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1. Introduction

Tachyon condensation is a pervasive phenomenon in physics.Whenever a field theory has a
potential with a local maximum, surrounded by (possibly a continuum of) local minima, quanti-
zation around the maximum brings about the appearance of an unphysical particle with negative
square mass, the tachyon. The tachyon is simply the manifestation of the instability of the vacuum
chosen to quantize the theory. Any tiny disturbance takes the system to a more stable configuration
based on a local minimum (the tachyons have condensed). Thisis, for instance, the typical situation
of the spontaneous breakdown of a symmetry. The subject of these lectures is tachyon condensation
in a system of infinite many particles, as described by stringfield theory (SFT). The motivations
underlying the study of this system are both theoretical andapplicative, and stem from the over-
whelming role D–branes have assumed in the description of physical systems in the framework of
string theory.

D–branes mean open strings: open strings (unlike closed strings) do not exist as autonomous
entities but only when their endpoints can lie on D–branes (which, as the case may be, may fill
the space). On the other hand D–branes do not have an autonomous existence either: they are a
geometrical abstraction representing the dynamics of the open strings attached to them. Studying
the dynamics of open strings is therefore of upmost importance and tachyon condensation is basic
in this respect. An example may be more illuminating than many words. A phenomenon like
inflation can be described by the attractive potential between a D–brane and an anti–D–brane, at
least as long as the two branes are far apart. However, when their distance becomes smaller than the
string scale (after inflation has terminated) the string spectrum develops tachyons and the natural
evolution of the system is represented by tachyon condensation.

In these lectures I will discuss bosonic open string field theory. Purely bosonic string theory
is, of course, by itself insufficient, if anything because its spectrum does not contain fermions.
However open string field theory is a simplified playground with respect to the corresponding
superstring field theory versions. Exploiting the relativesimplicity of the bosonic theory it has
been possible in the last ten years to make significant progress and, then, export it to some extent to
the superstring relatives. Therefore our playground will be the description of tachyon condensation
and related phenomena in the framework of Witten’s Open String Field Theory (Witten 1987), and
the guideline for all these recent developments is represented by A.Sen’s conjectures (Sen 1998,
1999). The latter can be summarized as follows. Bosonic openstring theory in D=26 dimensions
is quantized on an unstable vacuum, an instability which manifests itself through the appearance
of the open string tachyon. The effective tachyonic potential has, beside the local maximum where
the theory is quantized, a local minimum. Sen’s conjecturesconcern the nature of the theory
around this local minimum. First of all, the energy density difference between the maximum and
the minimum should exactly compensate for the D25–brane tension characterizing the unstable
vacuum (first conjecture): this is a condition for the (relative) stability of the theory at the minimum.
Therefore the theory around the minimum should not contain any quantum fluctuation pertaining
to the original (unstable) open string theory (second conjecture). The minimum should therefore
correspond to an entirely new theory, which can only be the bosonic closed string theory. If so,
in the new theory one should be able to find in particular all the classical solutions characteristic
of closed string theory, the D25–brane as well as all the solitonic solutions representing lower
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dimensional D–branes (third conjecture).
The evidence in favor of these conjectures has accumulated over the years although not with

a uniform degree of accuracy and reliability, until the firsttwo conjectures were rigorously proved
(Schnabl 2006, Ellwood and Schnabl 2007): an explicit analytic (non–perturbative) SFT solution
was provided which links the initial vacuum to the final one and it was shown that this vacuum does
not contain perturbative open string modes. As for the thirdconjecture the most important evidence
we have gathered so far of solitonic solutions comes from theVacuum String Field Theory (VSFT),
an approximate version of the full SFT, which is believed to represent rather faithfully the theory
near the minimum, at least as far as static solutions are concerned.

The D25–brane and its lower dimensional companions are unstable, because there is no con-
served charge (like in the corresponding supersymmetric theories) associated to them. Therefore
SFT must contain also time–dependent solutions that describe their decay. This issue has been dis-
cussed (Sen 2002, 2003a) and approximate solutions have been found in SFT, but exact solutions
are still lacking.

Finally, a very far–reaching consequence of Sen’s conjectures is so far remained rather implicit
in the literature. It is evident that if the three conjectures are true and the new vacuum is the closed
string vacuum, then it means that the closed string degrees of freedom can be represented (although
non–perturbatively) in terms of the open string ones. This is an exciting possibility that has not been
methodically explored so far.

The aim of this review is not a full account of the entire subject of SFT and tachyon conden-
sation, which would take an article the size of a book. There are already several reviews the reader
can consult (Ohmori 2001, Are’feva et al. 2002, Bonora et al 2003, Taylor and Zwiebach 2003,
Fuchs and Kroyter 2008), which cover different aspects and different subjects. My aim is to give
a general survey and convey the main messages without insisting too much, wherever possible, on
too many details.

2. Open string field theory

Before we come to the formal definition of string field theory,i.e. second quantized string
theory, we need a short summary of first quantized open stringtheory.

2.1 First quantized open strings

First quantized open string theory in the critical dimension D=26 is formulated in terms of
quantum oscillatorsαµ

n , −∞ < n < ∞, µ = 0,1, . . . ,25, which come from the mode expansion of
the string scalar field

Xµ(z) =
1
2

xµ − i
2

pµ lnz+
i√
2

∑
n6=0

αµ
n

n
z−n

having set the characteristic square length of the stringα ′ = 1. They satisfy the algebra[αµ
m,αν

n ] =

mη µνδn+m,0, η being the space–time Minkowski metric. The vacuum is definedby αµ
n |0〉 = 0

for n > 0 andpµ |0〉 = 0. The states of the theory are constructed by applying to thevacuum the
remaining quantum oscillatorsαµ†

n = αµ
−n, with n > 0. Any such state|φ〉 is given momentumkµ
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by multiplying it by the eigenstateeikx. This state with momentum will be denoted by|φ ,k〉. In
order for such states to be physical they must satisfy the conditions

L(X)
n |φ ,k〉 = 0, n > 0, (L(X)

0 −1)|φ ,k〉 = 0 (2.1)

whereL(X)
n are the matter Virasoro generators

L(X)
n =

1
2

:
∞

∑
k=−∞

αµ
n−kαν

k : ηµν (2.2)

where we have setα0 = p and :: denotes normal ordering. The conditions (2.1) are thequantum
translation of the classical vanishing of the energy–momentum tensor.

The conditions (2.1) define the physical spectrum of the theory (in D=26). All the states are
ordered according to the level, the level being a natural number specified by the eigenvalue of
L(X)

0 + L(gh)
0 − p2. The lowest lying state (level 0) is the tachyon representedby the vacuum with

momentumk and square massM2 =−1. The next (level 1) is the massless vector stateζµ αµ
−1|0〉eikx

with k2 = 0 andζ · k = 0, which is interpreted as a gauge field. The other states are all massive,
with increasing masses proportional to the Planck mass square.

To each of these states is associated a vertex operator. For instance, to the tachyon we associate
Vt(k) =: eik·X :; to the vector stateVA(k,ζ ) =: ζ · Ẋeik·X :, where the dot on top ofX denotes the
tangent derivative with respect to the world–sheet boundary (the real axis in thez UHP); and so
on. In this way one can formulate rules to calculate any kind of amplitude of these operators
〈V1(k1) . . .VN(kN)〉, as far as these amplitudes areon shell. At low energyα ′ → 0 such amplitudes
reproduce those of the corresponding field theory (for instance, the amplitudes ofVA reproduce the
amplitudes of a Maxwell field theory). If we want to computeoff–shellamplitudes, in general we
have to resort to a field theory of strings. This was one of the original motivations for introducing
a string field theory.

So far we have ignored ghosts. Indeed theb,c ghosts, which come from the gauge fixing of
reparametrization invariance via the Faddeev–Popov recipe, play a minor role in perturbative string
theory. They play a much more important role in SFT. They are also expanded in modescn andbn

and one can construct the corresponding Virasoro generators

L(gh)
n =: ∑

k

(2n+k)b−kck+n : (2.3)

Both (2.2) and (2.3) obey the same Virasoro algebra

[Ln,Lm] = (n−m)Ln+m+
c

12
(n3−n) (2.4)

The central chargec equals the number ofX fields in the matter case (i.e. 26), while it equals -26
in the case of theb,c ghosts. So the total central charge vanishes in D=26. This guarantees the
absence of any trace anomaly, and therefore consistency of the bosonic string theory as a gauge
theory.

The previous results about ghosts and critical dimension, can be usefully reformulated in terms
of BRST symmetry and its chargeQ. Q is defined by

Q = ∑
n

: cn

(

L(X)
n +

1
2

L(gh)
n

)

: (2.5)
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It is hermiteanQ† = Q and its basic property is nilpotency

Q2 = 0

in critical dimension. The study of the physical spectrum can be reformulated in terms of the
cohomology ofQ: the physical states of perturbative string theory are the states of ghost number
1 that are annihilated by Q, defined up to states obtained by acting withQ on any state of ghost
number 0. They can be represented by the old physical states|φ ,k〉 tensored with the ghost factor
c1|0〉.

With this at hand we can now turn to string field theory.

2.2 The SFT action and star product

The open string field theory action proposed by E.Witten years ago (Witten 1987) is

S (Ψ) = − 1
g2

o

∫

(

1
2

Ψ∗QΨ+
1
3

Ψ∗Ψ∗Ψ
)

. (2.6)

This action is clearly reminiscent of the Chern–Simons action in 3D. In this expressionΨ is the
string field. It can be understood either as a classical functional of the open string configurations
Ψ(xµ (z)), or as a vector in the Fock space of states of the open string theory. Altough the first
representation is more pictorial, the second is far more effective from a practical viewpoint. In the
following we will consider for simplicity only this second point of view. In the field theory limit
it makes sense to representΨ as a superposition of Fock space states with ghost number 1, with
coefficient represented by (infinite many) local fields,

|Ψ〉 = (φ(x)+Aµ(x)aµ†
1 + . . .)c1|0〉. (2.7)

The BRST chargeQ is the same as the one introduced above for the first quantizedstring theory.
One of the most fundamental ingredients is the star product.Physically it represents the string

interaction, that is the process of two strings coming together to form a third string. More precisely
the product of two string fieldsΨ1,Ψ2 represents the process of identifying the right half of the first
string with the left half of the second string and integrating over the overlapping degrees of freedom,
to produce a third string which corresponds toΨ1∗Ψ2. This can be implemented in different ways,
either using the classical string functional (as in the original formulation by Witten), or using the
three string vertex (see below), or the conformal field theory language (Leclair et al. 1989).

Finally the integration in (2.6) corresponds to bending theleft half of the string over the right
half and integrating over the corresponding degrees of freedom in such a way as to produce a
number.

The following rules are obeyed

Q2 = 0,
∫

QΨ = 0,

(Ψ1 ∗Ψ2)∗Ψ3 = Ψ1 ∗ (Ψ2∗Ψ3),

Q(Ψ1 ∗Ψ2) = (QΨ1)∗Ψ2 +(−1)|Ψ1|Ψ1∗ (QΨ2), (2.8)
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where|Ψ| is the Grassmannality of the string fieldΨ, which, for bosonic strings, coincides with
the ghost number. The action (2.6) is invariant under the BRST transformation

δΨ = QΛ+ Ψ∗Λ−Λ∗Ψ. (2.9)

Finally, the ghost numbers of the various objectsQ,Ψ,Λ,∗,∫ are 1,1,0,0,−3, respectively.
Let us now see in more detail how to implement the star product. Let us consider three unit

semi-disks in the upper halfza (a= 1,2,3) plane. Each one represents the string freely propagating
in semicircles from the origin (world-sheet timeτ = −∞) to the unit circle|za| = 1 (τ = 0), where
the interaction is supposed to take place. We map each unit semi-disk to a 120◦ wedge of the
complex plane via the following conformal maps:

fa(za) = α2−a f (za) , a = 1,2,3, (2.10)

where

f (z) =
(1+ iz

1− iz

)
2
3
. (2.11)

Hereα = e
2π i
3 . In this way the three semi-disks are mapped to non-overlapping (except along the

edges) regions in such a way as to fill up a unit disk centered atthe origin. The curvature is zero
everywhere except at the center of the disk, which represents the common midpoint of the three
strings in interaction, see Fig.(1)
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³

)
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)
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Figure 1: The conformal maps from the three unit semi-disks to the three-wedges unit disk

The interaction vertex is defined by means of a correlation function on the disk in the following
way

∫

ψ ∗φ ∗χ = 〈 f1◦ψ(0) f2 ◦φ(0) f3 ◦χ(0)〉 (2.12)

So, calculating the star product amounts to evaluating a three point function on the unit disk.
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3. Tachyon condensation

Following the rules of the previous section it is possible toexplicitly compute the action (2.6).
For instance, in the low energy limit, where the string field may be assumed to take the form (2.7),
the action becomes an integrated functionF of an infinite series of local polynomials (kinetic and
potential terms) of the fields involved in (2.7):

S (Ψ) =

∫

d26xF(ϕi ,∂ϕi, ...). (3.1)

To limit the number of terms one has to limit the gigantic BRSTsymmetry of OSFT, by choosing a
gauge, which is usually the Feynman–Siegel gauge: this means that we limit ourselves to the states
that satisfy the condition:b0|Ψ〉 = 0

Still the action with all the infinite sets of fields containedin Ψ remains unwieldy. As it turns
out, it makes sense to limit the number of fields inΨ, provided we insert all the fields up to a
certain level. This is calledlevel truncationand turns out to be an excellent approximation and
regularization scheme in SFT. Let us see this in more detail for a string field which includes the
tachyonφ(x) and the vector fieldAµ(x). The action turns out to be (Ohmori 2001)

S(0,1) =
1
g2

o

∫

d26x

(

−1
2

∂µφ∂ µφ +
1
2

φ2− 1
3

β 3φ3− 1
2

∂µAν∂ µAν (3.2)

− β φ̃ ÃµÃµ − β
2

(∂µ∂ν φ̃ ÃµÃν + φ̃∂µÃν∂ν Ãµ −2∂µ φ̃∂ν ÃµÃν)

)

whereβ = 3
√

3
4 is a recurrent number in SFT. One can see the kinetic term for the tachyon and the

gauge field (the latter is in the gauge fixed form because the Feynman–Siegel gauge corresponds
in the field theory language to the Lorentz gauge) and the ‘wrong’ mass term for the tachyon. The
fields appearing in the interactions terms carry a tilde. This means, for any fieldϕ

ϕ̃(x) = e−ln(β−1∂µ ∂ µ )ϕ(x)

Incidentally, the fact that the interaction is formulated in terms of tilded fields is a manifestation of
the strong (exponential) convergence properties of stringtheory in the UV.

Let us now consider the potential and study its minimum. We remind the reader that this
theory is supposed to represent the open strings attached toa space–filling D–brane, the D25–
brane. It may also represent lower dimensional branes. In the CFT language such configurations
are described by boundary CFT’s. The first important remark (Sen 1998) is that this potential is
universal, it does not depend on the details of the theory, i.e. on a particular boundary conformal
field theory.

Let us concentrate on the D25–brane and evaluate the total energy of the system brane + string
modes. The brane has its intrinsic energy, whose density is the tensionτ , which in our conventional
units (α ′ = 1), is given byτ = 1

2π2g2
o
. The string modes are represented by the action and, in a static

situation, their total energy is given by the negative action. We precisely wish to study this system in
the vacuum. Since we want Lorentz invariance, only Lorentz scalars can acquire a VEV. Therefore
in (3.2) one must set the tensor fields and all the derivativesto 0. Setting〈φ〉 = t, what remains of
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the action (divided by the total volume) can be written in terms of the functionu(t) as follows

−S
V

≡ τ u(t) = 2π2
(

−1
2

t2 +
1
3

β 3t3
)

(3.3)

This is the total tachyon potential energy density extracted from the action.
The total energy of the system will be given by the sum of (3.3)and the D25–brane tension

U(t) = τ(1+u(t)) (3.4)

This potential is cubic, and it is easy to determine both local maximum and minimum. The latter
is given by

t = t0 =
1

β 3 , u(t) ≈−0.684 (3.5)

Let us recall that the first conjecture by Sen is that the tachyonic energy should exactly com-
pensate for the D25–brane tension. Therefore (3.5) does notmatch this result, but we should
remember that ours has been a very rough approximation, since we have retained only two fields,
the tachyon and the Maxwell field. It can be shown that by adding more and more fields to the
string fieldsΨ, that is truncating it at a higher level, the value ofu(t0) gets closer and closer to−1.
The asymptotic situation is represented in Fig.(2)

t

  t  o

U(t)

Figure 2: The tachyon potential

This was historically the first evidence that the first Sen’s conjecture is correct.

4. The analytic solution

In this section I will explain how the first analytic solutionto the SFT equation of motion (5.3)
was found (Schnabl 2006). This solution is a string state that specifies the (locally) stable vacuum,
to be identified as the closed string vacuum. In the oversimplified language of the figure (2) it
would correspond to|Ψ0〉 = t0c1|0〉, but it actually identifies the vev of all the infinite many scalar
fields that feature in the most general string field.

To start with I have to introduce one of the important ingredients of this solution, the wedge
states.
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4.1 Wedge states and the new coordinate patch

Wedge states are particular surface states. The latter are states simply defined by a map from
the half–disk to the unit disk or, equivalently, to the upperhalf plane. The definition is as follows:
take any mapf from the half–disk to a surfaceΣ (inscribed in the unit disk or in the UHP); consider
any fieldφ and the state|φ〉 = φ(0)|0〉 in the Fock space of the theory; then the surface state〈S| is
defined by

〈S|φ〉 = 〈 f ◦φ〉Σ (4.1)

The definition is implicit and may seem at first not very handy,but one can reduce the calculation to
very simple test states|φ〉, much in the same way as we do in calculating the Neumann coefficients
for the three strings vertices in Appendix. One can see that asurface state can be written as a
squeezed state represented by a Neumann matrixSnm, both for the matter and the ghost part.

Wedges states are particularly simple. Their defining functions are

fr(z) =

(

1+ iz
1− iz

)
2
r

(4.2)

where, for simplicity, we taker to be a positive integer. This means that the image of the map is a
wedge of angle2π

r in the unit disk. They can be shown to satisfy the recursion relation

|r〉⋆ |s〉 = |r +s−1〉 (4.3)

In particular we see that calling|Ξ〉 the result of takingr → ∞ in |r〉, we recoverΞ2 = Ξ. This may
seem formal, but it can be shown to give rise precisely to the sliver, which is a surface state defined
by a wedge of vanishing angle (see next section for a more accurate definition). So, in particular,
wedge states approximate the sliver.
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. . .

Figure 3: Star product of two wedge states|3〉⋆ |2〉= |4〉

The star product of wedge states takes a particularly simpleform if we use the coordinate
z̃= arctanz. In this new representation a wedge state|r〉 is a cylinder in the ˜zUHP, see fig.(3). It is
in fact an infinite strip in the imaginary direction of widthr π

2 . It is formed by two external strips of
width π

4 each (the ruled strips in the figure), and an internal strip ofwidth (r −1)π
2 . The rightmost

and leftmost sides are identified so as to form a cylinder. Thestar product of two such states is
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simply obtained by dropping the rightmost ruled strip of thefirst state and the leftmost ruled strip
of the second and gluing the two cut cylinders along the dashed line in fig.(3). In this language the
wedge state withr = 2 corresponds to the vacuum|0〉.

Pure wedge states, as we have just described them, are not enough to describe the analytic
solution we are looking for. We need wedge states with insertion, that is wedge states with the
insertion of an operator at some point of the unruled patches. The|n〉 wedge state itself can be seen
as such.

|n〉 =

(

2
n

)L
†
0

|0〉 (4.4)

whereL0 will be introduced in a moment.
These states will play a major role in what follows. What we need now is exploit the new

coordinate ˜z = arctanz to get a few basic definitions and relations. To start with we define the
Virasoro generators in the new coordinate patch

L0 =
∮

dz̃
2π i

z̃ T̃zz̃(z̃)

that is

L0 = L0 +
∞

∑
k=1

2(−1)k+1

4k2−1
L2k (4.5)

as well asL±1. They satisfy[Ln,Lm] = (n−m)Ln+m.
Other useful operators are

B0 = b0 +
∞

∑
k=1

2(−1)k+1

4k2−1
b2k

B1 = b1 +b−1

and

B≡ BL
1 =

1
2

B1 +
1
π

(

B0+B
†
0

)

BR
1 =

1
2

B1−
1
π

(

B0+B
†
0

)

and usingK1 = L1 +L−1 we can introduce

K ≡ KL
1 =

1
2

K1 +
1
π

(

L0 +L
†
0

)

KR
1 =

1
2

K1−
1
π

(

L0 +L
†
0

)

For instance we have the ’semi–derivation’ rules

KL
1 (Ψ1 ⋆Ψ2) = (KL

1 Ψ1)⋆Ψ2

KR
1 (Ψ1 ⋆Ψ2) = Ψ1 ⋆ (KR

1 Ψ2)

and the wedge states can also be written as

|n〉 = e
π
2 (n−1)K|1〉

From this equation and (4.4) we see that it makes sense to consider n a real variable rather than an
integer, and therefore also to differentiate with respect to it.
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4.2 The solution

Schnabl chose the gaugeB0|Ψ〉 = 0, rather than the Feynman–Siegel one. He than made the
ansatz

Ψ = lim
N→∞

(

N

∑
n=0

ψ ′
n−ψN

)

(4.6)

where

ψn = c1|0〉⋆B|n〉⋆c1|0〉 (4.7)

and the prime denotes derivative with respect ton. The stateψn is made out of wedges states with
insertions of the fieldc and ofB. In particular forn = 0 we have

ψ0 = (cBc)(0)|0〉, ψ ′
0 = (cBKc)(0)|0〉

We remark that in the RHS of (4.6) the second term−ψN is added only for regularization purposes.

The solution is obtained as a limit and it is constructed as

Ψλ =
∞

∑
n=0

λ n+1ψ ′
n, (4.8)

This is a pure gauge solution (action=0) forλ < 1, but it is not pure gauge anymore forλ = 1 and
it is the good solution. We will not prove it here. Rather we concentrate on the evidence about first
Sen’s conjecture.

4.3 First and second Sen’s conjectures

From the equation of motion we get

〈Ψ,QΨ〉 = −〈Ψ,Ψ⋆Ψ〉 (4.9)

This equation has to be explicitly checked over the solution(4.6) – a rather nontrivial task –,
because one of the subtleties of SFT is that, even if|Ψ〉 is a solution to the equation of motion, it is
not automatically guaranteed that (4.9) holds.

On the other hand, from the explicit form of the solution one gets

〈Ψ,QΨ〉 = − 3
π2

Therefore, finally, the total energy of the string modes is (V is the total 26–th dimensional volume):

E = − S
V

=
1

g2
oV

(

1
2
〈Ψ,QΨ〉+ 1

3
〈Ψ,Ψ⋆Ψ〉

)

= − 1

2π2g2
0

(4.10)

which is precisely the negative of the D25–brane tensionτ .
Let us now pass to briefly illustrate the proof of the second conjecture (Ellwood and Schnabl

2007). The purpose is to show that the cohomology about Schnabl’s solution is trivial. Relabeling
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Schnabl’s solution asΨ0, we are looking now for solutions to (5.3) of the typeΨ0 + ψ , linearized
on ψ . It is easy to see that the relevant (linearized) equation ofmotion is

Qψ ≡ Qψ + Ψ0 ⋆ψ − (−1)|ψ |ψ ⋆Ψ0 (4.11)

This defines a new BRST operatorQ (indeedQ2 = 0) and defines the cohomology around Schn-
abl’s solution. The purpose is to prove that this cohomologyis empty.

Let us introduce the symbol

Wr = |r +1〉

Next let us define the state

A = − 2
π

B
∫ 1

0
Wr dr (4.12)

Once again we make use of the fact that wedge states can be defined for any real labelr, not just
for an integralr. It is possible to prove that

QA = |1〉 (4.13)

where the RHS represents the wedge state withr = 1. This is the identity state and satisfies

|1〉⋆Φ = Φ⋆ |1〉 = Φ

for anyΦ.
Now supposeψ satisfiesQψ = 0, then, using these results, we get

Q(A⋆ψ) = (QA)⋆ψ −A⋆ (Qψ) = |1〉⋆ψ = ψ

which means thatψ is BRST trivial. This is a very general result. It implies notonly that the
cohomology of ghost number 1 is trivial (i.e., there is no physical perturbative string mode in the
new vacuum), but that the cohomology is trivial for any ghostnumber state.

5. The third conjecture

The third of Sen’s conjectures has not been proven analytically so far, the reason being that
for this purpose one cannot use the elegant and simple analytic methods of the previous section. In
fact the third conjecture predicts the existence of lower dimensional solitonic solutions (specifically
Dp–branes, withp < 25). But these solutions bring along the breaking of translational symmetry
and background dependence. So far the evidence for such solutions is overwhelming, but no exact
example has been found yet. It has been possible to find them with approximate methods or with
exact methods but in related theories.

A related theory which has brought about significant developments has been the so called
vacuum string field theory (VSFT). VSFT, (Rastelli et al. 2001), is a version of Witten’s open
SFT which is supposed to describe the theory at the minimum ofthe tachyonic potential. The
argument is as follows: let us consider Schnabl’s solution and call it Ψ0; the generic string field in

12
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the SFT action can be rewritten by shiftingΨ → Ψ0 +Ψ. It is easy to see that the action maintains
the same functional form as the original SFT action. But the form of the BRST charge becomes
very complicated (see (4.11) above). One can at this point try to simplify it with the help of some
heuristic argument in order to complement our ignorance. Relying on the evidence that, at the
minimum, the negative tachyonic potential exactly compensates for the D25–brane tension one
can conclude that no open string mode should be excited. So that the BRST cohomology must be
trivial. The possible BRST operators that satisfy this condition are of course manifold. However
it is possible to find evidence that a consistent form is (5.2)below. This does not mean that VSFT
is equivalent to the true theory, but simply that it is a consistent simplification thereof, near the
potential minimum1.

In short the formulas relevant to VSFT are as follows. The action is

S (Ψ) = − 1

g2
0

(

1
2
〈Ψ|Q|Ψ〉+ 1

3
〈Ψ|Ψ∗Ψ〉

)

, (5.1)

where

Q = c0 + ∑
n>0

(−1)n (c2n +c−2n). (5.2)

The equation of motion is

QΨ = −Ψ∗Ψ. (5.3)

We can now make an ansatz for nonperturbative solutions

Ψ = Ψm⊗Ψg, (5.4)

whereΨg andΨm depend purely on ghost and matter degrees of freedom, respectively. Then, since
Q depends only on the ghost modes, eq.(5.3) splits into

QΨg = −Ψg∗g Ψg, (5.5)

Ψm = Ψm∗mΨm, (5.6)

where∗g and∗m refers to the star product involving only the ghost and matter part. The action for
this type of solution becomes

S (Ψ) = − 1

6g2
0

〈Ψg|Q|Ψg〉〈Ψm|Ψm〉, (5.7)

〈Ψm|Ψm〉 is the ordinary inner product,〈Ψm| being thebpzconjugate of|Ψm〉.
The remarkable characteristic of VSFT is factorization of the matter and ghost part. The

solution for the ghost part has been found, (Hata and Kawano 2001), but it does not really matter
here since it is universal, and, due to factorization, it drops out of the interesting results. So let us
concentrate on the matter part, eq.(5.6). The solutions areprojectors of the∗m algebra. The∗m

product is defined as follows

123〈V3|Ψ1〉1|Ψ2〉2 =3〈Ψ1 ∗mΨ2|, (5.8)

1It is fair to say that it has never been clarified in what precise sense VSFT is an approximation to SFT.

13



P
o
S
(
I
S
F
T
G
)
0
0
4

Progress in SFT L

where the three strings vertexV(m)
3 is defined in Appendix, (8.2).

The solutions to eq.(5.6) are projectors of the∗m algebra. The simplest one is thesliver,
(Rastelli et al. 200). Let us recall the main points concerning the sliver solution. It is translationally
invariant. As a consequence all momenta can be set to zero. The integration over the momenta can
be dropped and the only surviving part inE will be the one involvingVab

nm, with n,m≥ 1. The sliver
is defined by

|Ξ〉 = N e−
1
2a†Sa†|0〉, a†Sa† =

∞

∑
n,m=1

aµ†
n Snmaν†

m ηµν . (5.9)

This state satisfies eq.(5.6) provided the matrixSsatisfies the equation

S= V11+(V12,V21)(1−ΣV )−1Σ
(

V21

V12

)

, (5.10)

where

Σ =

(

S 0
0 S

)

, V =

(

V11 V12

V21 V22

)

. (5.11)

(see the Appendix below for notation). The proof of this factis well–known, (Kostelecky and
Potting 2001). First one expresses eq.(5.11) in terms of thetwisted matricesX = CV11,X+ = CV12

and X− = CV21, together withT = CS= SC, whereCnm = (−1)nδnm is the twist matrix. The
matricesX,X+,X− are mutually commuting, due to eq.(8.7). Then, requiringT to commute with
them as well, one can show that eq.(5.11) reduces to the algebraic equation

(1−T)(XT2− (1+X)T +X) = 0. (5.12)

Apart form the identity solution, the significant solution is the sliver

T =
1

2X
(1+X−

√

(1+3X)(1−X)), (5.13)

which evidently commutes withX,X+,X−.

The normalization constantN is calculated to be

N = (det(1−ΣV ))
D
2 , (5.14)

whereD = 26. The contribution of the sliver to the matter part of the action (see (5.7)) is given by

〈Ξ|Ξ〉 =
N 2

(det(1−S2))
D
2

. (5.15)

Both eq.(5.14) and (5.15) are ill–defined and need to be regularized.

The sliver solution represents the space–filling D25–brane. In order to find D–brane solu-
tions of lower dimensions we have to define transverse directions, i.e. directions along which the
solutions are not translational invariant. Thelumpsolutions are engineered to represent a lower di-
mensional brane, therefore they are characterized by the breaking of translational invariance along
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a subset of directions. Accordingly we split the three strings vertex into the tensor product of the
perpendicular part and the parallel part

|V3〉 = |V3,⊥〉 ⊗ |V3,‖〉, (5.16)

and the exponentE, accordingly, asE = E‖+E⊥. The parallel part is the same as in the sliver case
while the perpendicular part is modified as follows. Following (Rastelli et al. 2002), we denote by
xα , pα , α = 1, ...,k the coordinates and momenta in the transverse directions and introduce the zero
mode combinations

a(r)α
0 =

1
2

√
bp̂(r)α − i

1√
b

x̂(r)α , a(r)α†
0 =

1
2

√
bp̂(r)α + i

1√
b

x̂(r)α , (5.17)

where p̂(r)α , x̂(r)α are the zero momentum and position operator of ther–th string, and we have
introduced a numerical parameterb. It follows that

[

a(r)α
0 ,a(s)β†

0

]

= ηαβ δ rs. (5.18)

Denoting by|Ωb〉 the oscillator vacuum (aα
0 |Ωb〉 = 0 ), the relation between the momentum basis

and the oscillator basis is defined by

|{pα}〉123 =

(

b
2π

)
3
2

exp

[

3

∑
r=1

ηαβ
(

−b
4

p(r)
α p(r)

β +
√

ba(r)†
0α p(r)

β − 1
2

a(r)†
0α a(r)†

0β

)

]

|Ωb〉.

Next we insert this equation insideE′
⊥ and eliminate the momenta along the perpendicular direc-

tions by integrating them out. The overall result of this operation is that, while|V3,‖〉 is the same as
in the ordinary case, we have

|V3,⊥〉′ = K e−E′|Ωb〉, (5.19)

with

K =

√
2πb3

3(V00+b/2)2 , E′ =
1
2

3

∑
r,s=1

∑
M,N≥0

a(r)α†
M V

′rs
MNa(s)β†

N ηαβ . (5.20)

The coefficientsV
′rs
MN are given in (Rastelli et al. 2002). The new Neumann coefficients matrices

V
′rs satisfy the same relations as theV rs ones. In particular one can introduce the matricesX

′rs =

CV
′rs, whereCNM = δNM, which turn out to commute with one another. All the relations valid for

X,X± hold with primed quantities as well. We can therefore repeatverbatimthe derivation of the
sliver from eq.(5.9) through eq.(5.15). The new solution will have the form (5.9) withSalong the
parallel directions andS replaced byS′ along the perpendicular ones. In turnS′ is obtained as a
solution to eq.(5.10) where all the quantities are replacedby primed ones. This amounts to solving
eq.(5.12) with primed quantities. Therefore in the transverse directionsS is replaced byS′, given
by

S′ = CT′, T ′ =
1

2X′ (1+X′−
√

(1+3X′)(1−X′)). (5.21)
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In a similar way we have to adapt the normalization and energyformulas (5.14,5.15). Once this is
done, one can compute the energy density, which, for a staticsolution, corresponds to the negative
of the action calculated via (5.7) divided by the volume. Theabsolute value of this energy is not
well defined (see below), but one can at least compute the ratio for the tensions of two lumps of
contiguous dimensions,

τ24−k

2πτ25−k
=

3√
2πb3

(V00+
b
2
)2
(

det(1−X′)3 det(1+3X′)
det(1−X)3det(1+3X)

)

1
4

. (5.22)

This ratio has been proven both numerically and analytically to be 1. In this way we find the
expected value of the ratio of tension of D–branes (inα ′ = 1 units). Another confirmation of
the D–brane interpretation of a lump comes from the space profile, which can be calculated by
contracting the lump solution with the coordinate eigenstate |xα 〉 along the transverse directions.
After regularization or after introduction of a constant backgroundB field this profile turns out to
be a Gaussian centered at the transverse coordinate origin and thus represents a space–localized
solution.

It has been shown that many other solutions exist, similar both to the sliver (for instance the
butterfly) and to the lower dimensional lumps. They are all star algebra projectors. In fact it is
possible to construct star algebras of such projectors and introduce the notion of orthonormality
among them, see (Bonora et al. 2003).

In conclusion, the third conjecture by Sen has more than someground, although it has not
been possible so far to prove it with the same rigour as the first two conjectures. From the lump
construction in this section it is evident that one can hardly avoid the oscillator formalism if one
wants to find the same kind of solutions in the full SFT. One cannot hope for a factorization of
matter and ghosts either. The way is much tougher and passes through a redefinition of the ghost
three strings vertex introduced in Appendix, the new vertexbeing defined with respect to the ghost
vacuum|0〉, rather than to the vacuumc1|0〉 used in the Appendix. This result has already been
achieved (Bonora et al. 2009) and we would now like to briefly review it.

6. The midpoint ghost vertex

If one wants to construct a ghost vertex with respect to the ghost vacuum|0〉 the most natural
thing is to choose thenatural normal ordering, instead of theconventionalone used in Appendix
(which is appropriate when the chosen vacuum isc1|0〉). The former is defined by takingcn with
n≤ 1 andbn with n≤ −2 as creation operators. One of the main problems one has to face is the
ghosts insertion, which is a priori free. We solve the problem by means of the operatorY(z) =
1
2∂ 2c(z)∂c(z)c(z). We insert it at the string midpointz = i and at its image−i. In this way we
obtain two vertices, which are defined in the following way.

We define the state|0̂〉 = c−1c0c1|0〉 and the tensor product of states

123〈ω̂ | = 1〈0̂|2〈0̂|3〈0̂| (6.1)

carrying totalgh= 9. The ghost three strings vertices are

〈V̂(±i)3| = 123〈ω̂ |eÊ(±i) , Ê(±i) = −
2

∑
r,s=1

∞

∑
n,m

c(r)
n V̂rs

(±i)nmb(s)
m (6.2)
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where

V̂rs
(i)nm =

∮

dz
2π i

∮

dw
2π i

1
zn−1

1
wm+2

(

(

d
dz fr(z)

)2

d
dw fs(w)

1
fr(z)− fs(w)

(

fs(w)

fr(z)

)3

− δ rs

z−w

)

(6.3)

and

V̂rs
(−i)nm =

∮

dz
2π i

∮

dw
2π i

1
zn−1

1
wm+2

(

(

d
dz fr(z)

)2

d
dw fs(w)

1
fr(z)− fs(w)

− δ rs

z−w

)

(6.4)

The first three rows of these matrices vanish, they are complex and satisfy the twist covariance
property

V̂ rs
(i)nm = (−1)n+mV̂sr

(−i)nm

that is the vertex withY insertion ati is twist conjugate to the one with insertion at−i.
Using the twist matrixCnm = (−1)nδnm one can define the Neumann matricesXrs

(±i) = CVrs
(±i).

With a minor modification one gets the matricesX
′rs
(±i) which mutually commute. DefiningX′ =

X
′rr , X

′+ = X
′12 andX

′− = X
′21 one can verify that

X′
(i) +X′+

(i) +X′−
(i) = 1+E

X′+
(i) X′−

(i) = X′2
(i)−X′

(i) +E (6.5)

X′2
(i) +(X′+

(i) )
2 +(X′−

(i) )
2 = 1

(X′+
(i) )

3 +(X′−
(i) )

3 = 1+2X′3
(i)−3X′2

(i)−2E

Apart fromE these are the same relations one finds for the matter Neumann matrices. The matrixE
commutes with all theX′

(i)sand in fact it represents a minor complications. One can prove moreover
that all such matrices are diagonal in the basis in which the matrix G definingK1 = L1+L−1 is.

Analogous relations can be obtained for the−i inserted vertex by twist conjugation. All these
properties allow us to carry out the star product much in the same way as for matter string states.
Let us consider the star product of two squeezed states such as

|S〉 = N exp
(

c†Sb†) |0〉 (6.6)

i.e.

〈V̂3|S1〉|S2〉 = 〈Ŝ12| (6.7)

The matrixŜ12 = CT12 is given by the familiar formula

T12 = X +(X+,X−)
1

1−Σ12V
Σ12

(

X−

X+

)

(6.8)

where

Σ12 =

(

CS1 0
0 CS2

)

, V =

(

X X+

X− X

)

17



P
o
S
(
I
S
F
T
G
)
0
0
4

Progress in SFT L

These formulas hold for both vertices with insertion ati and−i, respectively. It was shown in
(Bonora et al. 09a) that if|S1〉 and|S2〉 represent wedge states (with ghost number 0, i.e. without
ghost insertions) eq.(6.8) can be diagonalized in theGbasis and the wedge states Neumann matrices
can be shown to satisfy the recursion relation (4.3), thus suggesting that our definition of the three
strings vertices is correct. However this is not enough to guarantee that the star product is the
correct one.For we remark that the states like (6.6) are defined on the ghost number 0 vacuum
|0〉, while the resulting state in the RHS of (6.7) is defined in the ghost number 3 vacuum〈0̂|.
Therefore〈Ŝ(±i)12| is not yet the star product of|S1〉 and |S2〉. To certify this one must be able to
reconstruct the ghost number number 0 state corresponding to the ghost number 3 ones〈Ŝ(±i)12|.
The explicit reconstruction goes far beyond the scope of this short review, but it has actually been
done in (Bonora et al. 2009b). It has been shown there that by usingbothstates〈Ŝ(i)12| and〈Ŝ(−i)12|
one can indeed reconstruct the expected ghost number 0 wedgestate, thus closing the circle. This
shows that there exists a definite procedure to perform the star product of wedge (and other) states
using (only) the oscillator formalism.

Now, Y.Okawa (Okawa 06) has shown that, if we are allowed to star–multiply the wedge states
as in (4.3), if|1〉 is the identity state and if the following properties hold

Q(φ1 ⋆φ2) = (Qψ1)⋆ψ2 +(−1)|φ1|φ1 ⋆ (Qφ2)

Q2 = 0

Q|0〉 = 0

Qc1|0〉 = −c0c1|0〉
(BL

1)
2 = (BR

1)2 = 0

(BR
1 +BL

1)|0〉 = 0 (6.9)

(BR
1 +BL

1)c1|0〉 = |0〉
{Q,BL

1} = KL
1

{Q,BR
1} = KR

1

(BR
1φ1)⋆φ2 = −(−1)|φ1|φ1 ⋆ (BL

1φ2)

whereφ1 and φ2 are any two string states, it is a simple matter of algebra to prove thatΨλ =

∑∞
n=0 λ n+1ψ ′

n is a solution of the SFT equation of motion.
The relations (6.9), except the first and the last, are elementary to prove in the oscillator for-

malism. Assuming, for simplicity, the validity of the first and last relation, we can conclude that
Schnabl’s solution can be demonstrated also in the oscillator formalism. We hope this fact may
open the way to the analytic proof of third Sen’s conjecture.

7. Open–closed string duality

Sen’s conjectures tell us that the (locally) stable SFT vacuum is in fact the closed string vac-
uum. Apart from the formal proof of Ellwood and Schnabl, there are independent arguments. From
a physical point of view the D–branes in question are unstable and it has been shown (Lambert et
al. 2003, Sen 2003a, Sen 2003b, Gaiotto et al. 2004) that suchbranes decay into heavy closed
string modes with negligible transverse velocity. From a formal point of view we expect that, since
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the theory simply changes vacuum, the closed string degreesof freedom may be expressible in
terms of the old ones. In the last part of this presentation, Iwould like to give some indication that
perhaps this is the case (for the following construction, see (Are’feva et al. 2002, Bonora et al.
2006)).

Using the sliver coefficients matrixSnm let us define the operators

sµ = ω(aµ +Saµ †) = (aµ +Saµ †)ω , ω =
1√

1−S2
(7.1)

and the conjugate ones, where the labelsn,m running from 1 to +∞ are understood (Sa means

∑∞
m=1Snmam, etc.). Using the algebra of open string creation and annihilation operators, these new

operators can be shown to satisfy

[sµ
m,sν†

n ] = δnmη µν (7.2)

Moreover, understanding the Lorentz indices,

sn|Ξ〉 = N e−
1
2a†Sa†ω(a−Sa† +Sa†)|0〉 = 0 (7.3)

Therefore the combinationssn represent Bogoliubov transformations of the original oscillators,
which map the Fock space based on the initial vacuum|0〉 to a new Fock space in which the role of
vacuum is played by the sliver.

One can define (Bonora et al. 2006) coefficientsbnl andb̃nl , so that, setting,

β µ
m =

∞

∑
l=1

bmls
µ
l , β̃ µ

m = −
∞

∑
l=1

b̃mls
µ
l (7.4)

these operators satisfy the algebra

[β µ
m,β ν†

n ] = δm,nη µν

[β̃ µ
m, β̃ ν†

n ] = δm,nη µν

while all the other commutators vanish.
The operatorsβn andβ̃n and their conjugates are characterized by a Heisenberg algebra isomor-

phic to the algebra of closed string creation and annihilation operators. They are natural candidates
as closed string creation and annihilation operators. For the same reason it is natural to interpret
the sliver|Ξ〉 as the closed string vacuum|0c〉.

This is very straightforward, but it takes a long way before we are able to claim that they do
represent the closed string oscillators and vacuum, respectively. Let us start first by considering
a complete set of states as possible candidates of perturbative closed string states. To this end
we define sequences of natural numbersn = n1,n2, ..., where the labell in nl corresponds to the
oscillator type. For every typel half string oscillator we will have a collection of symmetric Lorentz
indicesµ l

1,µ l
2, ...,µ l

nl
. Then for any two sequencesn andm we define the states:

Λ{µ1...µn},{ν1...νm} =
∞

∏
l ,r=1

(−1)mr

√
nl !mr !

β µ l
1 †

l ...β
µ l

nl
†

l β̃ ν r
1 †

r ...β̃ ν r
mr †

r |Ξ〉 (7.5)
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Note that in this new representation the labels (n,m) are naturally interpreted as two independent
(left/right) spin quantities (number of symmetric indices).

The states (7.5) are string fields in the original OSFT and look like perturbative closed string
states in the new vacuum. The relevant question is now: what are the (open) string fields that
correspond to closed string Fock states created under the above correspondence? By closed string
states we mean both off-shell and on-shell states. For instance a graviton state with momentumk
in closed string theory is given by

θµναµ†
1 αν†

1 |0c,k〉 (7.6)

where|0c,k〉 is the closed string vacuum with momentumk, and the symmetric tensorθµν is the
polarization. This state is on-shell whenk2 = 0 andθµνkν = 0. When the latter conditions are
not satisfied the graviton is off-shell. Off-shell states are not so generic as one might think, they
must satisfy precise conditions: they must have definite momentum (i.e. the holomorphic and
antiholomorphic momenta must be equal) and they must be level–matched. In the following we
will deal with off–shellclosed string states and we will focus, for the sake of simplicity, only on
zero momentum states.

It is evident from the above that there is a correspondence between (zero momentum) states in
the Fock space of the closed string theory and open string fields of the type (7.5). The question is:
what are the string fields that correspond to off–shell states in the closed string theory?

To start with we define the level matching condition by means of

NL =
∞

∑
n=1

nβ †
n ·βn, NR =

∞

∑
n=1

nβ̃ †
n · β̃n, (7.7)

Off-shell states are characterized in particular by the condition NR= NL = N, where the number
N specifies the level of the state. They are in general combination of monomials ofβ andβ̃ applied
to the vacuum with arbitrary coefficients. Now one can prove the following statement:

Closed string Fock space states of given level, satisfying the level matching condition, can
always be decomposed into combinations of states of the type(7.5) that are∗-algebra projectors.
Loosely speaking, level–matched states of the closed string Fock space come from star algebra
projectors of the OSFT.

The proof can be found in (Bonora et al., 2006), where it is also explained how to modify these
states by assigning an appropriate momentum. All this is still rather formal. However one can put
forward a more compelling argument.

One can prove the identity

∑
n

β µ†
n β̃ ν†

n ηµν =
1
2

∞

∑
k=1

sµ†
k Ckls

ν†
l ηµν

from which it follows that

e−∑n β µ†
n β̃ ν†

n ηµν |0c〉 = e−
1
2 ∑∞

k=1 sµ†
k Ckls

ν†
l ηµν |Ξ〉 ∼ e−

1
2 ∑∞

k=1 aµ†
k Ckla

ν†
l ηµν |0〉 (7.8)

where|0〉 is the original open string vacuum. The LHS has the form of a boundary state in closed
string theory, representing a D–brane filling all the space (there are no transverse directions). Sup-
pose we wish to represent instead a Dk–brane (with 25−k transverse directions andk+1 parallel
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ones, including time). Then the oscillator part of the corresponding boundary state in closed string
theory is the tensor product of a factor like the LHS of eq.(7.8) and a transverse factor. This trans-
verse factor breaks translational invariance and, consequently, it is natural to assume it takes the
form of a lump. The construction is again given in (Bonora et al., 2006). Here we report the re-
sults. Denoting with a prime the new creation operatorssn → s′n we find the analog of (7.8) for the
transverse directions:

e∑n β i†
n β̃ j†

n ηi j |0c〉 = e−
1
2 ∑∞

k=1 s′k
i†Ckls′l

j†ηi j |Ξ〉 ∼ e−
1
2 ∑∞

k=1 ai†
k Ckla

j†
l ηi j |0〉 (7.9)

where again|0〉 is the original open string vacuum.

As one can see, while the exponents of the LHS’s of these two equations have opposite sign,
the RHS of the two equations takes the same form. This miraclehas to be traced back to the twist
properties of the ‘sliver basis’ and the ‘lump basis’ and it is certainly not accidental.

Now taking the tensor product of (7.8) and (7.9), the resulting state in the LHS is proportional
to the boundary state in closed string theory, while the right hand side is the identity state in open
string field theory. The boundary state represents a Dk–brane in the closed string language. The
identity state represents absence of interaction in the open string field theory language. We can
interpret the above equality in the following way: closed strings are reflected by the Dk–brane
(they feel it). Open strings live on the Dk–brane, thereforethey perceive the corresponding state as
an identity state (they do not feel it).

Even after this positive check there is still much to be done in order to represent closed strings
in terms of open string degrees of freedom. Perhaps the approach outlined in this section is still too
naive. But, at least, it shows that the solution to this problem may be within our reach.

8. Appendix: the three strings vertex

The role of the three strings interaction in SFT is so crucialthat, notwithstanding the elegance
and simplicity of the CFT formulation, we are lucky that another powerful alternative method
exists, which becomes very handy in many circumstances. This is based on the oscillator formalism
and utilizes the so–calledthree strings vertex. Indeed, as was anticipated above we can represent
the star product of two string fieldsΨ1 andΨ2 in the following way

〈V3||Ψ1〉|Ψ2〉 = 〈Ψ1 ⋆Ψ2〉 (8.1)

We split theV3 vertex into matter and ghost part,V3 = V(m)
3 ⊗V(gh)

3 . Let us start with the matter

part. The matter vertexV(m)
3 is given by

|V(m)
3 〉 =

∫

d26p(1)d
26p(2)d

26p(3)δ 26(p(1) + p(2) + p(3))exp(−E) |0, p〉123, (8.2)

where

E =
3

∑
a,b=1

(1
2 ∑

m,n≥1

ηµνa(a)µ†
m Vab

mna
(b)ν†
n + ∑

n≥1

ηµν pµ
(a)V

ab
0n a(b)ν†

n +
1
2

ηµν pµ
(a)V

ab
00 pν

(b)

)

.
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Summation over the Lorentz indicesµ ,ν = 0, . . . ,25 is understood. The operatorsa(a)µ
m ,a(a)µ†

m

denote the non–zero modes matter oscillators of thea–th string (they are related to the previously
introducedα oscillators bymam = αm), which satisfy

[a(a)µ
m ,a(b)ν†

n ] = η µνδmnδ ab, m,n≥ 1, (8.3)

p(a) is the momentum of thea–th string and|0, p〉123≡ |p(1)〉⊗ |p(2)〉⊗ |p(3)〉 is the tensor product
of the Fock vacuum states relative to the three strings.|p(a)〉 is annihilated by the annihilation

operatorsa(a)µ
m and it is eigenstate of the momentum operator ˆpµ

(a)
with eigenvaluepµ

(a)
. The nor-

malization is

〈p(a)| p′(b)〉 = δabδ 26(p+ p′).

In order to get〈V3| one has to use thebpzconjugation properties of the oscillators

bpz(a(a)µ
n ) = (−1)n+1a(a)µ

−n .

〈V3| is thebpzconjugate of|V3〉 (the bpzconjugation does not alter the order of the oscillators).
In eq.(8.1) the LHS represent the contraction of two bra’s with two ket’s. The result is a bra from
which bybpzconjugation one obtains|Ψ1 ⋆Ψ2〉.

The coefficientsVab
nm contain all the information about the star product and one needs to know

their explicit expression. To this end we compute the Neumann coefficientsNab
nm, which are related

to them in a simple way. For any three string fields we require that

〈 f1◦Ψ1(0) f2 ◦Ψ2(0) f3 ◦Ψ3(0) = 〈V123|Ψ1〉1|Ψ2〉2|Ψ3〉3

A simple way to exploit this is to consider the string propagator at two generic points of the disk
(see above). The Neumann coefficientsNab

NM are nothing but the Fourier modes of the propagator
with respect to the original coordinatesza.

Here, for simplicity, we only deal with the Neumann coefficients not involving the zero mode
p(a)

µ . The Neumann coefficientsNab
mn with n,m> 0 are given by, (Leclair et al. 1989),

Nab
mn = 〈V123|α(a)

−nα(b)
−m|0〉123

= − 1
nm

∮

dz
2π i

∮

dw
2π i

1
zn

1
wm f ′a(z)

1
( fa(z)− fb(w))2 f ′b(w), (8.4)

where the contour integrals are understood around the origin. It is easy to check that

Nab
mn = Nba

nm,

Nab
mn = (−1)n+mNba

mn, (8.5)

Nab
mn = Na+1,b+1

mn .

In the last equation the upper indices are defined mod 3.
We will not do it here, but it is easy to make the identification

Vab
nm = (−1)n+m√nmNab

nm, (8.6)
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and to establish the fundamental commutativity relation (written in matrix notation)

[CVab,CVa′b′ ] = 0, (8.7)

for any a,b,a′,b′, whereC is the twist matrixCnm = (−1)nδn,m. Similar commutativity relations
can be obtained also for the coefficient matrices involving the zero modepµ .

Next, let us consider the ghost vertex. To start with we define, in the ghost sector, the vacuum
states|0̂〉 and|0̇〉 as follows

|0̂〉 = c0c1|0〉, |0̇〉 = c1|0〉, (8.8)

where|0〉 is the usualSL(2,R) invariant vacuum. Usingbpzconjugation

cn → (−1)n+1c−n, bn → (−1)n−2b−n, |0〉 → 〈0|, (8.9)

one can define conjugate states. It is important that, when applied to products of oscillators, the
bpzconjugation does not change the order of the factors.

The three strings interaction vertex is defined again as a squeezed operator acting on three
copies of thebcFock space

〈Ṽ3| = 1〈0̂|2〈0̂|3〈0̂|eẼ, Ẽ =
3

∑
a,b=1

∞

∑
n,m

c(a)
n Ṽab

nmb(b)
m . (8.10)

The Neumann coefficients̃Vab
nm are given by the contraction of thebc oscillators on the unit

disk. They represent Fourier components of theSL(2,R) invariantbc propagator (i.e. the propaga-
tor in which the zero modes have been inserted at fixed pointsζi , i = 1,2,3):

〈b(z)c(w)〉 =
1

z−w

3

∏
i=1

w−ζi

z−ζi
. (8.11)

Taking into account the conformal properties of theb,c fields and inserting the zero modes at zero
ζi = 0, we get

Ṽab
nm = 〈Ṽ123|b(a)

−nc(b)
−m|0̇〉123 (8.12)

=

∮

dz
2π i

∮

dw
2π i

1
zn−1

1
wm+2( f ′a(z))

2 −1
fa(z)− fb(w)

f 3(w)−1
f 3(z)−1

( f ′b(w))−1.

It is straightforward to check that

Ṽab
nm = Ṽa+1,b+1

nm , (8.13)

and

Ṽab
nm = (−1)n+mṼba

nm. (8.14)

Moreover, it is possible to prove that, see for instance (Bonora et al. 2003),

[X̃ab, X̃a′b′ ] = 0. (8.15)

where, once again,̃Xab = CṼab.
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