1 + 1) 53)

and specify this to a transformatian(z) = —e~"* so as to obtain the value g’ﬁ,s,),z(z) at the
horizon by requiring regularity.
Using the transformation property of holomorphic fermoheld

U(2) = (w'(2))/2 ¥ (w)

and
LT (20) 0L, W (29) - = O O, ((wi(zl))l/2(w/2(z2))l/2 W (wy) U (wy) 1)
+07 0, ((wh(20)) 2 (wh(22)) Y/ (W (1) W(wg) ) — (W (21) U(22)
1 2
where
<quf(z)\1u(w)> _ A (5.4)
Z—w
is the propagator of the fermionic field andh constant to be determined, one finds
(XFy =220 (1 - 21 (4g) 2 = — 0., (5.5)

S

where (-) , denotes the value at the horizon. Notice th&t") = 0 for an odd spins. Fors > 1 this

is becaus&3, =0 for odds > 1. Fors =1 itis because of the other factor in (5.5). The value &
determined in such a way as to reproduce the transformatmpepies of the energy—momentum
tensor and, in physical units, is proportionalitoEventually we will set\ = .

10
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6. Higher spin covariant currents

The holomorphic currents of the previous section are defared background with a trivial
Euclidean metric. But we need currents defined in the apjatgpnon trivial background that char-
acterizes a Kerr black hole. In order to construct the cavafiigher-spin currents from fermionic
fields in such background, we will follow [17]. First we recabme properties of fermions in two
dimensions. The equation of motion for a right-handed fermviith unit charge is given by

<8u_iAv+iavcp> Y(u,v) =0 (6.1)

In the Lorentz gauge, the gauge field can be written locally.as 9,,n(u,v) andA, = —9,n(u,v)
wheren(u,v) is a scalar field. Since gravitational and gauge fields argeogrally holomorphic,
¥ (u,v) is not holomorphic either. In order to construct holomoephuantities from a fermionic
field, we define a new field by

¥ = exp (i o(u,v) +z'77(u,v)> Y (u,v) (6.2)

It is easy to show that the equation of motion impli&sl = 0 and hencel is holomorphic.
Similarly we can defind'’ as

¥ = exp (o) —infu) ) oo

The equation of motion again guarantees thak’ = 0, so that¥' is also holomorphic. We will
use¥ and¥' as the basic chiral fields to construct #§ ., algebra introduced in the previous
section. To covariantize the expressions of the currentsediece the problem to one dimension
by considering only the. dependence and keepindixed. In one dimension a curved coordinate
u in the presence of a background metric

is easily related to the corresponding normal coordinaby the equatiord, = e~#(v)9,. We
view u asu(x) and, by the above equation, we extract the correspondettwedﬂejf_),z and jq(f__)_u
by identifying v with the coordinate: of the previous section after Wick rotation. The expression
we get in this way are not yet components of the covarianteoist We have to remember the
current conformal weights and introduce suitable factormsrder to take them into account.

Under a holomorphic conformal transformatior- « the functionp(u,v) and the field? (u)

transform according to

i) = pluo) - (50

1
- da) 2
Uwa)=(-—) ¥
@ = () v
Thereforee ¢/ 2¥ (u) (and analogously;~#/ 2T (u)) transforms as a scalar with respect to a holo-
morphic coordinate transformation.

11
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As a consequence the covariant derivatival¢f.) turns out to be

Vol () = <au _ %(%go— 2¢Au> W (u)

Vot (1) = <au - lauwzmu) ()

2

and for higher covariant derivatives we have,

VI (y) = (E?u — <m + %) Outp — ZiAu> Vi (u) (6.3)
vt () = <au - <m + %) Do+ 2¢Au> VUl (u) (6.4)

It can be shown that~(™+2)? V™ (v) ande~(™+2)¢ V¥t () transform as scalars under holo-
morphic coordinate transformation, for everyc N.

After these preliminaries the covariant currents are canttd using the following bricks:

e—0

Jmm) — elmtnt1e(u) jim (ﬁff“‘u(“’v”)d“’ (6.5)

f
—(m Ut V) 7M. —(n R AVAL Cm,n
e~ (M2l ) gmgt (4 ) e~ (/29 0) g () — €m+n+1>

where we have used the abbreviations = u(x +¢/2) andu_ = u(x —€¢/2). The numerical
constants:/, ,,, defined by

e = X=1)"(m+n)!

are determined in such a way that all singularities are dadde the final expressions fol™™).

Finally, let us define the covariant currents corresponttntpe 177, o, fermionic currents:

s B(s) < R A
T, = —% Z(—l)k(s_ k) Tt (6.6)
k=1
_ 28_33! s—2
Bs) = ge—am ¢

The first few covariani?, ., fermionic currents can be written in pretty simple form,ngsi

12
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the abbreviatior” = 92 — 4 (9,)?

2)
g =0+ ;—un (6.7)
T
J& = <2A3 - ﬁ> A—24,JD +52) (6.8)
3) W 42 4@ 843 AN LTI
T, = —4Jy AL —AJ ) Ay + 5 3 A+ 5 + Jai (6.9)
TTA? 2 T 3
(€ - 4 _ u % (2 i 2
JW = 4 <4Au s (V2A,) Ay + 5 5 (Vudu) ) (6.10)

)
—8JD A3 —12J2) A2 4 (évgw + % - 6J§;>u> Au— g (Vuds) (VudV)
2)
1, T
Lig2a,y oy Thic | @
+5(Vu ) I3+ o i

For higher order currents see [2].
Using these explicit expressions of the currefits,one can write down their covariant deriva-

tives,

gV I = —AF," (6.11)
1

gV, J2) = ﬁA(vuj%)ﬂajuﬂ (6.12)

1

9"V ol = 2B, TG = 5 (Vul) JiY (6.13)
3 1 1

uv (4) _ 2 U 1y ~Ru 2 7))\ _ 2F u (1)
—% (VoR)J2) +3F,*J3) (6.14)

In the case of lowest spin current(!), (6.11) gives rise to the gauge anomaly
h
gVl = =5 e F (6.15)

Apart from the gauge anomaly in the first current we are isterkto check whether there are
trace anomalies in the other currents. This is done as felléviter the RHS of the above equation
is expressed in terms of covariant quantities, terms ptimp@l to /i (which is present only in\)
are identified as possible anomalies by proceeding in apalmghe energy—momentum tensor.
One assumes that there is no anomaly in the conservatiorofasesariant currents, that is that the
covariant derivatives of the higher spin currents with ttidigon of suitable covariant terms (these
terms are classical i.e. not proportionalftposee for instance the terms in the LHS of (6.12,6.13))
vanish. Since

(V- Dt oo = 0V duu+ 9 Vo + ... =0,

where dots denote the above mentioned classical covagemst one relates terms proportional
to & in the u derivative of the trace,(, ,, components) to the terms proportional Aan the v
derivative of, ., components of the currents.

13
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For the covariant energy momentum tensb?) we have Tf.J®) = 2¢v¢ J{2) = — & R which
is the well known trace anomaly. In the case/&P current the terms that carry explicit factors of
h cancel out iry““VvJﬁi)u, which implies absence df in the trace, and consequently the absence
of the trace anomaly. The same is true §&#) and the higher currents.

In conclusion anomalies make their appearance only iVtheand.J(?) currents.

6.1 Higher moments of the Hawking radiation

After constructing the higher spin currents let us come éadbscription of the higher moments
of the fermionic Hawking radiation. We will follow the patteoutlined in section 3 and consider
first the case in which the electromagnetic field is decoufiee- 0).

In section 5 we evaluatedjéf).gh. If we identify j,gf).z(z) via a Wick rotation withj&s“).u(u)
we get the corresponding value at the horiz(y‘f,,),@ n. We notice that since the problem we are
considering is stationary arﬁs..).u(u) is chiral, it follows that it is constant ihandr. Therefore
{ jﬁf__)_u> 5 corresponds to its value at= co. Sincejﬁf__)_u(u) and Jfﬁ_)_u(u) asymptotically coincide,
the asymptotic flux of these currents is

(T ) = (T = (I = Gn

If we setg = £ and\ = 1 in conventional units and, as in [1, 2] we multiply the cuteeby — ;-
in order to properly normalize the (physical) energy—motmentensor, we get

1
2

2
n’% ntn

ym O 21=2m) (6.16)

(JEY L a) = (1)
while the odd currents give a vanishing value. These valogsspond precisely to the fluxes of the
Hawking Planckian spectrum defined by (4.3) multiplied bptWhis is so because our currents
carry both particle and antiparticle contributions.

Next we wish to take into account the presence of the gaugk ¥iddich, in our case, vanishes
at infinity but not at the horizon. This introduces a significahange in our method. In section
3 the basic criterion was to require regularityDﬁ’Z"l) at the horizon. Now the presence of the
electromagnetic field interferes with the regularityldﬁ"l) at the horizon. As a consequence this
criterion must be updated.

Let us start with the first current (6.7). From now on we uniderd that the electromagnetic
field A, absorbs also the charge, so that in the final results the replacemeht— m A; is
understood. We easily get (remember th¥t") vanishes)

I =30+ %Aa = fi <jf}> + %A) (6.17)
wheref, denotes the first derivative ¢f«) = u with respect ta.. Now let us introduce the Kruskal
coordinatef (u) = U = —e "". It is evident that we have to require regularity at the haminf

7 + 2 Az, not of j{!) alone. Therefore we get

GO+ 2 (Aa) =0 (6.18)
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where(-) ;, denotes the value at the horizon. Ny)w
—% (Ay) 1, corresponds to its value at= co. Smcegé)

becaused,, (u) asymptotically vanishes, we get
1

is constant irt andr. Therefore( j£1)> h=
(u) and Jﬁl)(u) asymptotically coincide,

1

1
=gy = (1) — (7@
A Q
= Inq (Au)n = %At o (6.19)

where () represents the asymptotic value and we have assumed thatisheo incoming flux

<J51)> from infinity.

From this example we learn the obvious lesson.
are regular at the horizon in the Kruskal coordingte- —e

we have 1
(s)
‘]U...U -

We have toresthat the currentgl(f.)“U
—KU%_Since these currents are covariant,

6w
(—I{U)s Juu( )

It then follows that the current&*.,, and theirn — 1 derivatives vanish. From (6.8)-(6.10), at the

horizon we must get

ie) ==X <2A2 - 3)

12
8A3 AT
(3 — u _ 7 6.20
TTA%2 2 7’ 3
-(4) — _ 4 v~ 2 e 2
As already remarked, at infinity the background fieldsand¢ vanish. So that
() = G n (6.21)
Now, we evaluate the derivatives on right hand side of (6a2@he horizon. Setting =5 =1 we
get
2
-(2) _ <T>h _ <At>h
<]uu > h 12 2
. 1 1
G = —3 (Ar)y — 6 {T)n(Adn
. 1 1 7
G = 1 (Ar)h + 1 (T)n(A)j, — 210 ()7
Therefore at infinity we get
1 2)r I{Z Q2
( 2 ) =
o\t 487 4w
1 By 03 k2Q
21 (i) 6 = 247 (6.22)
B 1 <J(4)7«> _ Tt 022 Ot
o UL 11920 167 8w
where we have usedf’(ry)), =2k, (T)}, = —72, Ay(r) = =z, Q= Ay(ry) = (A¢) . These

results agree with formula (4.4) after the replacemnt> m A; (see the comment before eq.(6.17).
We have checked, [2], the agreement up to spin 8 cur{rﬁﬁff}
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7. Anomalies and higher spin currents

Each higher spin current carries to infinity its own compdrafrihe Hawking radiation. Just
in the same way as in the action the metric is a source for tteggamomentum tensor, these new
(covariant) currents will have in the effective action abie sources, with the appropriate indices
and symmetries. We will represent such sources by meansckftmind fieldstﬁ),,,“S (which
will be eventually set to zero). So we have

(S) 1 6

[i1eefis ﬁ SBS)p1ps S (71)

We assume that aﬂﬁsl)u are maximally symmetric and classically tracefess

In the previous section the covariant forms of the highen gpirrents have not given rise to
any trace or diffeomorphisms or gauge anomaly. One migtaablihat this may be due to the
particular currents we are considering and attribute itrtaecident. For instance, in [17], the
authors, using higher spin currents defined by differentlioations of thejg’f_’z")from (5.1), did
find anomalies. So the question is: is there a way to spelllesiaimbiguity? The answer is yes,
this can be done by means of cohomological (or consisteneyfhads applied to the effective field
theory.

Let us concentrate here, for simplicity, on trace anomaliés® much more complicated anal-
ysis of diff anomalies has been carried out in [2] and will betreviewed here. The consistency
conditions for trace anomalies are similar to the Wess—Aonsbnsistency conditions for chiral
anomalies and are based on the simple remark that, if we &applgymmetry transformations in
different order to the action, the result must obey the grihgoretical rules of the transforma-
tions. In particular, since Weyl transformations are Adelimaking two Weyl transformations in
opposite order must bring the same result. Although thisaéxp the geometrical meaning of the
consistency conditions, proceeding in this way is ofterywembersome. The method becomes
more manageable if we transform it into a cohomological [gnob This is simple: just promote
the local transformation parameters to anticommuting iglghosts). The transformations become
nilpotent and define a coboundary operator. It is in genayss$ible to compute the non—trivial co-
cycles of such coboundary operators: they are local polyasrof the fields and their derivatives,
and they define the possible anomalies. This cohomologiethad however does not guarantee
that a given cocycle makes its appearance on the right hdedo$ia specific conservation law,
and consequently violates it, for the numerical coefficiarftont of it may vanish. Therefore this
method by itself is not enough to fully determine anomalawsservation laws. On the other hand
it is very powerful if we can show that all the cocycles (ttstall the potential anomalies) are triv-
ial. In this case we are guaranteed that the correspondingecaation law will not be broken by
anomalies, or, if they are, the corresponding (trivial) mabes can be absorbed by a redefinition
of the action.

We notice that the cohomological analysis of anomalies do¢slepend on whether we are
dealing with fermionic or bosonic currents, but only on thaelkground fields. This said we can now
analyze the problem of the existence of trace anomaliegmehispin currents with cohomological

20ther background fields, beside tBeones, are needed in the effective action, as was discus$2H iBut they
turn out not to be irrelevant in the anomaly discussion, sawlledrop them here.
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methods. The relevant background is formed by the metrogdmpletely symmetrié fields and
the electromagnetic field.

Of course the electromagnetic field gives rise to the gaugealy in the covariant derivative
of the /(M) current, see (6.11). The latter is induced by the gaugeftranationdy A, = J, A and
this exhausts our discussion of the gauge anomaly.

Next let us turn to the trace anomalies and recall the apjatepsetting for this type of analysis.
We start from the analysis of®). Settinngl’j)A = B, the Weyl transformation of the various
field involved are

5og;w = 20’9;;1/
0o By = 0By (7.2)
SoA, =0 (7.3)

which induces the trace of the energy—momentum tensor, and

5Tg;w =0
0r By = Tugua +cycl (7.4)
6:A, =0 (7.5)

which induces the trace of®). Moreover, for consistency with (7.2), we must have
OoTy = (x—2)oTy, (7.6)

wherez is an arbitrary number.

A comment on these transformations is in order. They aramé@ted as follows: they must
be expressed in terms of symmetry parameters and of the baskground fieldg,, and A4,
and nothing else; they must form a Lie algebra, as was mesdi@above, and they must leave
unchanged the terms in the effective action, in particllarterms involving the matter fields. The
transformations are then dictated by the canonical dimessif the various fields. The field®)
have dimensior2 — s.

We must now repeat the analysis we have done in [1]. We promatelT, to anticommuting
fields so that

62 =0, 62 =0, 80 0r+0,0,=0
Integrated anomalies are defined by
6, TN =hnA,,  6TW =nA,, (7.7)

whereT'™ is the one—loop quantum action ard,, A, are local functional linear i and 7,
respectively. The unintegrated anomalies, i.e. for intahe trace§}, and J(3)“M are obtained
by functionally differentiating with respect wandr,, respectively.

By applying é,,9, to the eqgs.(7.7), we see that candidates for anomaliesnd A, must
satisfy the consistency conditions

06D =0, 0;A;+6A,=0, 0;,A,=0 (7.8)

17
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Once we have determined these cocycles we have to make stitbdl are true anomalies,
that is that they are nontrivial. In other words there mustaxist local counterternd’ in the action
such that

A, = 6,C =6, /dzw\/_—gC (7.9)
A =6,C=6, /d%\/_—gc (7.10)

If such aC existed we could redefine the quantum action by subtradtieset counterterms and get
rid of the (trivial) anomalies.

Let us consider now the problem of the traﬁé)“ux. We could repeat the complete analysis
of [1], but there is a shortcut due to the simple form of th@$farmations (7.4). Suppose we find

cocycIeA(Tg)

AB) = / d*z/—gr I (7.11)

whereI,(f’) is a canonical dimension 3 tensor made of the metric, theeg@ialgl and their deriva-
tives, such asv, R or V,F,”, or even a non—gauge—invariant tensor suchia®&. Then it is
immediate to write down a counterterm

c® ~ B I (7.12)
which cancels (7.11).
As for the trace7(V#,, , we can proceed in analogy t83* . SettingB}SA,‘/)Ap = B, the

relevant Weyl transformations are as follows. The varratioacts only onB3,,, 5,
0rBuurp = guw Trp + cycl (7.13)

and the other fields remain unchanged while the variatioh meispect to the ordinary Weyl param-
etero are

509#1/ = 2Uguu (7.14)
00Ty = (T —2) 0Ty (7.15)
0o Buurp =10 By, (7.16)

where, againg is an arbitrary number. Now we can repeat the previous argtiniet a cocycle
have the form
AW = / d*z/=gm" () (7.17)

v

wherelff) is a dimension 4 tensor made out of the metric, the gauge fiedtzeir derivatives,
such asv,V, R. The counterterm
W ~ By 1Y) (7.18)

v

cancels (7.17).
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It is not hard to generalize this conclusion to higher spimemnis.

Out of conciseness the analysis in this section has beengmamheversimplified. A more com-
plete analysis of trace anomalies can be found in [1] andareasfthe diffeomorphisms anomalies
are concerned, in [2]. See also complementary considagii3]. On the basis of these analysis
we conclude on a general ground that anomalies may not arige ispin higher than 2 currents
under any condition, or if they arise they are trivial.

8. Conclusion

It is evident that the possibility to describe the higher neots of the Hawking radiation is
related to the transformation properties of the holomarghgher spin currents, specifically to
the appearance of generalized Schwarzian derivativegindbnformal transformation properties.
Even in the case of the energy momentum tensor, the Hawkingdluelated to Weyl or Diff
anomalies only in the sense that the latter determine tlatiorlbetween the covariant and holo-
morphic part of the energy—momentum tensor (see our digcuss[2]). For higher spin currents,
as we have seen, there are no links with anomalies simplyubecanomalies cannot exist in the
conservation laws of these currents. This much seems d@dfimitear. There are however other
aspects of the problem which have remained so far impliaitabe crucial in order to understand
the central role of thél; |, algebra. In this section we would like to discuss these dspec

Let us start from the remark that the summation dvén formula (5.1) does not affect the
crucial term”-(1 — 2-6=B, in (XF) except for an overall multiplicative factor. This means
that, had we used each one of the currents

JEB(z) = 07 (2) b1 () 5, (8.1)

instead of (5.1), we would have obtained (up to normalirgtibe same final result for the moments
of the Hawking radiation. This seems at first to deprive ofiatgrest the role of th&/; . , algebra,
but the case is just the opposite. Using the currg’ﬁt,@ (z) we have two enormous disadvantages.

The first is that we do not have any means of normalizing theserats, thus rendering the
results obtained by their means devoid of any predictiveazal hell’; , , algebra structure tells us
how to normalize the currents in such a way as to get an alg&here remain only two constants
to be fixed\ andq. The first is fixed in such a way as to get the right transforomataws (OPE)
of the energy—momentum tensor, the second is fixed by the dlg&pra ofj(). Once these two
constants are fixed the normalization for all the higher spiments is uniquely determined and in
agreement with the Planckian spectrum of the Hawking retiat

The second disadvantage of using currents that do not fd#m,a, algebra, such 89§_S_’_]Z)(z),
is the appearance of anomalies in their traces or in the ogatg@n laws of their covariant version.
This was shown in a very explicit way in [17]. As we have shotiese anomalies are cohomo-
logically trivial and can be eliminated by suitable reddfonis or subtractions. As a result one
ends up with the currents (5.1) and thBif ., algebra. In other words thié/; . ., algebra is the
appropriate structure underlying the Planckian spectriitheoHawking radiation.

It goes without saying that all these conclusions can be mlso for the higher spin bosonic
currents and the correspondifig,, algebra.
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This result seems to entail a dramatic consequence. It hexs keown since long that the
dynamics near the horizon of a black hole is conformal. Whatlearn from the above analysis
is that the two—dimensional physics around the horizon ésadterized by a symmetry larger than
the Virasoro algebra, such as#é,, or Wi, ., algebra.

Finally there is an important facet of our results which iplitit in what we have said above,
but deserves to be spelled out more explicitly. The exigtarfo(true) anomalies in higher spin
currents or, alternatively, the lack of an algebraic ppleiin the normalization of such currents,
would have meant the existence of ‘hairs’ correspondindntbleer spin charges, thus violating the
‘no hair’ theorem that must characterize the Hawking ramimat Therefore our conclusions are in
nice agreement with this theorem.
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