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Quantum topological defects Juan Mateos Guilarte

1. Introduction

The concept of solitary waves was brought to light in 1834 by the Scottish civil engineer Scott
Rusell, chasing a single “wave of translation" on a horse along a channel in Edinburgh. Unlike
ordinary dispersive waves, these non-linear waves do not fade away and they preserve their shape,
size and speed even they undergo weak perturbations. A major step forward in the conceptual
understanding of this counterintuitive phenomenon was the discovery of the Korteweg-de Vries
equation in 1895 which admits solutions exhibiting the features of solitary waves. Moreover, there
are stronger relatives of solitary waves among the solutions of the KdV equation -the solitons-
which even survive collisions amongst themshelves. During the celebrated sixties of the past cen-
tury, a powerful technique was invented, the inverse scattering method, which allowed the solution
of many “integrable” non-linear partial differential equations in the class of the KdV equations. For
a recent review on the concept of soliton associated with all these non-linear equations, see, e.g.,
Reference [@].

Our theme in these Lectures, however, is the analysis of the quantum descendants of these
classical non-linear solitary waves/topological defects in one and two spatial dimensions. In 1961,
Skyrme [[] discovered that a certain extension of the non-linear sigma model, the so called Skyrme
model, has both 3D dispersive and solitary waves among their solutions. Because the model at-
tempted to describe the low-energy hadron phenomenology, and because solitary waves are formed
from a heavy classical lump of energy, the idea is natural: upon quantization, dispersive waves
become light mesons -pions- and solitary waves give rise to heavy baryons -protons, neutrons-.
This bold idea prompted the task of investigating solitary waves in the quantum domain, mainly
performed in [B], [A], and [H] as far as our Lectures are concerned. The main examples were re-
ported and the conceptual framework was extraordinarily well clarified in [H]. We insist that there
are many more authors who contributed to developing this research topic. Some of them took an-
other approach, and there are many very good reviews in the Proceedings of several Schools, and
even important old and modern books. Most of the pertinent bibliography is collected in Refer-
ence [d]. Here, we only cite the papers and reviews with an approach close to ours: the #/weak
coupling/semiclassical expansion.

The plan of these Lectures is to describe a method for computing one-loop fluctuations in
one-dimensional and two-dimensional topological defects based on the heat kernel/zeta function
regularization of ultraviolet divergences. The method began in Reference [B] with the calculation of
the one-loop mass shift to the masses of the paradigmatic sine-Gordon and A q);‘ kink as a test. In the
same paper, some of us calculated the one-loop mass corrections to other two-scalar field theoretical
models with only one field but with insufficient information about the kink fluctuation spectrum to
apply the conventional Dashen-Hasslacher-Neveu approach. In References [H] and [[d], the same
group generalized the method to provide one-loop mass corrections for two-component topological
kinks: i.e., the models addressed have two scalar fields and the kinks considered are such that the
two components of the scalar field are not zero for the kink solution. The kink fluctuations of
such type of kinks are determined by non-diagonal Schrodinger operators and the only possibility
for managing the spectral information needed to compute one-loop mass shifts is the heat kernel
expansion.

Prior to our work, at the end of the last century, there had been a renaissance in interest about
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the problem of the quantization of classical lumps. The new impetus came from the subtleties
arising in the quantization of supersymmetric kinks. Several groups at Stony Brook/Wien, [[],
[I2], Minnesota [[3], and MIT [I4] addressed mixed issues in the problem by studying the im-
pact made by using different types of boundary conditions - PBC, Dirichlet, Robin-, regularization
methods -energy cutoff, mode number cutoff, high-derivatives-, and/or performed phase shift anal-
yses, in connection with possible modifications due to the quantum effects of the central charge
of the SUSY algebra. There are several valuable reviews, of different character and scope, in the
literature on these developments: e.g., [[3], [Id], and [I].

The stimulus to our work on the quantization of solitons came, however, from the discovery of
kinks in theories with two scalar fields living on a infinite line. In this type of model, there are often
solitary wave solutions such that the two scalar fields are space-dependent for the kink profiles, see
e.g. [[], [I8], and [E0]. The knowledge of the spectrum of these two-component kink fluctuations
is insufficient to profit from any type of Dashen-Hasslacher-Neveu approach. The only possibility
is to use the spectral zeta function obtained from the heat kernel asymptotic (high-temperature)
expansion. This framework was precisely chosen in the SUSY kink problem in Reference [I].

Kinks are one-dimensional topological defects, but extremely interesting two-dimensional ex-
tended structures were discovered by Abrikosov in Type II superconductors [2]. The phenomeno-
logical Ginzburg-Landau theory allowed the existence of magnetic flux lines when applied to this
type of superconducting materials. Relativistic cousins of Abrikosov strings exist in the Abelian
Higgs model and were proposed by Nielsen and Olesen in 1973, see [E3], as plausible candidates
as the basic objects in the early string theory approach to hadron physics. More recently Achucarro
and Vachaspati have discovered even more complex two-dimensional topological defects in the so
called semilocal Abelian Higgs model, the bosonic sector of electro-weak theory when the weak
(Weinberg, mixing) angle is 7 [Z4]. This model enjoys a symmetry group that is the direct prod-
uct of two groups: SU(2) ® U(1). The non-Abelian group SU(2) engenders a global symmetry
whereas the other symmetry generated by the U(1) factor is local (or gauge). Henceforth, Achu-
carro and Vachaspati christened the topological solitons of this system as semilocal strings. Given
the important rdle that these models play in our present understanding of the Standard model, it is
convenient to address the problem of studying the quantum behavior of these two-dimensional soli-
tons, sometimes referred to as ANO vortices or semilocal vortices because the vector (gauge) field
of these solutions is purely vorticial (rotational). This task was successfully accomplished in the
A =2 SUSY Higgs model independently by Vassilevich, [23], and Rebhan, van Nieuwenhuizen,
and Wimmer, [2d].

In the bosonic setting, however, without fermions to cancel a good deal of the bosonic fluc-
tuations, the problem is much more difficult. A good step forward towards this goal was given
in Reference [Z2] in which the authors calculate the energy of the fermionic ANO vortex fluctua-
tions. We profited from our experience with multi-component kinks to compute the one-loop mass
shifts of ANO vortices with a quantum of magnetic flux in a purely bosonic setting in [IR]. To this
end we used the heat kernel/zeta function regularization method, jumping painfully from one to
two dimensions. In [Z9] our calculations were extended to superposed vortices up to four quanta
of magnetic flux and we attacked the problem of computing one-loop mass shifts to the topolog-
ical solitons of the generalized Abelian Higgs model in Reference [BI]. We summarized all this
material in the Proceedings of QFEXTO0S5 and QFEXTO7 published in [BO] and [BX].



Quantum topological defects Juan Mateos Guilarte

One might think that this is a very narrow and highly focused subject. This way of thinking is
not completely true, for two reasons. First, knowledge of quantum field theories with topological
sectors other than vacuum sectors is not fully settled down, at least at the level of perturbation
theory around the ground state. Second, study of the quantum fluctuations around topological
defects is a problem in the kinship of very important physical phenomena, such as the cosmological
constant problem and the Casimir effect. Vacuum fluctuations (loop graphs) give rise to a non-zero
constant term in the Lagrangian of the Standard Model. Coupling of this Lagrangian to gravity
means that the constant term is a cosmological constant induced by the quantum fluctuations of the

0%, The Casimir

particle fields of an order of magnitude greater than the experimental value of ~ 1
effect is an even closer physical phenomenon. Vacuum fluctuations also play a central réle. Here,
the idea is to sum the effect of the vacuum fluctuations in the presence of some set up -parallel
plates, cylinders, spheres- measured with respect to the vacuum. The outcome is the appearance of
physical forces on the plates emerging from the vacuum.

Our goal in this report is to present an analysis of the quantum corrections to the mass of
topological defects developed in different one-dimensional and two-dimensional systems in the set
of References cited above in a manner as unified as possible. The contribution is divided into two
separate parts. In the first, we deal with one-dimensional relativistic scalar fields. We explain the
problem, the method of solution chosen, and the derivation of a compact formula for one-loop
kink mass shifts in a multi-parametric family of deformed linear Q(N)-sigma models. The A¢*
model is a member of this family for only one scalar field: N = 1. Our approach is tested in this
prototypical case, and detailed computations are offered. We also describe the results achieved in
another member of this family with N = 2 scalar fields having degenerate families of topological
kinks. The first part ends with an analysis of the kink one-loop mass shifts of the topological kinks
in the massive non-linear S2-sigma model studied in Reference [B3]. Again the model is embedded
in the family of linear O(N)-sigma models, taking the formal A — oo in the case of N = 3 scalar
fields, a process that ends with a non-linear field theory. Following [B4], we compute the mass shift
using the Cahill-Comtet-Glauber formula, see [H].

Part two is devoted to understanding the quantum fluctuations of semilocal strings and Nielsen-
Olesen vortices. The action of the semilocal Abelian Higgs model is considered when the space-
time is the (2 + 1)-dimensional Minkowski R?!. The mix of local and global symmetries, the
Higgs mechanism in the ’t Hooft renormalizable gauge, and the Feynman rules are discussed.
We then go on to study the very rich moduli space of topological soliton solutions, all of them
having vorticial vector fields. Numerical solutions of the first-order field equations arising at the
critical point between Type I and Type II superconductivity are calculated in the case of circular
symmetry. These planar solitons become strings seen from (3 + 1) dimensions. The next task is an
analysis of the semilocal self-dual vortex fluctuations and the subsequent vortex Casimir and mass
renormalization energies. These ultraviolet divergent quantities are regularized via the spectral
zeta function of the second-order fluctuation operators as in kink cases. Unlike kink cases, the
pertinent differentials are 6 x 6- Matrix second-order PD operators. In the background gauge there
are fluctuations corresponding to the Higgs field, a real Higgs ghost field, a complex massless
scalar field, and the two polarizations of the massive vector field. There are also fluctuations of
the Faddeev-Popov ghost field that restore unitarity by compensation of the real Higgs ghost field
fluctuations. The heat kernel expansion allows us the calculation of the one-loop vortex mass
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shift in terms of Seeley coefficients and incomplete Euler Gamma functions. Finally, we provide
numerical results that suggest the breakdown of the classical degeneracy of the semi-local vortices
in favour of the embedded Nielsen-Olesen vortices.

2. Scalar field models in a line

In this first part we report the procedure of computing the one-loop mass shifts for one-
dimensional topological defects developed in [H], [B], and [[]. Ultraviolet divergences are reg-
ularized using heat kernel/zeta function methods - comprehensive reviews of these techniques are
[BY], [BE], [BD]- and the models considered belong to (1+1)-dimensional scalar field theory. We
shall always deal with topological kinks, but in a particular model of N = 2 scalar fields we must
struggle with the problem of studying fluctuations of a degenerate-in-energy continuous family of
kinks.

2.1 Deformed linear O(N)-sigma models

We shall focus on a multi-parametric family of deformed linear O(N)-sigma models. The
target (isospin, internal, - --) space is RV. Let y,,a = 1,2,---,N, denote the coordinates of a point
in RV. The (multi-component) scalar fields are maps from the (1 + 1)-dimensional Minkowski
space to the target space: y,(y*) € Maps(RY! RY). Here yu, M =0,1, denote the coordinates of
a point in the Minkowski space-time R''!. We shall use the following conventions for the metric
and volume element:

YWy =5 =yt ="V yuyv : g = guv = diag[1, —1]
OXa 9Xa OXaOXa OXaOXa

dy* = dyod : S = -
Y Yo dyH dyy  dyo dyo  dyi Iy

The action governing the dynamics of the deformed linear O(N)-sigma model is:

1 s 9y dxe A Y m?\’
S[lellv"'v%N] = E/dy = ay'u ay” _5 ;Xa%a_T

N
- Za Zb Aab%azxg - Z mﬁla%a
a< b a=1

We choose a system of units where the speed of light is ¢ = 1, but we keep % explicit because
we shall work in the framework of A-expansion. In this system of units the dimension of 7 is
mass xlength, [A] = ML, whereas the dimension of the fields and parameters are:

1

[Xa] =M>L> ) VL] = M’a ] =ML ’ [m] = [md] =L

Defining non-dimensional coordinates, fields, and coupling constants

m \/I )va m(21
xH = \ﬁy“ 7 Oa(xH) = 77&:@“) ; Oabp = Tb ; o, =
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the action reads:

2 1 N 3 9 3
S[‘Plv(plv"'a(bN] = mT/dxz {22 OxM af# V(¢a;6ab763)} (21)

2
V((Pl(xu)a‘PZ(x#) ) N x“ (Z ¢a¢a ) + ZaZb Gab¢a¢b + Z Oy ¢a¢a
a<b a=

Besides the usual m parameter, which sets the length scale of the system, and the A, which sets

. . . . N(N+1)
the strength of the isotropic quartic couplings, there are ———

non-isotropic quartic couplings o,
and N ¢ parameters giving possible quadratic anisotropies !. The rationale behind the choice of
this family of models is as follows: the set of parameters o,;, = 6> = 0,Va, b corresponds to the
linear O(N)-sigma model. In this case, there are N — 1 Goldstone bosons, owing to the spontaneous
symmetry breaking of the global O(N) symmetry. Goldstone bosons do not exist in (1+ 1) dimen-
sions, see [BH]. Even if we were to start from the linear O(N)-sigma model, the (1 + 1)-dimensional
infrared asymptotics of these massless fields would generate anisotropic quartic and/or quadratic
terms, such that no global O(N) symmetry (or any of its continuous subgroups) would remain.
Note that no cubic or linear terms in the fields are allowed because the discrete subgroup lev of

O(N) generated by the internal reflections ¢, — —¢,, Va, would be explicitly broken.

2.2 Vacuum fluctuations

In the parameter range

2

1— 1 —o?
1>c§>—oo, Gab>max<1 (1+2c;,,,)1 Gg(1+2oaa)>>0,a7éb, 1+20,, >0
a

2
b

the constant configurations

(a) (a) | 1_62 (a)
(¢1V :Ou"'7¢ay == H_Toa;"',q’]{l/ :()), a:1,2,~--,N
aa

are stable solutions of the time-independent and static field equations
av
7_2(15(1 Z oo+ ¥ Gab‘Pb +G =0
9¢a = a<h

These non-zero constant solutions are thus the 2N classical minima of the system. In the quantum
domain only the absolute minima

2 2 2

¢ o-(2—0f)+20, 1—-o07
V(gY) = =e : ce SO /dZV 0
(¢C ) 2(1+2GCC) ? X 1+26€C ) )

are the true vacua. Tunnel effects triggered by bounces turn the relative minima V (¢, <“)) > V(Y (C))
into false vacua [Ed]. The ground states are built from at least one pair of minima (more than a pair
of absolute minima could exist) and the lev symmetry is broken spontaneously (at least) to Z’zv -1

A warning: despite the notation, the possibility that some > might be negative will not be ruled out.
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Let us denote space-time coordinates in the form xop = ¢, x; = x and let us consider small

fluctuations ¢,(r,x) = V(C + N (t,x) around a true vacuum. The action at the quadratic order is
dan, an d
2 v 2 a a 3

S [¢a ’1717 7nN 22,/61 |: Jt ot na< Ox 2"‘.%)776:] +ﬁ(n ) (2.2

where
9%V 1-0o? 9%V
2o | =2 ¢ (14+0,)—(1-0> 2= ——| =4(1-0’
:ua aq)az V(C) (1+2GC(;( ) ( ll)) ? a#c ) IJ'C aq)CZ V(() ( C)

are the particle masses.
The normal modes of these system with a infinite number of degrees of freedom are determined
in terms of the eigenfunctions of the differential operator:

2
—dete 0
0 — 2 0 1.
Ko = : dx2: & . : : f,f(X)Iﬁelk”x
0 dxz—HLN

To avoid problems with the continuous spectrum, we choose a 1D “box" of very large but finite

length [ = and we 1mpose periodic boundary conditions: f*(x+1) = f*(x). Ko therefore acts

f’
on the Hilbert space L> = @Y_, L2(S') and the eigenvalues
2
Kofy(@) = op(e)fix) s oplk) =ki+hg o k=T, neZ

are obtained from wave numbers labeled by the integers.

Classically the system is tantamount to a infinite numerable set of uncoupled oscillators with
frequencies given by the eigenvalues of Ky that become quantum oscillators upon canonical quan-
tization. The free quantum Hamilton

A% Zzwa . < (kn)ba (k)+1) (2.3)
a 1 neZ 2

is given in terms of the creation and annihilation operators, [l;l (kn), b, (k)] = OucOmn: the quantum
disguise of the Fourier coefficients. Note that H(?) is proportional to %i. In general, the operator
H@?) coming from the 2 — jth-order fluctuation term in the expansion of the classical action is
proportional to /. Therefore, result (Z3) is obtained in the first-order (one-loop) of the fi-expansion
(loop expansion).

The vacuum state, annihilated by all the destruction operators, is a coherent state, and is an
eigen-state of the field operator:

~ ~ ~ 1 2
ba(kn)\V;O>:0,Va,an ) (])a’V;O):O,a?éC, ¢L’V70>: 1+2GC | ’0>

It is clearly a ground state of the quantum system with energy:

m 1
2
TrLZ KO

h
2¢/2

(0;VIA®|V;0) =
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2.2.1 Spectral zeta function regularization, the Ky-heat equation kernel, and the Kj-heat
trace

We usually measure the energy of any state in QFT with respect to the vacuum or ground state,

hm
2V2
phenomena such as the Casimir effect or the cosmological constant problem have taught us that we

or, equivalently, we set H?|V;0) = ML Tr K 1 |[V;0) as the zero-energy level. Important physical
must be cautious about using this calibration. In particular, in our system there are other topological
sectors and it is convenient not to set the energy of the ground state in the vacuum sector to zero a

priori in order to allow a comparison with the energy of the ground state in the kink sector.

1
The problem is that ;’—\’}%TrLz K is a divergent quantity that, one way or another must be regu-

larized. Several regularization methods have been proposed in the literature: cut-offs in the energy
or the number of modes, high-derivatives, etcetera, see, e. g., [B], [@], [[4], [[3], [[A]. As in Ref-
erence [, however, we shall regularize the vacuum energy using the zeta regularization method.
Instead of computing the L2-trace of the square root of the K, operator, we calculate the spectral
zeta function -the —s-complex power of the Ky operator:

2

N
ko (s) = Tr2Ky* = Z Z Z ., seC . 9

ﬂz
a= ln——oo 2 +

The series in (4) are convergent only if Res > % although conventionally they are analytically
continued to the whole s — complex plane to find the Epstein zeta functions, all of which are mero-
morphic functions of s, see [BA]. The central idea of the zeta function regularization method is to
assign to the divergent vacuum energy the finite value

<O;V|<g(z)>‘s|v;o> 24~ lhu< > Cko (5)

at a regular point s € C of {x, (s). i is a parameter of dimension L~! necessary to keep track of the
right dimensions.
The analysis of the associated Ko-heat equation kernel

d
(55+60) KioleoiB) =0+ Kigloi0) = 6—)
will help us to unveil the structure of (g, (s) as a meromorphic function. Here § = kh—”; is a non-

dimensional inverse temperature because the dimension of the Boltzmann constant in our system
of units is [kg] = ML. In terms of the eigenfunctions and eigenvalues of Kj, one can express the
heat kernel in the form:

Zintey) B2 1 0] x—y 4w g
(K, (x.3: ) = Ze‘“‘“Ze' Ve P :z®[o]<zlzz’”a§em

nez

The notation used for the Jacobi Theta function, see e.g. [BY], is:

. n az 1
C) (z]t) = Zezm("”)(”b)*%f) ; a,b:O,E ,zeC , 7eC,Imt>0

a
b

nez
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The “modular” transformation 7 = z B— —— =i 4ﬂﬁ allows us to write the heat kernel in the
form:
S o] ey, P&
e Alx—y),. —Bu2
trKg, (x,v; B) = 4C) —i i——)- ) e P

because the Jacobi Theta function is a modular form of weight % (alternatively, this equivalence
could be derived from the Poisson summation formula). There are thus two ways of writing the
Kp-heat trace (related by the modular transformation):

1

Tr.e PRo = ¥ dxtrKg, (x,x; ) =

2

0

an? 2

0|l Zefﬁua — Ze Pui =B

) 0 I X g _R 2
Tr 26_BKO — . @ efﬁ:ua — e_“aﬁ e 4‘3}1
t \Vanp [0] 47Fﬁ Z’l NZY a;,,;w
The Mellin transform of the first form gives the sum of Epstein functions:

N 2

Gk, (5) / ﬁﬁSITrzeﬁKOZEsua i :Z s/.ta

a=1
However, Mellin’s transform of the Poisson inverted version

1N 2 fn
Sols) = / Pr Zeuaﬁ(mrze )

1 n=—oo

N 1 al\ 12
:Jzﬁlr(s)'Z<FL 12+2 )3 <l> Kl/z-s(Zuunl)> . @259

a=1 neZ/{0}

identifies the spectral zeta function as a series of modified Bessel functions of the second type, see

[BA]. Moreover, formula (Z3) shows that there are poles of {k,(s) only at the poles of the Euler

Gamma function I'(s — 1),

1135 7 2j+1 .
S_E’ 57 57 57 57”'7 D) PR ]EZ 9

because K| /2_5(2/.Laln) are transcendental entire functions, i.e., holomorphic functions of s in C /0

with an essential singularity at s = co. The behavior of the heat trace at high-temperature is deter-
mined by the asymptotic formula up to exponentially small terms:

0 12 _2 e
=Y By 14O F)

Q)
4m ﬁ nez

0li—

which also characterizes the behavior of Tr;> e %0 for very large 1.
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2.3 Kink fluctuations
2.3.1 Topological kinks

Because of the ground- state structure of the deformed linear O(N)-sigma model, there are
other static solutions that are not homogeneous. These classical lumps are “one-component topo-
logical kinks" (TK1) We shall refer to this type of kinks in this way because: 1) They are topolog-
ical. Their profiles connect one ground state with another when plotted from x = —oo to x = 0. 2)
They have only one component of the iso-vector field different from zero.

In order to find their profile, one simply looks for solutions of the field equations such that all
the field components except the one accommodating the absolute minima are zero: ¢X © = 0,Va#
c. Under this assumption the classical energy can be written in the Bogomolny form:

= /ai(‘j’f#z(vwa V(or )i /@ g2 (V00 -v(or)

Therefore, the solutions

{df)(x):i(pc tanh[‘l'; (x —x0)]

C

of the first-order equations

(fi)c = i\/z (V(¢c>—V<¢CV“‘>>)

are absolute minima of the energy that solve the static second-order field equations. TK1 kinks are
thus space-dependent solutions that interpolate between the two ground states, reached by the kink
in different components of the boundary of the spatial line at infinity. They have finite energy,

3 oo

Ef =27 | x|Vl vl =

ﬂ 1 m3
V2A J- 3

V1—06222 ’
and their energy density is spatially distributed. Despite these features these classical lumps are

stable because of topological reasons: they belong to topological sectors disconnected from the
vacuum sectors in the configuration space.

2.3.2 Small kink fluctuations

Our goal is to study these sectors in the quantum domain. We start from the fact that the quan-
tum descendants of TK1 kinks are the ground states in the topological sectors. Small fluctuations
around TK1 kinks,

0u(1,%) = 95 (x) + Ma(t, %)

are governed by the quadratic action

[8175, 8na

3
dt ot Kna| +0(7) ’

(0K Wi ) = 1 [

10
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where the second-order fluctuation operator is a diagonal matrix of Posch-Teller Schrodinger oper-
ators :

2 .
—iﬁ+u%—clc~sech2(%x) 0
: C : :
K= 0 7;7 + p? ,,uc -sech?[Kex] ... 0
2 i .
0 f% +/.L,%,chC~sech2[”—2‘x]

The bottom of the wells with respect to the thresholds u? are respectively: — ‘LL and —c,e =

—2(14 04c) <¢c
Like the vacuum fluctuations, the normal modes of kink fluctuations are obtained from the

eigenfunctions of the K operator: K, f(x) = &2(n) f%(x). We impose periodic boundary conditions
fe(x+1) = f9(x) to escape the problems of the continuous spectrum, and K also acts on: 1> =
N 12(ql
_1 L3 (SY).
a=1"a

The spectrum is slightly different for the operator acting on fluctuations along the TK1 kink
orbit:
d2
T dx2
which is summarized in the next Table.

K. = T f,uC sechz[‘uc x|

Eigenvalues Eigenfunctions

£2(0) =0 f§ (x) = sech’[5a]
€2(3) =312 f5(x) = sinh[&ex]sech?[4ex]

e2(k) =2+ p2 | f£(x) = e*(3tanh?[Eex] — 1 — %iktanh[%x] - %kZ)

Table 1: Spectrum for the Hessian operator acting on fluctuations along the TK1 kink orbit

There are two bound states, one of zero eigenvalue due to the breaking of spatial translation
invariance by the kink, and scattering states with thresholds at €2(0) = 2. From the scattering
eigenfunctions one reads the phase shifts:

3uck

x%/\:ﬁ:oo
Bl G — 2k

700 ikt 58 (k) - O.(k) = —2arctan

The periodic boundary conditions select the even ground states and force the momenta to satisfy a
transcendent equation:

2 2 3ucky
kl + 6.(k) =2nn , , kn—lnn:l-arctan”g‘izk% ; ne’

Although the solutions form an infinite discrete set, they can only be identified graphically. The
physicist’s loophole is to work with very large / such that the information about the continuous

11
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spectrum is codified in the spectral density:

1 dé.(k) 1 2
k = — = — c
P (k) = (I =g ) = —2# <k2+u3+4k2+u3>

The operators acting in the orthogonal directions to the orbit, a # ¢, are of the type:

d2 &x] 14 Oy
1420,

Kiy=— 2 +/.La cac-sechz[ > , caC:2(1—GC2)

)

again of Posch-Teller type, but a with non-null reflection coefficient in general. To describe the

spectrum we define the parameter A = 115:%‘““ + i.
cc

Eigenvalues Eigenfunctions

2(a_ (il 1V)2 .
€2(j) = (uf - “(Ai”) F2(x) = [sech(Eex) 342 F [+ 2a,— j, 4 — j+ A3 L (1 + tanh( 1))

e2(k) = k* + u? fo(x) = [sech(4ex) /%o Fi [§ —ik+A, 3 —ik+A, 1 —ik; 4 (1 + tanh(5x) )]

Table 2: Spectrum for the Hessian operator acting on orthogonal fluctuations to the TK1 kink orbit

The integers j=0,1,2,---;I[A— %] label the eigenvalues and eigenfunctions of the integer part
of the A + % bound states. There are also scattering eigenfunctions. Both bound states and scatter-
ing eigenfunctions are Gauss hypergeometric functions [EJ] times some power of the hyperbolic
secant.

From this information, we obtain the reflection and transmission coefficients, as well as the
phase shifts, the transcendent equation for momenta complying with periodic boundary conditions
(PBC), and the spectral densities:

[(3—ik+A)(5—ik—A) T, (k)T(1 — ik)[(ik)

Talk) = I'(1 —ik)[(—ik) Rl = (3 —A)T(3+A) ’
S.(K)=6;(K)+6,(K) +  8}(K) = jarctan <112((7;?a(("]3)i’j;a(("]3))> ,
1 ds,
knl +8a(kn) =27tn P, (k) = 5 (14— ()

2.3.3 Spectral kink zeta function regularization

Let us assume, temporarily, that all the eigenvalues orthogonal to the TK1 kink orbit are posi-
tive: €,(j) > 0,Va. This means that the TK1 kink is isolated in the configuration space and stable.
We expand the small kink fluctuations in a basis in L? formed by the eigenfunctions of K:

na(tXZW{Z \/2(3:7( o(j) e el 4 B () efeal) )fa()

1 ; ie (K2
+ B, (k, x —ig,(kn)t pxa + B, (k, ig(k;)t ra
L ey (Balha)” e 70+ Bl 0 )

12
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We denote here the number of even bound states in the direction of component a as Nj(a) and
remark that the zero-mode eigenfunction in the direction of the kink orbit ¢ does not enter this
formula because zero modes only contribute at higher orders in the loop expansion.

Promoting the coefficients of the expansion to the quantum operators

[le(kn),B¢( m)] 6a56mn ) [BT(J) ( )] 606611

one obtains the free Hamiltonian in the kink sector, assuming ortho-normality and completeness of
the chosen basis:

Ny, (a) A 1
€.(J +) ek, ( (kn)B, (k)+>
- 7L L el (B+3)+E 2
The ground state in this sector (no kink fluctuation at all) is also a coherent state

Ba(ka)|K;0) =0, Va, Vky;  GalK:0)=0,a#c, OclK;0)=+¢"" )tanh[“‘ (x — x0)]K;0)

The kink ground-state energy is divergent

ek
— 1T
N

but we shall regularize it by means of the zeta function prescription: let us take the value of

(0:K] (A®) " |K;0) =2y (“2>STrLzK =27 ‘fw< ) Sk (5)

at a regular point s € C of {x(s). The problem is that, since the wave numbers k,, are determined

(0;K|A?|K;0) =

by a transcendent equation, there is no way of writing the Tr as any manageable series. We shall
rely on the less rigorous (physicists) formula:

. N (No(a) 4 o0 1
Ck(s) = Trp K = Z (Z &()) ‘F/_oo dkPKaa(k)W> 3

a=1 \_j=I1

where in the / = oo limit all the bound states Ny(a) = N, (a) + N;,_(a) must be accounted for and
the “sum" over the continuous spectra must be weighted with the appropriate spectral density.
As in the vacuum sector, there is the K-heat equation kernel

d
(55 +K) Ketei) =0 . Kelxi0) = 8x-)
solved for very large [ by:
N Np(a oo
3 1 dk k2+
trKK(x)’ﬁ Z[Z ) ﬁ£<>+g N()(fk()) fk() /Jg)] )
where N, (k) is a normalization factor that depends on the wave number. The heat trace reads:
BK UERG Bea(j o B +ug)
- i “HM¢a Ha
Trjze = L dxtrKK(x x;B) az:: Z e —1—/ dkpk,, (k ,

which can be used to determine the kink spectral zeta function via the Mellin transform:

Le(s) = F(ls) /0 " dB Trpe BK

13
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2.3.4 High-temperature expansion of the K-heat kernel and truncated zeta functions

We have met two levels of information concerning the spectra of small fluctuations. The
spectrum of vacuum fluctuations is fully known and it is possible to analytically determine the
zeta function regularization of the sum over eigenfrequencies in terms of (famous) meromorphic
functions. This possibility fails dealing with fluctuations around stable and isolated TK1 kinks,
but knowledge of the scattering data, bound state eigenvalues, phase shifts and spectral densities,
allows us to obtain formulas for the spectral zeta function in the form of integrals (rather than
series).

The situation is less favourable in the following three cases:

1. There exist one or several zero modes but no negative eigenvalues in orthogonal directions
to the TK1 orbit: &,(0) =0, a # c. The TKI kink is stable but degenerated in energy with
a k-parametric family of k-component topological kinks (TKk), also stable. & is the number
of non-translational zero modes.

2. There exist one or several negative modes but no zero eigenvalues in directions orthogonal
to the TK1 orbit: &,(0) <0, a## c. The TKI kink is unstable and decay to some stable and
isolated two-component topological kink (TK2).

3. There exist one or several zero modes and one or several negative eigenvalues in directions
orthogonal to the TK1 orbit. Isolated or degenerated families of TKk stable kinks arise.

The outcome is the same in these three situations when multi-component stable kinks arise: K is a
non-diagonal matrix Schrodinger operator and the spectrum is unknown.

To cope with the problem of multi-component topological kinks we write the K-heat equation
in the form

<aaﬁ +K0—U(x)> Ki(x,y: ) =

and look for a solution based on the Ky-heat kernel:

KK(xa}Cﬁ):CK(xa)’;B)KKo(xJ;ﬁ) ’

where the density Ck (x,y; ) satisfies the infinite temperature condition Ck (x,y;0) = Iy and the
transfer equation:

X 2
(9813 ﬁyaax 88x2> Ko (5,71 B) = Z Uac(x)Cr,,, (x,y: B) + (15 — 47 )C,, (x,y:8) . (2.6)

Then, we seek a power series solution Ck,, (x,y; ) = Yoo ¢ (x,y) " of (Z8), which is tantamount
to the recurrence relations

b acah 82 ahl N b
ney” (6,y) + (X —y) =57 (x,y) = 8”2 (03)+ Y Uae(x)ei” 1 (x,3) + (M — Ha e 1 (x,)

c=1
2.7
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In fact, only the densities at coincident points x = y on the line are needed. We introduce the
k .ab

notation ®)C% (x) = lim,_,, % (x,y) to write the recurrence relations between these densities and

their derivatives in the abbreviated form

1 N , .
Wt () =~ {(k”)CZlil () + ¥, Uael@)VCi2 1 (0 + (1 — )Vl (X)} )

n c=1

to be solved starting from: (N4 (x) = §*°8,;,. The n-th density is determined in terms of the
(n— 1)-order coefficients, their second derivatives, and the potential matrix elements U, (x).
The solution of these recurrence relations is achieved by using a symbolic program run in
Mathematica. We list the lower densities up to the third order:
k)

. d* Uy,
" (%) = Uao(x) , Uy () = =
1

SUR)+ 5 (8 — 1) Uan ()

(x)

a 1
§(x) = 2UG )+

= o (070 00) 1 (000) )
N

+ %(u& — 1) (U )+ 203, ) +é (Z (12 = 1)U (¥) Ui () + (122 — uﬁ)Uab(x)> |
c=1

There is an interesting point about these densities: the diagonal components are the infinite con-
served charges of some matrix KdV equation, see [E]. Consider the family of differential operators

2
K(ﬁ): ox 2+d1ag(;,t ,"',‘LLI%/)—U(X,B),

where the family of potentials solve the matrix KdV equation:

3
Y () P

B dx 0 Ers
The B-evolution of K(f3) can be expressed in the Lax pair form
oK 9’ d 0
ﬁ-F[K,M}:O , M(ﬁ):4ﬁ 3<U8x+8xU> +B(B)

such that it is iso-spectral. The diagonal densities codify the spectrum of K. Ergo, ¢%(x,x) # f(B).
Integration of the densities gives the asymptotic expansion of the K-heat trace:

() .L
N —Bu;

TrLze_BK:tr/ dxKg(x,x;B) = Z Vin & Z ciK ﬁ”" , K] =lim dxci(x)

n
oo )L
2

2.3.5 Truncated zeta function

Finally, we split the Mellin transform

Cils) = L / T appr (Trse K n0> _ (1S) /0 " g (Trpze P —no) + Bi(s:0)
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into meromorphic and entire parts by choosing an upper limit in the -integration to be optimized
in each particular problem. The number of zero modes, 7, must be subtracted. Truncation of the
number of terms kept in the meromorphic part

* Y& aa n+s—1/2 b»ua] no
Cx (530, No) = (le (bu2)stn=172  bss

provides us with a practical formula for the spectral zeta function to be used in our computations
in terms of the incomplete Euler Gamma functions: y[z;c| . The two free parameters b and N, are
correlated: the larger b, the greater the Ny must be chosen to achieve good approximations.

The subtraction of zero modes that we have performed is a very tricky affair. We split the
improper integral into two parts:

I[no) = Ii [no) + I [ng] = l{%% [/ob dB " e P +/b°° B B! e_gﬁ]

We neglect I [ng] and regularize the divergent integral I; [no] for Res < 0 by assigning to it the value

of the analytic continuation of I%[ng] = IG) valid for Res > 0, to the whole complex s-plane.

h‘sF

2.4 One-loop kink mass shift formula
We shall now perform the renormalizations needed to tame the ultraviolet divergences, part of

which we have already regularized using the zeta function regularization method.

2.4.1 Kink Casimir energy: zero-point renormalization

The first renormalization consists of subtracting the vacuum zero-point energy. By analogy,
we shall call this quantity the kink Casimir energy. In the Casimir effect, the vacuum fluctua-
tions are subtracted from the zero-point energy around some geometrical set-up, e.g., two infinite
impenetrable plates.

The regularized kink Casimir energy is:

£E() = 26) - 21 =2 () 1 Gelo)— G )
The proper kink Casimir energy is the value of this quantity at the physical point s = —%:

NES = lim AES(s) =

Jim (b3~ Gl

Because s = —3 is a pole of both {x(s) and {x, (s), with different residua in (14 1)-dimensional
models, the kink Casimir energy is still a divergent quantity.
2.4.2 Kink energy engendered by mass renormalization

There are other ultraviolet divergences due to one-loop graphs that are controlled by the
normal-ordered of the quantum Hamiltonian. The contraction of two fields at the same point in
Minkowski space is the sum of a normal ordered product, all the creation operators placed to the
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left of the annihilation operators, and a divergent integral that in the normalization 1D “box" be-
comes a familiar divergent series:

dk 1 1 1

N ST ﬂgz (22 +p2)/2

0o () =1 §7(xH)  +8pg , dui=
The quantum Hamiltonian
2(h Y ad’aa% aqsaaéa ~op ~
Hy L — My oL H
), R o)

is normal-ordered by applying Wick’s theorem:

o N 52 N 52V
c = A+ 1—exp[—h25u§5 o
a=1

V]=s#+nY du:: :
507 PILRN T

+om)

a process that is equivalent, at one-loop order, to adding quadratic counter-terms to the Hamiltonian.
Regularizing the divergent coefficients of these counter-terms by means of the spectral zeta function
of Ko

l F(

Sus(s) =

a

Z CKOM (s+1)

we obtain at a regular point of (g, (s+ 1) the regularlzed contribution to the kink energy due to the
mass renormalization counter-terms measured with respect to the mass renormalization vacuum
energy:

NER(s) = hmZ Su2 /dx ( (0:K] : 6¢ K0y — (0:v]: OV |v;o>>

697
_ 22\ s +1) ¥ ;
B _lﬁw 2] < ) F(S) ;CKOW(S"F 1)/—é dXUaa(x)

The expression in the second line of the formula is derived from the fact that normal-ordered

products of field operators acting on coherent states select the ordinary product of the field config-
uration characterizing the state, see [B]. Note also that we have regularized the divergent graphs
using Cx,(s+ 1) instead of Ck, (s). The reason for this is the convenience of comparing the residua
of AES(s) and AEE(s) at the same pole: s = —3.

Finally, the one-loop mass shift formula is found by seeking the physical value of the s param-
eter:

AMg = lim (AEZ(s)+AER(s)) . (2.8)

s——1/2

2.5 N=1: the 1(¢*), model

We briefly describe the standard A (¢*), model. There is only one real scalar field and no
deformation parameters. The action is:

o= [x{ 3820 @un-1p) . en=oi=o

dxH dxy

17



Quantum topological defects Juan Mateos Guilarte

The very well known vacua and kinks of this model, as well as the differential operators governing

the small vacuum and kink fluctuations are written below:

? 2
%JF“ . OK(x) = ttanh(x—xo) , K=—1 14— O
X

1%
=41 Ky = — _—
¢ ’ 0 dx? cosh’x

Figure 1: (left) 3D plot of V as a function of both ¢ and x. The kink is also shown as a black line crossing
from one vacuum valley to the other. (right) Graphic of the potential well 4 — U(x) in the Schrédinger

operator K.

2.5.1 Kink spectral heat and zeta functions

Because the spectrum of K is fully known, both the kink heat function and all the Seeley

coefficients can be computed exactly 2:

T bk _ € ( R +\/4Tn(eﬁErf[\/l§]+e4ﬁErf[2\/l§])>

Var \ /B
n+1 2n—1
\/47[26” B2 co(K)=1, cn(K)zz(z(nlj—f)”) D

where Erf[z] is the error function. The exact kink zeta function and the truncated theta functions,

with the zero mode subtracted, are respectively:

Gi(s) = 557 ) aBB (e P -1)

1 I 1 2 11 3

= \/4771'].—‘(5‘) |:43F(s_2)+<3 12Fl[2 2+ 75

s s ¢ c n=1/
Gilssbn) = 1o [ BB1<FZn B2 1)

. 1 IY[ %4[)] No 2n+1(1+22n 1 )/s—i—n 1;4b] 1 .10,
T VaRT(s) \ @byt A @imDU gyl b

Ylz;¢] are incomplete Euler Gamma functions and »Fj[a,b,c;z] are Gauss hypergeometric func-

tions. We follow the notation of [EZX].

2In [B], these coefficients are obtained by integration of the densities solving the recurrence relations.
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2.5.2 One-loop A ¢*-kink mass shift

The limit s — —§ is very delicate: it is a pole of x(s). To take this limit properly we look at

the regularized formulae for s = —% + € and then allow € to go to zero:
hmo . (2u?\© T(e 2 1
N U T

2/ 2me=0\ m 1“(—z €)|3 (_%_,_8)47%
fum 3 3 2u? 01001 o3 1

— 2\/77[21‘1‘)% |:—+2+1 1—31117—2}7 [E,O,j,—§]+0(8)

h 3 2u?

__ hm [ 132 ﬂ] 7

2\/§7t8—>0 \@

(0,1,0,0

where , F ) [a,b, c;z] is the derivative of the hypergeometric function with respect to the second

argument. The same strategy is used with AEﬁ(s) to find:

2 47T
AE,1§ = 3hm — lim ,u T (&)
\/275 £—0 I'(—5+¢)

~ 3mmo . [1 0 2u? 1

= Zﬂnlﬁo[ +1n—1n4+(l//(1)—l//(—2))+0(8)]
_ hm 3 2u?

= zﬁng%[ +3ln—2(2+1)] ,

where y/(z) is the digamma function: i. e., the logarithmic derivative of the Euler Gamma Function.
Therefore, the divergences at the pole cancel exactly and we are left with the finite answer:

AMg = thrll/z (AEG(s) + AER(s)) = <2\1@ - ﬂf@> him = —0.471113%m
in perfect agreement with the Dashen-Hasslacher-Neveu result in [B]. We remark that the cancela-
tions above and those implicit in (Z) set finite renormalizations, such as the large mass subtraction
scheme, by imposing the condition that tadpoles vanish, see Reference [II].

From the sign of the correction we learn a qualitative fact about the global effect of the scalar
boson fluctuations on the kink. The kink energy density is the square of the derivative with respect
to x of the kink profile, whereas the kink energy is the area enclosed by this curve. The decrease
in kink energy due to kink fluctuations is tantamount to a small decrease in the area. Therefore,
the net effect is equivalent to a force from the right and another from the left exerted by the scalar
bosons on the kink in such a way that the kink profile shrinks slightly. Exactly as in the ideal
Casimir effect with two plates of infinite area.

As a test to prove the quality of the high-temperature approximation, we now write the result
for No =10 and b = 1. See [B] and [[] for full details:

n=2 Sﬂﬁ 4n-1

The answer departs from the right result in the four-decimal figure; a reasonably acceptable ap-

10
—1,4
AMg = — (o.19947 +y cn(K)Y[”’]> him = —0.471371hm

proximation. There are two elements, however, in formula (Z710) to play with: namely, the length
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b of the integration interval in the Mellin transform and the number Ny of terms in the series re-
maining. Figure 2 shows that these two variables are not independent. For a given value of Ny,
there is an optimum choice of b after which the approximate result (it comes from an asymptotic
series) rapidly departs from the exact result. There is no point in enlarging the integration interval.
Conversely, taking b longer forces us to increase Ny to achieve an acceptable approximation. These
remarks are particularly important for light-mass (less than one) particles. The reason is that in
such cases we need b to be large because, if not, too much would be neglected in the entire parts.

TrE#AX-1 E48 N
101 Zc_n(K)ﬂ"n—l
\ 4P "0
10
05F
05t
. ' B
05 10 15 2.0
-05
~051
-10 -10%

Figure 2: (left) Plot of the exact heat trace as a function of 8 with the zero mode subtracted. (right) Graphics
of the approximated formula, keeping No =2, Ny = 3, - -+, No = 11 terms.

2.6 N=2: the BNRT model

Next, we address a model with two real scalar fields. This field theoretical system can be seen
as the bosonic sector of an .4” = 1 supersymmetric Wess-Zumino model of two chiral super-fields
dimensionally reduced to (1 + 1)-dimensions (plus a reality condition in the fields), see [[3]. In-
teractions are derived from the simplest polynomial holomorphic super-potential accommodating
the second super-field. In fact, the super-potential was discovered independently by Bazeia, Nasci-
mento, Ribeiro, and Toledo (BNRT) [[F] directly in the (1 + 1)-dimensional field theoretical model
that we shall describe.

The following choice of parameters in the general linear Q(2)-sigma model

or—1
2 )

o 3
> >
o =0 , 0221—5 , Ou=5 , On=

leads to the one-parametric family of actions:

2
stonor] = 5 [ {3 (G2 + SR IR ) - J0Ren+ g0 - 1)

2\ 9x# dxy | 9xH Ixy

l+01p=20(c+1)

3 1-o? c—-2
- Jot it k(1200 D)eded+ 75 202
Quartic and quadratic anisotropies are induced by the positive real parameter 6 € R™.

2.6.1 Vacua and TK1 topological kinks

The four classical minima are degenerated in energy for any ¢ € R™. Henceforth, all the
classical minima are ground states, and there are “two points" in the vacuum moduli space.
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1. Vertical vacua:

v(® %40 1 1 3
=0, =+— ) V0, £t——) = ,
¢1 ¢2 \/% ( \/2?) {
such that the particle masses are
ul=2 1_7622(14-612)—(1—62) =20 w=4(1-03) =20
1 1+ 200, 1 ) 2
2. Horizontal vacua
7o) 1 7o) 1 3
¢] 2 ) ¢2 0 ’ V( 270) 8
such that the particle masses are
ul=4(1—of) =4 ;=2 1_7612(1+012)—(1—c;2) =o?
’ 1+ 2611

Therefore, there are also two kinds of one-component topological kinks, see Figure 5.

1. “Vertical" topological kinks:

0

d’ |9 30
—_— G _—
dx? t cosh? [\/gx]

1 c
OrD=0 . P =Eptanhly/ 5 (x—x)]
The vacuum and kink fluctuation operators are:
_ _ _2(40)
0 —4+20) 7 0
2. “Horizontal" topological kinks:
K 1 K
o7 (x) = :I:Etanh(x—xo) , () =0
The vacuum and kink fluctuation operators are:
& 46
KO: _W—i_é‘- 20 y K= dx2+4 coshx
0 -4 402 0

2.6.2 Fluctuation spectrum of horizontal TK1 Kinks

0
_;’722"‘62_@
X

cosh?x

We shall not discuss the vertical sector here; the main results can be found in [[]. And

it is more instructive to explain the horizontal sector. In the kink orbit direction, we meet the
Schrodinger operator of the A¢*-kink. There is no need of re-compute again the effect of the

fluctuations parallel to the orbit; we simply use the results of the previous model.

Fluctuations orthogonal to the orbit, however, are governed by the Schrédinger operator shown

above. We shall focus for a while on the case in which 6 =J € Z™ is a positive integer. The reason
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for this is that in this discrete set of models transparent (reflection coefficient equal to zero) Pésch-

Teller potentials arise:
J(J+1)
Kyp=——+J -2
2 dx? * cosh?x
The previously defined parameter A determining the number of bound states becomes A = J + %

2
and the threshold of the continuous spectrum is: 4% = J?. The spectrum of K», is summarized as
follows: ‘

1. The eigenvalues and eigenfunctions of the discrete spectrum are:
822(.]) = (2‘]_.])] ; j:071a27"'a-]

£e = —— f}<x>=ni:é(—"+u—r>tanhx) g

cosh’x dx cosh’ /x

There are J bound states with eigenvalues below the threshold starting from a zero mode.
The highest eigenvalue bound state sits immediately at the threshold of the continuous spec-
trum. These eigenfunctions are termed half-bound states and they always accompany zero
reflection coefficients. In the remarkable array of numbers that follows we have collected the
bound state and half-bound state eigenvalues up to J = 10.

1J=2J=3J=4J=5J=6J=7TJ=8J=9J=10
0 0 0 0 0 0 0 0 0
3 5 7 9 11 13 15 17 19
4 8 12 16 20 24 28 32 36
9 15 21 27 33 39 45 51
16 24 32 40 48 56 64
25 35 45 55 65 75
36 48 60 72 84
49 63 77 91

J

— o |l

64 80 96
81 99
100

2. The scattering states are also known and are listed below together with the pase shifts and
spectral densities.

d .
gk =+, fix)=1_, (—dx+ ptanhx> e
Im(IT,_, (p — ik)) 1 p
k) = 2arct P = — — —
32(k) aretan Re(I1)_, (p — ik)) ’ pa(k) 21 n;p“rkz

From this information, one derives the exact heat function:
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J 0o J
TrLzefﬁK = Z e B2I-)) 4 l/ dke*ﬁ(k2+J2) 1_% Z p
j=0 27 J—eo lp:1 p24Fk2
o

l J B>
ﬁ <\/B+\/éﬁl; e p Erf[p\/ﬁ])

as a sum of error functions. The coefficients of the heat function expansion are also easily calcu-
lated:

_ﬁJZ oo
Tr.e PK = Vir & Z cn(K ~z , co(K) =1
ot 2! 2 Byu(J) — By
K) = ——————J"-1 S > 1
(&) = G n z; N ( R =

They can be expressed in terms of Bernouilli numbers By, and polynomials By, (J).

These systems can be useful as patterns for other systems where no analytical information
about the spectrum is available and there is no hope of finding the exact heat function. The coeffi-
cients of the heat function must be similar for potentials with similar thresholds and areas (number
of bound states). Thus, it is important to know the behavior of the heat kernel coefficients in these
“integrable" cases. Considering n as a continuous variable u, the function

2u+1

In(u) = Qu—1) ,,ZP

is plotted in Figure 3 for three values of J. The peaks, as they should be, correspond to integer
values u = n, and the coefficients pass to zero when n = 12 for J = 2, n = 20, if / = 3, n = 30 for
J =4, etcetera. These are the orders at which the double factorial in the denominator dominates the
numerator, ensuring the convergence of the series despite the fact that the coefficients grow really
large before these orders for J > 4.
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Figure 3: Plots of the function f;(u): (left) J = 2 (middle) J = 3 (right) J = 4.

2.6.3 Cancelation of divergences: one-loop mass shifts of horizontal TK1 kinks

The consequences of the previous analyses can be seen in the magnitude of the one-loop mass
shifts. The spectral zeta function

Cils) = /‘dﬁﬂSI'ﬁzeB —1)
1[zr@—2)+<&f 2j 11

+ s,

vkqﬂ_ﬂw I(s)

N[ W

— Y 8
VT | 275710(s) r2filys

— 2 1\ T(s+1)
=l (]2 _ j2)s+*
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is essentially a sum of Gauss hypergeometric functions. For instance, in the case J = 3

. 1 |1 Ts=1)
Ck(s) = —= *zs_liZ
VT | 23%11(s)
2 11 3 1, 4 11 3 4 1\I(s+3)
S F == — == . —, = , =i ——=|— —
<8s+5 2Fily5 483 8]+5s+% 2hily 548275 9SS> I(s)

one can envisage the general behavior from the array of bound-state energies. The ingredients are
the bound-state eigenvalues, the difference in the eigenvalues with respect to the thresholds, and
the thresholds themselves (in the subtraction of the zero modes). It is amazing how cleanly the
maths capture these fine physical data!

The kink Casimir energy in the direction orthogonal to the orbit for generic J is:

2 = 1 2 (1) 4 (65,09~ G )

s——1

- 27117}8;0 <2u ) <CK22( )CKozz(iﬁLS))

rmo . (2u I'(e) =) 1 3 - J
= lim | — | —————— ————2F1|5,8, 53 | — .
227 -0 < m2> I(—1+e) <Z_: (22— j2)e? 1383 12—12] JE(—3+e

j=1

Simili modo, the kink energy due to the mass renormalization counter-terms of the second particle

reads:
o1
m 1 2\ T+ b g+
AER = ——lim— li — : 2-/d
Kz \flgg 21 HIP, <m2) Var JBHI(s) J-t " cosh?x
hm_ 22\ J(I+1)  T(e)
= — 1 —_— .
22w e=0 \ m? JE - T(-1+e)
For instance applying these formulae to the J = 3 case, we find:
3 2;12 1 8
c _ 01,0011 3 _1
AEg, = \fn (ll_l;l})g —|—3log 5 <2F1 [5,0,5,—5] —log 4> +
0,1,0,0 3.9
+ ,F! >[;,0,§,—‘5‘]—1og4—3—210g4>
3m [ 1 2u2 9
R _ Z _log 2 —
AEg, = \fn: <8%08 —|—log log 2>

The divergent terms, as well as the terms depending on the auxiliary parameter u cancel each other
exactly , to give:

hm |1 01,001 o 3 1 9 01,00)1 o 3 4 9
AMg,, = v L <2F1 [2,0.5, —gl+log g | +2F [3,0,3,~5] +log 5 +3 .
(2.11)

Using this result and the analogous one for J = 4, we obtain the exact answer for the J = 3, and
J = 4 systems:

AME3 = —(0.471134+0.766861)im ~,  AME* = —(0.47113 + 1.11725)hm
(2.12)
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Figure 4: Potential wells for / =2, J = 3, and J = 4 plotted together.

The higher the threshold and the broader the area, see Figure 4, the more negative is the
correction, because the attraction of the well on the scattered and bound mesons is more intense.
The high-temperature asymptotic formula also provides very good approximations to these exact
results. We find:

AML3 = —(0.47137+0.76675)im ~,  AME* = —(0.47137 + 1.11723)him,

taking Ny = 20 coefficients for J = 3 and Ny = 40 coefficients if J = 4 in the asymptotic formulae
of AMIJ(ZZZ3 and AM{(j. The (optimal) truncations in the series have been suggested by the plots in
Figure 3. For the same reason, we consider Ny = 10 in the truncated series of AM K=

Even if o is not an integer the one-loop mass shift is still known. The spectrum is more com-
plex but the main differences passing through J are the lack of the (half) bound state, sitting at the
threshold, one more bound state and a different spectral density. Because the vacuum half-bound
state, (the constant function) is not compensated by a kink half-bound state it must be accounted
for in the vacuum spectral function. The half-bound state weight is % (hence the name) owing to
the one-dimensional Levinson theorem [E3], [Ed]. The jump in the number of bound states mirac-
ulously conspires with the change in spectral density to produce a quantum correction that is a
continuous function of o. Interested readers can find full details about this problem in [[].

2.6.4 TK2 topological kinks

The zero-mode fluctuation orthogonal to the kink orbit is a sign of the existence of other
topological kinks degenerated in energy with the TK1 kink, which must have the two components
of the field different from zero, thus being TK2 kinks. Fortunately, a fair knowledge of the main
features and the structure of the TK2 kinks in this model is available. The reason is that the potential
energy density can be written in terms of a polynomial “superpotential":

1 1
W(¢],¢2) =2 <3¢17’ - Z(])l + 627¢1¢22> ) (¢17¢2 o Z a¢a aq)a

The energy, arranged a la Bogomolny,

o Jax [ (G a(pa)(""’%8%)]i;‘”;;{wwa(w))—wwa(—w))}
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shows that the solutions of the first-order ODE system

d 1
a0, _ oW _ W (1)%(20t + 0032 whoon o
dx a¢a %:(—1)[526(»1(])2 ’ ) s

are absolute minima of the energy.

In [[4], the kink orbits solving this system of equations were identified for the first time. We
found the flow lines of grad W between the top and the bottom of W, the kink orbits, in [Z0] simply
by taking the quotient of the first equation by the second in (ZI4) to find:

do d¢,
(=D ()P =
Integration of this first-order equation is achieved using the integrating factor |¢2|*%. The kink
orbits are:

1 o
g c#1 c€ (=o' =-——(20) 7
Note that the integration constant ¢ must be lower than the critical integration function ¢*. The
reason for this is easy to understand just by looking at Figure 5. The ¢* kink orbit joins one
horizontal vacuum with the other two vertical vacua. Beyond that value the orbits escape to infinity
giving infinite energy to the associated static-field theoretical solutions.

U@

Figure 5: 3D graph of —V (¢, ¢>) as a function of ¢; and ¢, (left) Flow-lines: in the ranges ¢ € (—oo,c*)
(middle left), ¢ = ¢* (middle right), and ¢ € (¢*,e0) (right)

The energy of all these TK?2 kink orbits is the same:

2 1 4 3

The zero-energy fluctuations orthogonal to the TK1 kink orbit obeys this fact: there is no cost in
energy fluctuating from one kink in this family to another.

For generic 0, it is not possible go further than this: i.e., knowledge of the TK?2 kink orbits and
their energy. There are two exceptions, however. If ¢ = —oo, we again find the TK1 kink profile:

080 = (-1 Stanh(x—x) . o¥W=0 .  a=01
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For ¢ = 0, the profiles of the corresponding TK2 kinks are also known analytically:

00 = (1) Stanh2(1-0)(—x0)] . 934w = ()T Tseeh2(1-0)x—x0)] |

where o, 0 = 0, 1. The two kink orbits are half-ellipses.
The generic form of the kink profiles can be inferred from the o = % case. Equations (I'T4)
are separable in parabolic coordinates if o = % and we can give the analytic expressions of the

kink profiles [2O]:

P - o ()

K@y gl (1) d _ !
o2 bxond) = (1 (\/dZ—i—cosh((x—xo))) S Vi

There are two integration constants that are the parameters of this TK2 family with a clear physical
meaning: xq sets the kink center as in TK1 kinks. The parameter d, related to the kink orbit label
¢, can be loosely interpreted as the relative coordinate between two basic kinks.

1

Lro1(x) o1 (x) 91(X)
0.75 0.75 0. 75| 0.75
(7] R —— 0,051, _ocmemmmmmmmnnnn [ AN — 0.5
4 o P / b
0.251f .25t S0.258 /N 0.25
i X S AR X - - X
1 - 2 4

Figure 6: Kink profiles corresponding to: (a) d =0, (b) d = /0.5, (c)d = 1 and (d) d = +/30.

In Figure 6, the kink profiles for four values of d are shown. If d = 0 only one component is
kink-shaped and non-null. For d > 0, all the profiles are two-component; one of the components
is kink-shaped and the other bell-shaped up to d = 1. If d > 1 one component has the shape of
two kinks and the other one tends to show two lumps. This Figure is correlated with Figure 7,
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i
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i
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AR X et e X = ~.
7 7 vy ] 3 7 7 2 3

7 =2

Figure 7: Energy density &% [x;0,d] for (a) d = 0, (b) d = /0.5, (c) d = 1 and (d) d = +/30.

where the energy density is plotted for the same values of d. It is possible to prove analytically
that the energy density as a function of x has only one maximum if d < 1 and two maxima if
d > 1. Thus, for d > 1 this parameter is a relative coordinate between the two peaks, although the
distance between maxima is a transcendent function of d. The meaning of the peaks is also clear:
these values of d correspond to orbits close to the critical orbit where two TK2 kinks joining the
horizontal vacuum with different vertical vacua live. These are the basic kinks. All this is explained

in detail in Reference [20].
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For generic values of ¢, one must rely on numerical integration methods to find the profiles of
the kink solutions. We do this by solving the first-order equations by standard numerical methods
with the “initial" conditions:

21
aO)=0 36} 0) = RO =5

2(l-o0) 4
The reasons for this choice are two fold: (1) For any kink solution, ¢;(x) always has a zero.
Translational invariance allows us to set the zero at x = 0; (2) To ensure that we will find a numerical
kink solution, we fix ¢,(0) on a kink orbit for a given value of ¢ and arbitrary choices of c.

The numerical method provides us with a succession of points of the kink solution generated
by an interpolation polynomial. The plots of the numerical results show that the behavior derived
analytically for the kink profiles when o = % is generic. For any value of o, the kink profiles are
composed of two kinks. The parameter ¢ giving the orbit is related to the separation between basic
kinks. In some range of c, the two basic kinks completely melt into a composite kink. The precise
value of ¢ at which this happens depends on the value of 6. 0 = % is singled out, because in this
case ¢ = 0 is the value where two kinks fuse into a composite kink or, viceversa, a composite kink
splits into two basic kinks.

2.6.5 TK2 kink small fluctuations

We consider now small fluctuations of TK2 kinks: ¢,(x) = @,(x;c) + 14(x), where we denote
the TK2 kink profiles in the form ¢, K2(e) (x) = @u(x;c). The second-order kink fluctuation operator

is a non-diagonal Schrodinger operator:

K(c) = (—5;41;4—.[]11(&@ R Uiz (x;c) | ) ’
21(x;¢) -3 +4—Un(x;c)

Uni(xic) = — (2463 (x;¢) +406(0 +1)63 (x;c) — 6)

Ui (x;¢) = Usi(x;¢) = =80 (0 + 1)y (x;¢) Pa (x; ¢)

Un(xic) = —(46(c 4+ 1)¢2 (x;¢) + 66203 (x;¢) — o (G + 1))

In Figure 8 the potential wells (or barriers) in the diagonal components of K are shown for the
integrable case 0 = % for several values of c¢. The correlation with the kink profiles is clear. There-
fore, the non-integrable cases have similar wells because the kink profiles obtained numerically are
similar to the analytic ones.

The one-loop mass shifts can be computed using the high-temperature formula. We use the
first-order equations to express field derivatives as functions of the fields (avoiding problems with
the discreteness of space required in numerical methods) and write the Seeley densities. Then, we
plug the numerically generated kink profiles into these densities and perform numerical integration
over the real line, to finally find the coefficients that enter the formula.

The results are shown in the following Tables for three values of o: 1.5, 2, and 2.5, and

represented in Figure 9.

28



Quantum topological defects Juan Mateos Guilarte

2 q 4 -2 ‘ 2 4

Figure 8: Diagonal components —Uj; (x) (red) and —Un (x) (green) of the o = 1 potential for ¢ = —30,¢c =
—1,¢=0.1,¢ =0.245 and ¢ = 0.249.

oc=15 c=20 c=25

c AM c AM c AM
-30 —1.16009 -30 —1.33281 -30 —1.52784
—27.5 —1.16017 -27.5 —1.33281 -27.5 —1.52782
—25 —1.16128 -25 —1.33281 -25 —1.52780
—225 —1.16042 -22.5 —1.33281 -22.5 —1.52778
—20 —1.16061 —20 —1.33281 -20 —1.52774
—17.5 —1.16088 -17.5 —1.33281 -17.5 —1.52769
—15 —1.16128 —15 —1.33281 —15 —1.52760
—125 —1.16193 —12.5 —1.33281 —12.5 —1.52744
—10 —1.16313 —10 —1.33281 —10 —1.52711
-7.5 —1.16597 -7.5 —1.33281 -7.5 —1.52626
=5 —1.18205 -5 —1.33280 =5 —1.52285
—4.6801886 —1.24345 —4.001 —1.33280 —4 —1.52168
—4.68018860186678332 —1.25103 —4.00001 —1.33280 -3.97 —1.52915
—3.96594571 —1.55402
—3.96594570565808127 —1.56127

Table 3: Quantum Mass Corrections to the TK2 family in the BNRT model with o = 1.5,2, and 2.5

-0.9
C
-30 -25 -20 -15 -10
-1.1
| ] | ] | ] | ] | ] | ] [ ] | ] n 1 }
0=1.5 - .2':
® o o o s e 0 o o35
0= 1.4
-1.5
A A A A A_ A A A &
0=2.5 Seld
IAM

Figure 9: The one-loop mass correction in the cases 6 = 1.5, 6 =2.0, and 0 = 2.5

Inthe 0 = 1.5 and 0 = 2.5 cases, the pattern is similar. The one-loop correction is equal in the
zone where the two basic kinks are fused into a single kink and the degeneracy is not broken at one-
loop level. For values of ¢ in the zone where the two basic kinks are split, the one-loop corrections
become more and more negative. The classical degeneracy is broken by quantum fluctuations that
press the two basic kinks apart from each other. This conclusion could be reached by arguing
qualitatively from Figure 8. For small ¢, the potential wells both in the parallel and orthogonal
directions to the kink orbit are attractive. After ¢ = 1 the orthogonal wells start to become weakly
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repulsive. For larger c, the parallel wells develop two peaks whereas the orthogonal wells become
strongly repulsive. This is the explanation of the repulsion between the two basic kinks and the
reason why the less energetic TK2 kink corresponds to maximum separation of the basic kinks,
even though the classical energy is independent of the distance between centers. The case 0 =2 is
special. The classical degeneracy does not disappear because a simple change of variables shows
that this case is equivalent to two independent A¢* models, such that the one-loop correction is
twice the correction of the A ¢* kink.

2.7 N=3: the massive non-linear S-sigma model

The last scalar field theoretical model that we shall discuss is the massive non-linear S>-sigma
model studied in Reference [B3]. This is the formal A — oo limit of the deformed linear O(3)-sigma
model, a limit that is only meaningful if the fields satisfy the constraint

%lz(tvx)+x22(t7x)+x33(tax):R2 s RZZ*

such that the target space is a S>-sphere of radius R. The action becomes

1 2 ) O 9 2,2 2,2 2,2
Sl 22, 03] = 5 dx a;l Ix, R PTRY (t,x) — o 25 (t,x) — o3 x5 (1, %) ;
where 0612 = 2612 , Oc% = 2622 , 0632 = 2632.
Despite appearances this is a highly non-linear system due to the constraint between the fields.
This statement is made evident by solving y3 in terms of ); and )». The action becomes:

(X10u1 + X20u22)?
R =i %

1
S= E/dfdx {3u)(13“%1 +dux20" x2 + —%12(%96)—02'%22(1‘#)}

2
0, —03

2
The vacua are the North and South poles: y3 = 1. The parameter 0 < 6> = oo < lis the

mass of the pseudo-Nambu-Goldstone boson, the quantum of the y,-field. The mass of the other

pseudo-Nambu-Goldstone boson is 1.
Interactions, however, come from the geometry:

(X19u21 + 229 22) (219" 21 + 220" 22)
R —xt—2% B

1 1
(1 + o (0 +23) + g (X +20)" + ) (1921 + 1290 22) (010% 21 + 220" 22)

1
TR
which shows that 1% is a non-dimensional coupling constant.

2.7.1 TK1 topological S*>-kinks

Using spherical coordinates in the target space
x1(t,x) =RsinO(t,x)cos@(t,x) , x2(t,x)=RsinO(t,x)sin@(r,x) , x3(t,x)=RcosO(t,x),
the field equations become:

1 1
006 — sin26 (0" @Iy —cos® @ —o?sin @) =0 , J*(sin’ 09, ¢) — 562 sin® Bsin2¢ =0

30



Quantum topological defects Juan Mateos Guilarte

On the half-meridians ¢ = 7, ¢ = 37” and ¢ = 0, ¢ = 7 the field equations reduce to the sine-

Gordon equation. Therefore, there are two types of two-component topological kinks joining the
North and South poles:

1. K1 kinks

3
P (1) = 5, 9 (1) = 2 3 6, (x) = 2arctan XL

X)) =0, )= . x5 (x) = +R tanh[o (x — x0)]

cosh[o(x —xp)]

2. K2 kinks
Pk,(x) =0, ox:(x) =7 B, (x) = 2arctan =)
R
X)) =+t—————— 1) =0 , x3°(x)=*Rtanh[(x—xo)]

cosh[(x —xp)]

10
Figure 10: a) K; and K, (62 = %) kink orbits. b) K; (blue) and K (red) kink energy densities

In Figure 10 the topological kink orbits are plotted, together with the corresponding Kink energy
densities. The classical kink energies are:

Ef =mV2R’c , Ef, =mV2R?
and the K> kinks are heavier than the K;-kinks.

2.7.2 Kink fluctuations and one-loop mass shifts

The geodesic deviation from the K kink orbit plus the Hessian of the potential for the K; kink
(in a parallel frame to the kink orbit) reads, see [B4]:

_d> 52 207
K= ( dx? +o cosh?ox 0 )

_d* _ _2q?
0 dx? +1 cosh’>ox

As might be expected, for parallel fluctuations to the orbit we find the same Schrodinger operator
as for the sine-Gordon kink. What comes as a surprise is that the orthogonal fluctuations are also
governed by an operator, which is of the transparent Posch-Teller type of the N = 1 class with
slightly different threshold.
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The one-loop K; mass shift is immediately obtained from the Cahill-Comtet-Glauber formula:

2
EQH(0) = Ex, (0) + AM, (0) + 03

hmo
= V2mR*c —
V21

Here, v; = arccos(2) = Z and v, = arccos( ©), The arguments are the square root of the value of

[ . 1 . 1 } ﬁ( )

the bound state eigenvalue 6> = 1 — ¢ divided by the threshold of the continuous spectrum. For
instance, as a function of ¢ the correction reads:

EQM (o) = V2mR%*o — T\z/nE(; [2— garccos( )] + ﬁ(hz)

whereas for o = % we obtain :

1 m 3hm (2 T n?
OL —_) = — 2— _—
Ex <2) \@R 2V2n (3 6\@) +ﬁ(R2)

The second-order fluctuation operator for the K> kink (in a parallel frame to the kink orbit) is:

2
K= dx2 +1- coshZx ) 0
0 —L o2 2

cosh®x

The bound state eigenvalue —62 in the orthogonal direction to the orbit is negative, telling us
that the K, kinks are unstable. The CCG formula applied to calculate the one-loop K, mass shift
captures this fact, because v, ceases to be an angle and becomes arccoshé:

hz

E,%L(G) = Ek,(0)+AMk, (o) + ﬁ(ﬁ) ; v = arccos(0) = g v, = arccos(iG)
h 1 1 h
= V2mR? — \;;n [sinv; + p sinV, — Vjcos vy — —vzcosvz] + ﬁ(Rz)

Therefore,
2

fimo [ 1 T - h
EfH(o) = Va0 | D et iSo s oo (Vi -o) |+ (i)

has an imaginary part, as corresponds to the energy of a resonant state in quantum physics. We end
this first part by computing:

%RZ 4h\/"f <4+\f+\flg<\[2\[>—zn\2f>+ﬁ( )

1
ERH(5) =
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3. Abelian Higgs models in a plane

The second part will be devoted to discussing the quantum fluctuations of the topological
solitons that arise in gauge theoretical models in (2 4 1)-dimensions with spontaneous breaking of
the gauge symmetry. The prototype of these solitons is the Abrikosov-Nielsen-Olesen vortex, see
[2], [3]. Because the spatial components of the gauge field form a purely vorticial vector field, the
planar soliton is made from lumps of magnetic field. By extending these objects to the third spatial
dimension magnetic flux lines arise like those existing in Type II superconductors, predicted by the
phenomenological Ginzburg-Landau theory. In the relativistic Abelian Higgs model the Nielsen-
Olesen vortices form strings that might confine magnetic monopoles. The one-loop mass shift due
to quantum fluctuations of ANO vortices has been computed at the critical point between Type I
and Type II superconductors in [IR], [2Y], and [BO] using heat kernernel/zeta function regularization
methods.

It was discovered in [P4] that a generalization of the Higgs model, the so called semi-local
Abelian Higgs model containing a doublet of complex scalar fields, also admits planar topological
solitons similar to the ANO vortices. The moduli space of these solitons is, however, richer, en-
compassing both CP'-lumps and ANO vortices as limiting cases with very complicated mixtures
of these two classes in between, see [EA]. The one-loop fluctuations of self-dual semi-local topo-
logical solitons have been analyzed in [Bl] and [BZ], with some surprising results. Our aim in this
part is the description of these results. We remark that the semi-local Abelian Higgs model is the
bosonic sector of the electro-weak theory when the Weinberg angle is 7 and the Z, W= gauge fields
decouple.

3.1 The planar semi-local Abelian Higgs model
3.1.1 Action and field equations
In the semi-local Abelian Higgs model there is a Higgs doublet

o) () Fida (M) | 12 2
q’(x”)‘<d>z<x“>>‘<¢3<xﬂ>+i¢4<x“>>' e

and an Abelian gauge field:

d

A#(X“)W .

TR —  LieU(1)

The action is built from the electromagnetic tensor, and interactions between the gauge and scalar
fields determined from a minimal coupling principle by means of the covariant derivative and self-
interactions of the scalar field are induced by a quartic potential energy density:

A
Fuv=0uAy— A, , Dy@=09®—iA,® , U(@)= ﬁ(qﬂcb— 1)
e
The action governing the dynamics of the system is:
v 3 1 1 K 5
S= ;/dx {—4 MY + 5(Ducp)TD#cb— g(cIﬂcI:— 1) }
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There are the following (dimensional) parameters: [v?] = M, the vacuum expectation value of the

Higgs field, the scalar-vector and scalar-scalar couplings, [e?] = [A] = M~'L2, and the Higgs
and vector particle masses: m> = e?v?, u> = Av>. The ratio between masses k> = 3—2 is a very
important parameter that determines whether we are in a Type I or Type II superconductivity-like
regime. Needless to say, we continue working with non-dimensional fields, ®, A, and Minkowski

coordinates x,;, 4 = 0, 1,2. The metric and volume integration are chosen such that:

guv = diag(l,—1,—1) , dx® = dxodxdx;
2> 9% 97
xpuxt = guyatx’ = x2—xt—x3 , Io* = guyd'd' == — = — -

The field equations are:

QP! =i[(D'®)' - D'  ,  DuDMb =" (1 0'P)

3.1.2 Global and local symmetries: vacuum orbit structure

The SU(2) global weak iso-spin transformations
Dat) — @ (xH) = exp(—%é -3)D(xH)

as well as the U(1)-gauge local transformations

cp(x#) N cp’(x”) _ eia(x“)q)(xﬂ) , Au (x“) —>A;L(x“) :A#(x“) + g;i(xu)

are symmetries of this system suggesting the slightly deceptive name for this model. The vacuum
orbit has a very subtle structure due to the combined action of these two symmetries.
The manifold of zero energy configurations, @V (x*) = ®", A} (x*) = 0y, is:

(@) @Y = (@)@ +(®5) Py =1=(6{)°+(67)* +(95)* + (9)?

1
The Higgs vacuum orbit is the S* unit sphere in C?: the orbit of the point ®} = (0 ) , the north
pole of the S sphere, under the global SU(2) action, i.e., the Hopf fibre bundle:
St — s — §?

given by the action of a U(1) subgroup on each point of the S? sphere.
Use of the Hopf coordinates 6,6, € [0,2x], y € [0, %] in the S* sphere allows us to write the
SU(2) action in the form:

v eOsiny e cosy 1 e siny
G = —i6 —i0] o = —i
—e "2cosy e isiny 0 —e "2cosy

such that the Higgs vacuum orbit is parametrized as follows:

qblv =cosfsiny | q);/ =sin@siny | (1)3‘/ = —cosbycosy q)X:sinGzcosl/f
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Let us consider the one form o = L (q)lv doy + ¢3V de) ) € Q!(S?). The Hopf index, labeling the

T

homotopy class of the third homotopy group of the 2-sphere I13(S?) = Z, is:

2
h a)/\da):—z/ o) doy NdoY ANdo)
T Js3

_71:2 o

Thus,
oV doy NdY Ndo) = —cos?6;sin® yeosydy AdO; Nd6,

and the Hopf index of the vacuum orbit is:

2

o 2 : .3 2 1
h:E 27 - A d0 cos 91./0 dysin” ycosy =n 277.71.1 -1

3.1.3 Higgs mechanism and Feynman rules

The choice of a point in the vacuum orbit S* spontaneously breaks the SU(2)-global symmetry
and one would expect three Goldstone bosons. One of the three Goldstone bosons, however, will
undergo the Higgs mechanism. We shift the scalar field away from the vacuum in H(x*) -real
Higgs-, G(x*) -real Higgs ghost-, and ¢ (x*) -complex Goldstone- fields:

1+ H (") +iG(xH
‘I’<’““):< Vit )>

The choice of the Feynman-’t Hooft R-gauge
1
R(44,G) = QA" () +G(H) , Syr=—5 / &x (AR (M) + G (M)

needs a Faddeev-Popov determinant to restore unitarity which amounts to introducing a complex
ghost field:

R(A,,G') ~ R(Ay,G) + (O —1—H(x")) - Sau(x*)

Det o = [d%*(X”)Hd%(X“)]exp{i [aexw@-1 —H(x“))x(x“)}

The action becomes:

= g/ &x [_;Au[—g‘”(@r1)}Av+9ux*8“x—x*x
1 1, 1 K, .
v Lacore -t v Lo mar - K a0tk
2 27 T2 2
2
- %H(H2 +G?) + Ay (I HG — 9" GH) + H(A A" — 1* ) +iAu (9" 9" @ — pdM @)

Lt

1 K2
+ AuAt|of? = - (H? + G*)* + 5 (G7 + H)AA" = —[@*(J@f + H? + G* +2H)| .(3.1)

The Feynman rules are summarized in the next two Tables. Table 4 gives the propagators in the

R-gauge. There is a Higgs field propagating with mass &2, a Higgs ghost of mass 1, and a vector
particle with mass also 1. A Faddeev-Popov (anti-commuting) ghost of mass 1 must be included to
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Particle Field Propagator Diagram
ieh
Hi H T B k
1685 (x) v(k? — k2 +i€) o
Higgs Ghost G(x) ien k
X "
£8 T B .
ieh
Complex Goldstone () "2t ie) . ko -
v i
ieh
Ghost _— k
o8 () vk —1+ig) o — =+~ — o
_jehoMV
Vector Boson Au(x) % WV\/\)
g% el/

Table 4: Propagators

Vertex Weight Vertex Weight Vertex Weight Vertex Weight
) ) . o . ‘éu ’ .
> =3Ik >< —3iK” 2 P i(k* +-g) 5 & 2ighV L
SNE O ﬁ
) ) P € .
e KT —3iK" 5 g (K —q")5z *ﬁ% 2z gt

he he

N . . v N N L2y , o
- e >i 2i fie 8 },»'". —iK he i K he

Table 5: Third- and fourth-valent vertices

s 2V : N2V \ S 2V
—iK 2iK 7o K

compensate the non-physical Higgs ghost. Finally, there is a complex Goldstone boson, as expected
from this partial Higgs mechanism. The vertices are read from the cubic and quartic terms in action
(B) and shown in Table 5. There are accordingly three-valent and four-valent vertices. The cubic
terms with derivatives in (Bl) provide weights proportional not only to the coupling constants but
also dependent on the momenta.
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3.2 Topological solitons

The search for time-independent finite energy solutions requires the use of the Weyl gauge:
Ao(x) = 0; otherwise, time-dependent gauge transformations would spoil the time independence.
We thus look for solutions of

j . 1 1 .
1) —d3A; +0iF;j = % (®'Di®>— (D®)'®) , 2) —§a§<b+§D,-Diq>: gcb(cb'cb— 1) 3.2)
such that their energy
2 J 1 1 ¥ K &t 2
E(D,A)) :/d X ZE-J-E-jJrE(D,-CI)) D®+ g(d) d-1) (3.3)

is finite.

3.2.1 Topology of the configuration space

The configuration space
¢ = {®(¥) € Maps(R*,C?),A;(X) € Maps(R*,TR?) /E(®,A;) < +oo}
is the set of all the field configurations of finite energy. Consider polar coordinates in the plane:
F=+1 /x% —i—x%, 0= arctan%. The equations

1) ®'dlg =1 , 2) Didlg = (P —iA®@)|st =0  (3.4)

are the necessary conditions to be satisfied by finite energy static field configurations at the bound-
ary of R? at infinity: SL = {x1,x2/1im,,e(x} +x3 = r*)} = dR?. Therefore, equation (BA(1))
determines a map from S, in . If ®,|g; =0

¢‘Sl _ qDl’SL —_ ¢1|S§°+l¢2|S‘L — eile :q);/ , / c 7,
=\ P2st 3l + idalst 0
are all the single-valued maps complying with (B(1)). Acting with the SU(2) matrices parametrized
by Hopf coordinates we obtain the general solution by changing the base point in S? at which S! is

fibred:
i0) ¢ i6 il6 i(61+18) ¢
GCIDY _ e_iesmy/ e_ .eco.sl// e _ e_. , _lesml//
—e 2cosy e isiny 0 —e (0 )cosl//

Equation (B-4(2)) is consequently solved by:

Ailst = —i® 9P| :lgf_ 3.5)
d ) d J
= 01052 o~ G o + DG sy~ 04D D er

showing that the vector field A;(x;,x;) is asymptotically vorticial. The integer number / has corre-
lated mathematical and physical meanings:
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1. It is the winding number of the map provided by the Higgs field at infinity:
Sl

(=

— ST, E=Ua%
where S! is the fiber at the north pole of S?.

2. Itis the magnetic flux of the field configuration:

7{ (M @ax +a2@a2) =1 4 (Laxt +22a2) =1 [ a0 = 2m

= X)dx X)dx") = —dx +—-=——dx" | = =

D 2 s, \dx; dx 0

Because the first homotopy group of a circle is non-trivial, IT; (S}) = Z, the configuration space is
the union of numerable infinite disconnected sectors distinguished by the integer I: € = | |; ;.

3.2.2 Self-dual semi-local topological solitons

At the critical point between Type II and Type I superconductivity where the masses of Higgs
and vector particles are equal, k*> = 1, it is possible to write the energy, up to a total derivative, as
a Bogomolny splitting:

d*x 1
E= / =R ((D1® £iD>®)" (D1 ® £iDr®) + [Fio £ 1(@T D — 1)]7) + 58l
The solutions of the first-order system of partial differential equations (B-8)

1
D ®+iD,® =0 , Flzii(dﬂd)—l) =0 (3.6)

are absolute minima of the energy and saturate the topological bound proportional to the quantized
magnetic flux in each topological sector. Because the first-order vortex equations can be obtained
as a dimensional reduction of the self-duality equations of Euclidean Yang-Mills theory in four
dimensions, solutions of the PDE system (B) -that also solve the second order PDE system (B2)-
are usually called self-dual.

The structure of the moduli space of solutions of (B-) has been completely unveiled in [E6],
see also [E3]. The parameters underlying the 4/ dimensional moduli space of topological solitons
are the coordinates of the / zeroes of ®;, the coordinates of the [ — 1 zeroes of ®,, and the scale
and phase of ®,. Full details can also be found in [BT].

3.2.3 Self-dual semi-local topological solitons with mixed circle-symmetry

We shall restrict ourselves to study solutions enjoying symmetry with respect to combined
circle transformations in the R? plane and the internal space C2. This symmetry is materialized by
means of the ansatz:

f(r)e'® o(r)
q)(x17x2) = ( |h(l’)(ez(w+m9) , I,me Al ,WER | Ai(xl,xz) = —18,']'7)6]'

Note that by taking some care with the behavior of a at the origin the vector field A;(x1,x;) is
divergence-free (purely rotational) in the whole plane. The PDE system (B-8) reduces to another
first-order non-linear ODE system linking f(r), ¢t(r), and a(r):

ldoo 1 df 1 dn| 1

S = PO+P-1) L tppn—am) Sl =

7 =) (- a()

3.7
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Finite energy solutions, regular at the origin where the (multi) vortex sits, require us to solve (BZ2)
with asymptotic and core behavior:

lim f(r) = 1 , limh(r) =0 , lima(r) = 1 (3.8)
f(0)=0 , |h(0)| = |ho|Omo a(0)=0 , m<l (3.9)

We stress that the contribution to the vorticity of the @, field m must be always smaller than the
vorticity / of the ®; for the topological solution to have finite energy. For later use, we give the

magnetic field B(r) = 21r ‘2‘;‘ and the energy density of these circle configurations:
11 2fz( ) Pla(r)? m
E(r) = 5 (5 + D1 = £20) = W) PP+ =52 (1 = e+ =22 (3 - a)?

3.2.4 Topological solutions of one quantum of magnetic flux

We now go on to the most elementary solutions that carry a quantum of magnetic flux, or,
l=1=m+1. We are guided by the procedure developed in [E] to solve the non-linear ODE
system (B) with boundary conditions (BR)-(B83). First, we consider small values of r and in the
first-order differential equations we test the power series

fr) = fiort P+ fr + fart 4 (3.10)
ar) = ap-r+o o r oy rt (3.11)
h(r) = ho+hyi-r+hy-r* +hy-rP 4 hy-r* 4+ (3.12)
where f; and «;, j=1,2,3,--, are real, whereas h;, j =0,1,2,---, are complex coefficients. The
coupled first-order ODE’s are solved at this limit by (B10)-(B1)-(B17) if
f1

f(r) = fi- r+ =l —1) -7 [(Iho|* = 1)2[ho[* — 1) +4 7] - r°

128

alr) ~ }(1—\%\2)-#— 5Pl = 1)+ 7] -
[mho (1hof? ~ 1)(3lhof? ~2) + 1= FE(Slhol? ~ ]r6+...
W) = b+ (ol = 1)+ + 2 [(hol? = 1) lhof? 1) +472] -1

128

We stress that i € [0,1] is determined by the behavior of the solution at the origin such that only
a free parameter, fi, is left. Second, a numerical scheme is implemented by setting a boundary
condition at a non-singular point of the ODE system, which is obtained from the power series for a
small value of r (r = 0.001 in our case). This scheme prompts a shooting procedure by varying fi,
where the correct asymptotic behavior of the solutions is obtained setting a optimal value for f; for
a given value of hg. Finally, the first-order ODE system is solved for long r by means of a power

series in %:

fn=Y flor a(r)=Y ol ri h(r)=Y_ By
Jj=0 j=1

J=0
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with the result that

P

flr)~1

35
+ |h1|2(—1152+158\h1\2—Z|h1|4+

3 5

+(=2r' P+ g!h1!4) R P (=324 500 - R\hl\“) O

35

128

a(r) ~ 1—|h' 2 r 2 W (=8 + R )) - 74 4 R P (=192 424 |R' > — |B'|*) - 70
+|h'2(9216 + 1120|A' [> — 48|A'|* + B ®) - r B 4 ...

S R

WP 3
|h(r)] ~ |h|' -r1+—|2|-r3+|h1|3(—2+8\h1\2).r5+

5
+ |h1|3(732+5|h1|27E|h1|4)-r_7+...

Again, only one free parameter /' is left. The value of 4! is fixed by demanding the continuity of
the solution at intermediate distances (r = 15 in our case) obtained by gluing the short-r and long-
r approximations. In particular, this has the important implication that |hg| =0 = |h![ =0
linking the null value of |hg|, which gives the embedded ANO vortex, with the null value of the
constant |!| setting the behavior of the solution for very long r. Another important remark is that
the long r behavior of self-dual semi-local defects differs from the long r behavior of self-dual
ANO vortices that decay exponentially.

The following Figures show the results obtained with this procedure for several values of
hg. Note that 2y = 0 for the ANO vortices, and sy = 1 for the CPl—lumps. It may be observed
in the graphics that the field profiles reach their vacuum values at distances of the order of r =
15. Consequently, practically identical numerical solutions would be generated by sewing the
numerical to the asymptotic solution at r greater than 15.

1.5
E(r)
1.25 0.8
1t f(r
0.6
0.75 o(r)
os 0.4
0.25 0.2
h(r) X
5 10 15 20 X
1 2 3 4 5
a) Functions f(r), h(r) and o(r) and b), ¢) Energy density for hy = 0.1
1.5 1
(r)
1.25 0.8
1) f
(r) -
0.75 o(r)
0.5 0.4
0.25 hr) 0.2
X
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a) Functions f(r), h(r) and o(r) and b), c) Energy density for hy = 0.3
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Figure 11: Field Profiles and Energy Densities for Semi-local Topological Defects

3.2.5 Deformation of the first-order equations

It is interesting at this point to consider small deformations of the solutions of the (B8) system

®(X) = S(¥) + 6S(F)

, Aj(X) =V;(¥) + 0a;(x)

which are still solutions of the same PDE system. The necessary and sufficient conditions for this

are tantamount to the linear PDE system:

—0y8a; + o1 8ar + %(ST6S+ 8578)=0

-

iV (F) + iai +V5(R))8S — i(8a; +i8az)S =0
2

(3.13)

Pure gauge fluctuations are discarded from the solutions of (B13) by setting the background gauge:

9;8a;(%) + %(sﬂss— 557S) =0

The tangent space to the moduli space of self-dual topological solitons with a given magnetic

charge 27l is therefore the kernel of the first-order deformation operator Z:

—d 0 S
-0 -0, -S?
. S% —S% —dr+V;
- S% S% i +V,
Sy =S5 0
S5 s 0

52 s} 53 Say (%)
st —S2 s} Say (%)
- -V, 0 0 551 (%) o
—h+Vi 0 0 2% |
0 —h+V, —d1 -V, 555()_5)
0 h+V, —h+V; 55% (X)
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Accordingly, A, = 272 is the following 6 x 6 matrix partial differential operator:

A 0 —2V,5% 2V, S} —2V,53 PARY;
0 A —2V,8? 2V,S1 —2V,53 2V,S8)
AL —2V§? —2V,8? B —2Vide SISy +8283 Sis—sis)
* 2ViSh 2vaSl  2vio, B —S18% 4538} SIS} + 8252
—2V83 —2V,83 SIS)+ 5183 —S1S3+ 5154 C —2V; 0k
2V, Sh 2,8t siss —sis) sisl+ 5383 2V 0k c
2?2 9?

A= =0+ |12+ |82, jk=1,2 , Od= Vi(®)Vi(®) = VE(X) + V5 (%)

a2 ad
1 1

B:—akak+§(3|51|2+‘Sz‘z—i-ZVka—1) , C:—3k8k+5(‘51‘2+3|52|2+2Vk‘7k—1)

VSy=0;Sy+etvisy . M=12,AB=12 , e?=-¢'=1,¢e"=¢e"?=0.

One easily checks that A, has a supersymmetric partner’: A = 297:

A0 0 0 0 0
0A 0 0 0 0
00 B_ —2Vid,  Sisl4s5252 slsZz_— s2g) P

A = 192 TR0 D192 790192 Vo = Vi (%) —— - Vi (%) —
00 2o B -sigisstsisiesis | 0 kTG MOE
0 0 SIS} 45253 8183+ 525) C- —2V; 0k
0 0 S1s3—s3s) sis!+s2s3 2V, 0k C-

1 1
B_= —3k9k+§(\51|2— 2P +2ViVe+1) , €= —9k3k+§(—151\2+ 1S2* +2ViVie+-1)

The index of the deformation operator - ind 2 = dimKer? — dimKer%" - is in this case equal to
the dimension of KerA ; because dimKer?' = 0, A _ being definite positive.
Because A and /AA_ are iso-spectral up to zero modes the index of & can be regularized in
the following form:
index? = lim |Trj2e P2+ —Trpe PO

B—0

Let us use the heat trace expansion: Trjze P2+ = Trje BA Y™ ¢, [AL]B,

g+l 0 0 0 0 0
0 — i+ 1 0 0 0 0
A= 0 0 — 0 +1 0 0 0
0 0 0 —odi+1 0 0
0 0 0 0 —d, O
0 0 0 0 0 —dio
Because
pn € P 1 2 _ P o
Tripe PO =St s L aldu] =60, albd= /dx tr(Ae(®) - A)

3This is an example of hidden bosonic supersymmetry [ES].
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we obtain:

ind.@:—%/dxztr(A+(5c’)—A,( /dx (IS112+[8212 1) = /dx Fio—4l .
(3.14)
In the derivation of (B14) we have used the vortex equation (BH) and tr means trace in the matrix
sense. We find that the number of zero modes is twice the magnetic flux (mod ), in perfect
agreement with the number of parameters of the self-dual topological solitons.

3.3 One-loop correction to the masses of semi-local self-dual topological solitons (SSTS)
3.3.1 SSTS fluctuations

Let us now consider time-dependent small fluctuations of the self-dual topological solitons:
D(X) = S(X) + 6S(xp,X) , Aj(X) =V;(X) + baj(xo,X) ) x(X)=0ox(x)

In order to discard pure gauge fluctuations we impose the Weyl/background gauge condition (the
R gauge in the topological sector of magnetic flux 1):

AQ(XO,f) :0 y &jsaj(XO,)?)+%(ST(2)5S(Xo,f)—5ST(Xo,f)S(f)) :0

The classical energy up to &(5°) order (one-loop) of the SSTS fluctuations is:

T
H® =a% + 5 /d2 {855 95¢ L SETKSE + 6y KG5)(} :
)C() aX()

where

5§T(xo, X) = (Sal(xo, X) Say(xo,X) 5Sl(x0, X) 5Sl(x0, X) 5Sz(x0, X) 5Sz(xo, ))

is a file vector assembling the fluctuations of the two polarizations of vector particles, the Higgs
and Higgs ghost fluctuations, and Goldstone fluctuations around the topological soliton solution,
i.e., the bosonic fluctuations and the second-order operator determining the small fluctuations of
these extended objects is precisely K = A ..

We shall impose periodic boundary conditions on the fluctuations 8&,(x, xz) =06&,(x1 +
I,xp+1),a=1,2,---,6,1 = mL. Therefore, K acts on the Hilbert space L> = @°_, L2(S' ®S").
Assuming the ortho-normality and completeness of the eigenfunctions of K, K&,(X) = €2&,(¥), in
the sub-space orthogonal to its kernel, one finds the quantum Hamiltonian of the one-loop bosonic
fluctuations:

oY =mm Y eBB.+-) 3.15)

where [B},B,,] = 8, are the expansion coefficients promoted to creation and annihilation opera-
tors. The index theorem argument in the previous Section shows that the number of normalizable
zero modes is: dimKer? = 41 where Z is the partial differential operator arising in the deforma-
tion of the first-order equation. Because K = 272, standard supersymmetry strategies allow us to
conclude that the spectrum of K is formed by 4/ zero modes and positive eigenvalues giving rise to
Spec, K
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The topological soliton ground state is a coherent state annihilated by all destruction operators:

. ®(x0,%)[0;TS) = S(¥)|0; T
B0;TS) =0,¥n = A'(xo’x)’o’ $) = SE0:TS)

(x0,X)|0;TS) = V;(X)|0;T'S)

Therefore, the bosonic energy of the ground state in a topological sector of magnetic charge / # 0
is:

. h
(0: TS|A|TS;0) = TmTrLz K* . (3.16)

In the Figure 12 we show the diagonal potential wells/barriers in the differential operator K
for magnetic flux 27t. The vector bosons “essentially” feel -there are also non-diagonal terms- the
potential A; Higgs bosons and Higgs ghosts feel the potential B, and the Goldstone bosons move
along the potential C. Leaving apart the non-diagonal exchange interactions, all three types of
particles move through attractive potentials, exponentially decaying to their vacuum values if the
background is the ANO vortex, ig = 0. If the background is a hy = 0.3 topological soliton, both
vector and Goldstone bosons move in less attractive potential wells that, moreover, only decay as
some negative power of r near infinity. For iy = 0.9, a value giving almost a CP!-lump, the vector
bosons pass through the background feeling a extremely weak attraction, the Higgs boson and ghost
note a considerably weaker attraction as compared to the attraction of the previous backgrounds,
and the Goldstone bosons are repelled by the topological soliton. The decay at infinity is extremely
slow. The analysis of these physical features will give qualitative support to our results on the
one-loop corrections to be presented later.

1.5 1.5 1.5
1 A(f)/f 1 A(r) —— 1_’/4&,,777—7
0.5 0.5 0.5
B(r) B(r) B(r) c(r)
C(r) X C(r) X
4 6 8 10 12 14 /Z 4 6 8 10 12 14 2 4 6 8 10 12 14
-0.5/ 0.5 0.5
1 -1 1

Figure 12: Potential wells for [ = 1 V4(r), Vg(r), Vc(r): a) hp = 0.0, b) hp = 0.3, ¢) hy = 0.9

It remains to get rid off the contribution of the Higgs ghosts by considering the ground state
energy of the (fermionic) Faddeev-Popov ghosts. The FP ghost fluctuations (with PBC) are deter-
mined by the Schodinger operator:

KO =00+ |51 +1S[* ox(x1,x2)=8x(xi1 +lL,xa+1)

such that K¢ acts on ch = L*(S'®S!). Again assuming the ortho-normality and completeness of
the eigenfunctions of K, K%y, (¥) = €2 x,(X), in the sub-space orthogonal to its kernel, one finds
the quantum Hamiltonian of the one-loop fermionic fluctuations:
n |
HI(;Z) =hm Z Sn(CZCn - 7) ) (317)
G 2
Spec, K

where {C,C,,} = 8, are the expansion coefficients promoted to fermionic creation and annihila-
tion operators. There are no fermionic ghosts in the topological soliton ground state. Henceforth,

44



Quantum topological defects Juan Mateos Guilarte

C, |0;TS) = 0,Vn and the ground state energy of the topological soliton is:

. . h n
(0, 78182 10;7S) + (0, TS|A2 |0, TS) = 7’" (TrLz K? —Trp (KG)%) - TmSTrLzK%

(3.18)
3.3.2 Vacuum fluctuations
It is instructive to specify this analysis for the vacuum fluctuations:
V= 1 V /=
sS®=(,] VY E =0
In this case the second-order operator fluctuations are Kop = A and KOG = — i + 1 such that the

spectrum is completely known. In a normalization square of area [, periodic boundary conditions
on the fluctuations plus canonical quantization produce the following bosonic and fermionic free
Hamiltonians:

6
Aff):hmZ Z Z @y(n1,n2) (IA’Z]TB%JFBZZB%JF]) ’ wz;ﬁﬁfﬁ}:éacé”“”’ﬁ

a=1n|€Z ny€Z

(2 AT A PPN AT A
Ig) = hm Z Z 0)(111,]12) (C,LIC,” +C,L26‘nz - 1) y {Cnaﬂcm/j} = 5nam/3
n€Z mel
4?5,
o(ny,ny) = @,(ny,ny) = ZT(nl +n3)+1,a=1,234
4r?
Wa(n},n3) = T(n%—i-n%), a=5,6

)
Therefore, the ground state in the vacuum sector is also a coherent state:
. L |V;0)
D(1,X)|V;0) =
0
Ai(1,%)|V;0) =0,

EZQW§O>:5na‘V;0>=0, Va,Vng =

such that the ground state energy follows immediately:
N N 1 1
(0:V| (H}f) +H}£)) V30) = Trj2KZ — Trpa (K§)? = STryz (Ko)?
It is clear that the ghosts cancel the contribution to the vacuum energy of the non-physical Higgs
ghosts and render the theory unitary.
3.4 Zero point energy and mass renormalizations
3.4.1 Topological soliton Casimir energy

Subtracting the ground state vacuum energy from the ground state energy of the topological
solitons

(2 (2 (2 (2
NES = (78| (A + A7) ITs:0) — v (A + B ) [v:o))
= AErs— AEy = %’" <STrK5 - STrK§> (3.19)

one formally measures the semi-local self-dual topological soliton Casimir energy.
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3.4.2 Mass renormalization counter-terms

In (2 + 1)-dimensions, the semi-local Abelian Higgs model is super-renormalizable. This
means that there are a finite number of divergent graphs. We list the one-loop graphs that diverge.

1. Higgs boson tadpole:

e I e e B B
= —2i(x*+1)- I(1) — ix*- 1(0) + finite part

2. Higgs boson self-energy:

S D T T T i G
= —2i(k*+1)- I(1) — ix?- 1(0) + finite part

3. Higgs ghost self-energy:

e gt e

4. Goldstone boson self-energy:

T O T O R ifff o =

= —4i(k*+1)- I(1) — 2ix> - I(0) + finite part

5. Vector boson self-energy:

2i-[I(1)+1(0)]g"" + finite part

Note that the ultraviolet divergences come from integrals of the form:

d’k i
I(c? :/ )
(=] g Tt

and that, unlike in (14 1)-dimensional scalar field theory, normal ordering is not enough.
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Diagram Weight
— i2(x* 4+ 1)I(1) + x*1(0)]
e i2(x* 4+ 1)I(1) + x*1(0)]
S — i2(* 4+ DI(1) + x*1(0)]
B — i[4(x* + 1)I(1) +2x*1(0)]
ANNONN —2i[I(1) 4+ 1(0)]g"¥

Table 6: Counter-term vertices

We add the following counter-terms to cancel these divergences:

25, = 5 (K1) (1) 4 K7 1(0)] - [0 () + 5 () — 1

L = =) +1(0)] - Ap(x*)AH ()

We have used a minimal subtraction prescription and the main criteria to set finite renormal-
izations have been: 1) The divergence due to the tadpole graph is exactly canceled in the self-dual
limit k2 = 1. 2) The global SU(2) symmetry remains unbroken after one-loop renormalizations.
Interested readers can find a fully detailed description of our renormalization conventions in [B2].

3.4.3 Mass renormalization counter-term energies

Therefore, the topological soliton energy due to mass renormalization counter-terms in the
self-dual limit x> = 1 receives the following contribution from the scalar and vector fields:

i

MBS = A+ 10)] [ Px(1 =182 =1P) . ABly = ~im{I(1)+10)] [ Pxvivi

We reshuffle the sum of these two quantities into two pieces AEé(T1> =y 1)z (S,V;) and
AEg(TJ) =1 1(0) x(0)(S,V}), respectively proportional to /(1) and 7(0):

1
s (s, V) = 4/ d*x (1|81 > =85> — S ViVi) - O (s, v) = / dx (1— 181 = |$2)* —2ViVi) .
As in the zero point renormalization one must subtract the energy induced by the counter-terms in

the vacuum from the same quantity for the topological soliton:

AER = NESD(TS) = AESY (V) + AES(TS) — AESD (V) (3.20)

3.5 High-temperature one-loop mass shift formula for self-dual semilocal topological
solitons
3.5.1 Spectral zeta-function regularization

Both AE% and AEITQS are divergent quantities that we shall regularize by means of the zeta
function procedure before being added. We recall that the spectral zeta functions of elliptic op-
erators A (with positive definite and discrete spectrum) are formally defined as infinite sums of
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complex powers of their eigenvalues:

:Zln_“' , seC

SpecA

These sums are usually convergent for Res > sg > 0, where sq is a positive real constant, but are
susceptible to being analytically continued to the complex s-plane. In many favorable cases, their
analytic continuations are meromorphic functions of s and we shall regularize: 1) the ground state
energy in topological sectors, 2) the ground state energy in the vacuum sector, and 3) the SSTS
Casimir energy, by assigning to these quantities the values

serss) = (1) G-ttt 8k =" (1) L) g}

AESg(s) = AErs(s) — AEy(s) : AESg = lim AMS(s)

at a regular point of the spectral zeta functions in the complex s-plane. The spectral zeta functions
of Ko and KOG with periodic boundary conditions on the edges of a square of area I% are given by
meromorphic Euler Gamma functions:

P Is—1] P 1 ? Ts—1]

Sk () = 7 T(s) 27 (s— DI(s) ’ k¢ (9) = 17 T(s)

AEX, can be regularized in a similar vein. On a square of area /% I(1) and 1(0) become infinite
sums over discrete momenta:

/ d2k 1 Z
2 T 7(' 2 2 12 Ak k
Therefore, we regularize AE;e ¢ in the same form:
R o (B ) ) R i AR
AE74(s) = 22\ m2 Conv1(9)ZV(S, Vi) + Ca(s) 2 (S, Vi) , AEpg = 11_f>1|1 AET4(s)
§=3

knowing that:

_1
=55t an() =g =35 - 10) = 358 0(3) = ~37 =

3.5.2 The heat kernel expansion of elliptic differential operators

Because the SST'S solutions are not known analytically, it is not possible to compute the spec-
tral functions of {x (s) and Cxe (). One possible loophole is to rely on the high-temperature asymp-
totic expansion of the heat traces and to build approximations to the spectral zeta functions from
the Mellin transform of these approximated heat traces.

This construction is particularly complicated for the second-order fluctuation operator K. The
Hessian is of the general form:

K = Ko+ Qk(¥X) +V (%)
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The logical sequence is as follows: the K-heat equation kernel is the solution of the K-heat equation
complying with the delta function infinite temperature condition:

((98[3]1+K>KK()?,)7;B):0 , Kx(%,5:0)=1-8®(x—73) . (3.21)

In our problem I is the six X six unit matrix. The K-heat trace, or K-partition function, is the integral
over the whole R?-plane of the K-heat equation kernel at the diagonal of R?> @ R?, whereas the
spectral K-zeta function is the Mellin transform of the K-heat trace:

1 oo
Tre PK = tr/ d*¥ Ky (%,%; ) , Ck(s) = = / dp B°~ ' Tre PK
R2 I'(s) Jo
Given the structure of K,
Kk (X,5:B) = Ck(X.5: B)Kk, (X,5; B)

is a good ansatz to solve (BZ1I). Plugging the ansatz in (BZZI), one finds the transfer PDE and the
high-temperature condition that C(,y; ) must satisfy:

{ 0  Xp—Vk

< .

1
9P B (9k11—2Qk)—A]I+Qk9k+V}CK()?J;ﬁ)=0 , Cx(%,5,0) =1

(3.22)
The solution of (B32) by means of a high-temperature power series expansion

is tantamount to the solving of the recurrence relations:

1
[HH + (Xk —yk)(ak]I — EQk)]Cn(f,y; K) = [A]I — Q10 — V]Cn_l (/_f,)_;; K) . (3.23)

It is easy to find the first Seeley density, ¢ (X,X; K) = —V(X), a result used in the subsection above
addressing the index theorem. Higher-order Seeley densities are harder to find. It is convenient to
introduce the notation

(1.0 3 () = fim O nlab (.32 K)

L P o laleEEK) =@

because the recurrence relations between derivatives of the Seeley densities can be written in the
compact form
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(k+ o + 0o + 1)(061,062)@]?&1 (%) = (BF20)cab(7) 4 (0.042) cab () _

O A & (o () [0 (o rit.ctyi) o =
XL () o Gt

1r=07=0
arﬂQZ (1 —r,0p—t+1) ~db
T oo Cit(%)| +
6 a—1 m (0) ar+tQ?d o1yt
Py T ) —
2; = ; ( ><t>axqax‘ et (%) +
s xi ar+thd o —t,0p—1—
_ =z (O r) —
nrIre(™ ")) e cih () -
_ 26: 0 0 ( ) < )W(al—t,az—r)cgb(f)
d=1r=01=0 ox' dx}

(@B)cab(%) =0, ifa # 0,and /or B # 0
,4GK)=1= 0 ’ ’
CO(X,X ) { <0’0)C6m()_5) — 17 a= 1,2,-'~,6

susceptible to being solved with the help of a symbolic programm implemented in Mathematica.

3.5.3 Mellin transform of the heat trace asymptotic expansion

The spectral zeta functions of of both K and K¢ are obtained from the high-temperature ex-
pansion of the heat traces via the Mellin transform:

_ 1 ld s—1 1 - n -B - IK o OK
() = 17 ), BB g BB Bkt L
4 L / " dp g Tre BK
Gl = 1 ) Bﬁ“{MﬁZB"cnKG}+/ 4B B Tre PR

Here the Seeley coefficients [c!,(K)]aa» [c?(K)]aa» and ¢, (K©) are obtained through integration over
the whole R?-plane of the Seeley densities:

> [ & s+n— 6
Gelo) = X {Z[cﬂm]aaw + X e ) } + i Be(s)

Cuols) = X ek Rl ). (.24)
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An important warning: the physical point s = —% is a regular point -not a pole- of {k(s),

Cxa(s), Ck,(s), and CK(? (s). Unlike in kink cases, after zeta function regularization is performed
only finite renormalizations are left in (2 + 1)-dimensional field theories.

3.5.4 High-temperature one-loop mass shift formula for self-dual semi-local topological
solitons

Neglecting the entire parts and truncating the zeta functions at a finite number of summands
No, the high-temperature one-loop formula giving the semi-classical shift to the masses of semi-
local self-dual topological solitons is obtained:

AIMTS = AE$3+AE¥S =
hm No 4 3 6 . y
T T lenym ;2 {[Q;[C"(K)]aa = (KO- yln =7, 1] +§s[n<f)§]} —|—4l-87t]

h
_ Sn\n;ﬁ-/dzx 1S5 (x1,22) - (y[—z,l]—2> . (3.25)

The following remarks are meaningful:

1. The factor —2[71—\/’%’ is due to the subtraction of the 4/ zero modes by exactly the same proce-
dure as the regularization method used for kinks.

2. Unlike in theories with only massive particles, the criterion of the exact cancelation of tadpole
graphs is not completely equivalent to the cancelation of the contributions of the first-order
diagonal Seeley coefficient. The term in the second row of formula (B223) is the mismatch
between these two criteria due to the massless particles in the semi-local Abelian Higgs
model.

3. The ANO vortices correspond to the SSTS solitons with S,(X¥) = 0. Freezing the 65, (xo,%)
fluctuations and dropping away the associated 2/ zero modes, the one-loop mass shifts for
ANO vortices are attained.

3.6 Mathematica calculations

In this last Section we shall solve the recurrence relations to find the Seeley densities and their
associated Seeley coefficients by a mixture of symbolic and numerical Programs implemented in
Mathematica. We shall focus on circle symmetric SSTS solutions,

Si(x1,x2) = f(r)cos @ S2(x1,x2) = f(r)sin @
SY(x1,x2) = h(r) S3(x1,x2) =0
o(r) o(r)

Vi(x1,x2)

——Z2sin@ Va(x1,%) = ——=cos O ,
r r

the only ones at our disposal, although f(r), h(r), and o (r) have been found numerically.
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3.6.1 Seeley densities for circle symmetric semi-local vortices

The first step is to use the first-order rotationally symmetric ODE (B7) to write the field deriva-
tives in terms of the field profiles themselves:

gﬁ = @ [1 - a(r)cos? 6] 32 = f(rr) [1— a(r) sin’ 0] ‘;2 - _Kr’)a(,)cose

gi = —@a(r)cosesine gﬁz—f(r)a(r))sinecose (;ifz—h(rr)a(r))sine
% _ cos229 2f(ria(r) +fz(r)+;z2(r)—1 %1 :7005260;(;) sin229 PR —1)
% - —eos20%0 COS;"(fz(,th(r)_l) 31; __con26 121t +f2(r)+1212(r)—1

This step is important because numerical calculations on field derivatives cause considerable er-
rors. The next step is the Mathematica solution of the rotationally symmetric recurrence relations.
Below we list the three first-order circle symmetric Seeley densities:

2
wel (r) = 5— 2ar(2r) —5(r)? — 3h(r)?

treh(r) = ﬁ [4a(r)4+27r4f(r)4 —8r%a(r) (71 +14(r)? +h(r)2) +
+8a(r)? (~2-372 4972 £(r) +3r7h(r)?) +
£ (5672 = 64r* +3454 () ) +1* (37 = 320017 +Th()*) |

wel(r) = 35 {4 42 alr)® (1443572 ~36h07) +
+aa(nt (2049724327 £(r)2 +267h(r)?) —

—272a(r) [S772 £+ £()? (32433172 =752 0(r)?) =4 (=1 +h(r)?) (=16 =97 +2h(r)?) | +
+a(r)? [~256— 14477~ 1177 4997 (1) =162 h(r) + 947 h(r)” — 61 h(r)*+
277 £(r)? (56418372 197 h(r)?) | +
o [—16+ 1512 —2972 f(r)° + (32— 135r2> h(r)? + (—16+23 r2) h(r)* + 2 h(r)®+
+ (—20+ 1992 —57r2h(r)2> +f(r)? (392—321 242 (—68+111r2) h(r)>? —27r2h(r)4>] } .

Here, tr means that we have summed up to the fourth diagonal density.

tref(r) = 1—- 20;%)2 — f(r)* =3h(r)?
tred(r) = ﬁ[4a(r}4—r4f(r)4+8r2a(r) (1+2f(r)2—h(r)2) -

~8a(r) (24242 f(r) =52 h(r)?) 422 (1) (~4+972h(r)?) +

+r* (1-8h(r)? +19h(1*)]
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we§(r) = #Olﬁ {40 —4r2 a(r)? (~14+97(r) +84h()?) -
—aa(r)t (20437 +27 (F()? +4n(r)?) ) +
+a(r)? [256-+4872 =374 457 f(r) 21 (~40+897% ) h(r)? — 1154 h(r)*+
+ 272 () (84572 =352(r)?) | -
“272a(r) [S32 () +4 (<14h()?) (<16 =32 472 h(r)?) = £()? (3241772 4472 (r)?) | +
(164324377 £ = (3241972) () + (1642372 ) h(r)* + 337 h(r)+
+ £ (2= 439200 + () (—24= 57+ (=7242272) h(r2 4697 h(n)*) | }

tr now means that we have summed [c9]ss and [c9]g6.

f(r) = 1= f(r)*=h(r)?
§0) = oy [P 427 F)* — (5P +4a(n?) WP+ 2200+
) (<45 +8a() —4alr)? +4r2n()?) |
§r) = %{710r4+4r4f(r)6+ 23 =872 a() +16 (1+77) a(n? +32a() + 16a()*] h()*+
+72 <1772 +8a(r) ~ 16(r)?] A(r)* +4rh(r)°+
+2 f(r)* [-24 =177 +40a(r) ~ 16 () + 1272 h(r)?] +
+0)? [-3200r) +16a()* + 872 alr) (=5 +6h(r)?) +16a(r)? (1472 =2/2h(r)?) +

r2(24+23r2—2(10+177’2>h( +127 h(r 4)]}

3.6.2 One-loop SSTS mass shifts

In this sub Section we offer some Tables with Mathematica calculations of the one-loop cor-
rections to the masses of topological solitons in the semi-local Abelian Higgs model. We denote
the Seeley coefficients, calculated by means of numerical integration of the circle symmetric Seeley
densities evaluated at the numerical solutions for the field profiles, in the form:

trel :27r/ drrtech(r) trc,?:27'[/ drrtecd(r) | 05227'[/ drrcS(r)
0 0 0

First, we focus on the embedded ANO vortices, the Ag topological solitons. Second, we give results
for several values of /g up to a value of /g close to iy = 1, which corresponds to the CP!-lumps.
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1. One-loop vortex mass shifts in units of 7m:

Because the ANO vortex solutions were generated numerically, integration over the whole
plane of the Seeley densities can also only be performed numerically. Therefore, we are forced
to put a cut-off in the area and replace the infinite plane by a discus of radius R, which in the
calculations shown below was chosen to be R = 10.000

ho=0.0

n tr c,]1 tr c,? c,(,; No | AMy (No)

1| -41.4469 -91.8429 12.599 =1

2| 30.3736 0.96286 2.61518 i 12;222

3| 129447 | -0.0592415 0.32005

4 | 422603 | 0.001512548 | 0.0230445 4| 167809
5 | -1.67966

5| 1.05059 | 0.000758663 0.0013023 6 | -1.67989

6 | 0.20900 | -0.00023912 | 0.0000698185

Table 7: Seeley coefficients for the (left) and Quantum Mass Correction (right) to the soliton in the semi-
local Abelian Higgs model with hy = 0.0.

In the Table on the left, the first six Seeley coefficients are given. The next coefficients are
very small and one expects that the approximation to the exact value of the one-loop mass shift
is quite good, as shown in the Table on the right: the mass shift obtained by counting five or six
coefficients agrees up to the third decimal figure. In fact, the thresholds in the wells are < 1. 1 is the
expectation value of the scalar field at the vacuum, and we find a similar situation to sine-Gordon
kinks (see the first Part), where keeping six coefficients provides a fairly good approximation.

From the same Table one can read the one-loop mass shifts of ANO vortices with / = 1 in the
Abelian Higgs model: just take trc?(K) equal to zero and subtract two zero modes, not 4. The ratio

18:
AMPEAEM 1 67989

AMPTM - 1.09449

= 1.53486

A similar proportion exists between the ratios of kink mass shifts in the A ((1))‘2t model and the BNRT
model, both treated in the first Part:

AMPENRTM0.693943
AMEPM 0.471113

AMPNRTM0.698445
AMEPM0.471113

=1.47299, 6=0.99

=1.48254, 0 =1.01.

2. SSTS one-loop mass shifts

Whereas the one-loop mass shift of ANO embedded vortices is always negative and varies
extremely slowly as the area increases towards more negative values, one-loop mass shifts of gen-
uine semilocal topological solitons with || > 0 become less negative, and even positive, for larger
areas, as is shown in the following Table.

The classical degeneracy in energy between semi-local topological defects seems to be broken
by one-loop fluctuations, the ANO embedded vortices becoming the ground states in the topolog-
ical sector of one quantum of magnetic flux. It is remarkable how strong this effect becomes for
topological solitons close to CP!-lumps, |hg| ~ 1.
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R | AMy(Ny=6,R) | AMy(Nyp=6,R) | AMy(No=06,R) | AMy(Ny =6,R) | AMy(Ny =6,R)
hy=0.0 hy=0.1 ho=0.3 ho=0.6 ho=0.9

10? -1.67955 -1.61672 -1.05000 2.10142 24.6066

103 -1.67971 -1.58311 -0.626167 4.5485 42.77747

10* -1.67989 -1.55133 -0.252586 6.41655 60.9433

10° -1.68005 -1.51957 0.12086 8.5741 79.1116

100 -1.68026 -1.48779 0.49433 10.7203 97.2798

Table 8: One-loop mass shifts for semi-local topological solitons: Five values of kg, five values of R, and
fixed N() =6.

3.6.3 Infrared divergences: quantum fate of semi-local topological solitons

The origin of the degeneracy breaking is the slow decay (non-exponential) to their vacuum
values of genuine semilocal topological solitons as compared with ANO vortices. Plugging the
asymptotic form of the circle symmetric topological soliton solutions in the Seeley densities, we
find the following behavior at infinity in terms of the parameter |/2!| (which sets the long r behavior
of the solutions):

AT

. 1
2mrteet () X7 — (=P + (lz\h =1t +0(3)
~ 47 1
2t (r) 2 ——(1+\h B+ 5 O 4! P+ 1n 1+ 0(5)
- 1
2mreS(r) "~ |h \2+ﬁ’(—5)
] 2 1
2mrtech (r) = |h *+ ﬂ( 1+4[n'[> - |h1|4)+ﬁ(?)
I
. 1
2mrtecd (r) =~ |h I*+ ( 14+4[n' > — |h1|4)+ﬁ(75)
- 64 1
21§ (r) 2 ”\h 24 (768|h1\2—80\h1|4)+ﬁ(r—9)
. 1
2mrtrch(r) "2 Ih ?+ (S\h = 1r'+0(=5)
2rteed(r) X — \h |2 ( 4P 4|t )w’( )
Fseo 384
2mrc§ (r) = r Jrﬁ( g)
i r—ee  JU 49 12 12 14 1
27rtrey (r) =~ —|h | +6f3(—\h |=—1|h'| )—l—ﬁ(r—s)
- 1
2t (r) "2 \h 2+ (4|h [ =1n 1+ 0()
r—so0 8327: 437: T 1
2mrc§ (r) 21r9| e |h 1o+ r9|h1|8+768r9|h1\10+ﬁ(r1—1)
I r—oo U 1 2 12 14 1
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r—o
2rtred(r) " WPt S (Al P ) + 0 )
roroo 2048 416 43 1
2areS(r 2 AR AT Bl AL A CA N
res (1) (105| BT L T 864| "+ 138240| ) +oC)
- 1 1 1
2rteel () 2 MR T P 1 o~
wriech(r) 2 T A G
0 T2 AT 2 114 1
2rtred(r) "L I (P )+ 0 )

The key observation is the appearance of infrared logarithmic divergences in the Seeley coefficients

tre! (K) and tre9 (K) for all n. The ghost coefficients ¢ (K¢), however, are infrared convergent. The
combination of the signs that we have seen in the previous sub-sections with the long r behavior
shows that one-loop mass shifts of semi-local topological solitons tend to << in the infinite area
limit. Semi-local topological defects grow infinitely massive due to the infrared effects of one-loop
fluctuations. This phenomenon seems to be amazingly close to the non-existence of Goldstone
bosons in (1+1)-dimensions.

There is a very important exception: for ANO vortices, |2!| = 0 and only the first-order co-
efficients are infrared divergent. However, the contribution of these coefficients is totally canceled
by mass renormalization counter-terms. Our results suggest that only the ANO vortices between
all the semi-local topological solitons survive one-loop quantum fluctuations. It would be very
interesting to try a more analytic approach to this problem in order to fully elucidate this delicate
issue.

3.6.4 Circle symmetric self-dual Abrikosov-Nielsen-Olesen vortices: one-loop mass shifts up
tol=4

Finally, we consider the problem of computing the one-loop mass shifts for superimposed
ANO vortices at the k = 1 limit up to four quanta -87- of magnetic flux in the Abelian Higgs
model (no fluctuations in the a = 5,6 directions and 2/ zero modes). The Figure 13 shows the

Figure 13: Plots of the field profiles a(r) (a) and f(r) (b), the magnetic field B(r) (c), and the energy density
£(r) for self-dual vortices with [ = 1 (solid line), [ = 2 (broken line), [ = 3 (broken-dotted line) and [/ = 4
(dotted line).

field profiles, the magnetic field, and the energy density for the numerically generated solutions for
[=1,1=2,1=3,and [ =4 in [¥]. The Figure 14, however, encompass the 3D plots of these
solutions.

The Seeley coefficients for the different values of / as well as the one-loop mass shifts are
displayed in the Tables below *
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4

Figure 14: 3D graphics of the energy density for [ =1, [ =2, [ = 3 and ! = 4 self-dual symmetric ANO

vortices.
=1 =2 =3 =4
n | trep(K) cn(K©) tre, (K) cn(K9) n | trep(K) cn(K9) tren (K) cn(K9)
2 | 30.36316 2.60773 61.06679  6.81760 2 | 90.20440  11.51035 | 118.67540 16.46895
3 | 12.94926 0.31851 25.61572  1.34209 3 | 36.68235 2.60898 46.01141 4.00762
4 | 4.22814 0.022887 8.21053 0.20481 4 | 11.69979 0.46721 14.64761 0.77193
5 | 1.05116 0.0011928 2.02107  0.023714 || 5 | 2.86756 0.067279 3.58906 0.11747
6 | 0.20094  0.00008803 | 0.40233  0.002212 || 6 | 0.566227 0.0079269 | 0.667202 0.01620

Table 9: Seeley Coefficients for/ = 1,/ =2, [ = 3 and [ = 4 self-dual symmetric ANO vortices.

No | AMy(No) AMy(No) AMy(No) AMy(No)
=1 =2 =3 =4
2 | -1.02951 -2.03787 -3.01187 -3.97025
3 | -1.08323 -2.14111 -3.15680 -4.14891
4 | -1.09270 -2.15913 -3.18208 -4.18014
5 | -1.09427 -2.16212 -3.18628 -4.18534
6 | -1.09449 -2.16257 -3.18690 -4.18606

Table 10: One-loop mass shift for / =1,/ =2,/ =3 and [ = 4 self-dual symmetric ANO vortices.

and the last Table provides the one-loop mass shifts of circle symmetric self-dual ANO vortices up
to four quanta of magnetic flux taking into account Ny = 6 Seeley coefficients.

4The Seeley densities corresponding to self-dual ANO vortices superposed at the origin up to four quanta of mag-
netic flux are given in [Z9].
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[ | AMy /im SR
1| -1.09449 s

2 | -2.16257 N

3 | -3.18690

4 | -4.18606 '

It is remarkable that the one-loop mass shift seems to be linear in /. We have found that the one-
loop correction to the mass of a circle symmetric vortex of magnetic flux 87 is extremely close
to four times the one-loop mass shift of a similar vortex of magnetic flux 27z. This result strongly
supports our method: after extremely sophisticated calculations we end with the natural answer.

4. Prospects on the future of the subject

We finish by offering a summary of other possible approaches to this subject as well as pointing
to other playgrounds where similar methods may work and should be applied.

1. In [E9], and [BO] Blas and Carrion explored a generalized sine-Gordon model containing
as many scalar fields as the rank of the SIL(N,C) Lie group. The potential energy density
is determined from the simple roots in such a way that the integrability of the sine-Gordon
model is enjoyed by the generalized model. Clearly, there is a correspondence between this
model and the ordinary sine-Gordon model that is analogous to the correspondence between
the deformed linear Q(N)-sigma model and the A¢* model. There are several types of
kinks in this system, which have also been dealt with by the authors in a quantum setting.
Nevertheless, it seems to us that the generalized sine-Gordon models offer another excellent
arena for applying and improving the quantization method described in this report.

2. In our Lectures we have addressed a massive non-linear S?-sigma model having a rich kink
manifold, see [B3]. In fact, we also computed the one-loop correction to the classical mass
of the topological kinks using the Cahill-Comtet-Glauber formula in [B4]. We look forward
to attacking this problem by means of the heat kernel/zeta function approach, not only in this
system but also in other similar non-linear sigma models where we vary the potential energy
density; e.g., adding quartic terms, and/or we change the target space, e.g., to S3.

3. In a very interesting paper [BI] Vafa et al. analyzed .#” = 2 supersymmetric Landau-
Ginzburg models that are integrable deformations of the .#” = 2 supersymmetric A; minimal
series. The BPS states of these integrable (1 + 1)-dimensional field theories were identified
by these authors as “holomorphic" kinks with very noticeable properties. Almost ten years
later several of us went through the same set of kinks in [E2]. We focused only upon the
bosonic sector of the model and chose a real analytic point of view. We believe that the
techniques developed in these Lectures provide a procedure for computing the one-loop kink
mass shifts due only to bosonic fluctuations. k? is the threshold of the wells and hence we
expect to need at least Ny = 20 coefficients in order to reach a good approximation. In the
A =2 supersymmetric version of this model, the one-loop correction including bosonic and
fermionic fluctuations is zero. Therefore, there is no need to compute the effect of fermionic
fluctuations: bosons and fermions created in the kink background cancel each other exactly.
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4. Another strategy may be fruitful. The heat trace, or partition function, which is basic in
our approach, admits another conceptual understanding as a path integral over closed world
lines:

1 1 ¥ dz, dz,
S — dr | = § & S2ae |
Elzt, - zn] /0 leaz_l Jr dr+ [21(7), - zn(7)]

):xa

L Za(l
Z(B,1) = Trpe PX =TI}, /21 dxa/( : Dz(t) e Bl . 4.
-4 2a(0

—x,
Here, T = it is imaginary time, Sg is the Euclidean action for a particle moving in a cube
IV with varying positions z,(7). The path integral is over all the closed paths, and ordinary
integration over all the base points of the loops is necessary. It is well known that the Feyn-
man treatment of these path integrals in the high-temperature regime [B3] reproduces the heat
kernel expansion. What seems more promising is the numerical computation of these world
line path integrals using Montecarlo methods, see e.g [B4]. Applied to the ANO vortices and
semilocal strings this should provide reliable results to be contrasted against our calculations.

5. The Lagrangian density

1 A 1. 2 l 602
— [T b N4t _ 2_ _ 77
% 2{8“(}58 ) [ j 5(z—|—2)+ 7 6(z 2)+4G cosi?on

] ¢2(xu)} (4.2)

describes the dynamics of a rara avis scalar quantum field theory. The mesons do not move
freely even though they do not interact because they are constrained by a background. If
o = 0, the background in (E2) is formed by two parallel plates located at a distance / from
each other in two planes orthogonal to the z-axis. The effect of the plates is mimicked by two
J-function potentials of strength A... When [ = o0 and ¢ = 1, the background corresponds
to a kink living in the z-axis, or to a solitonic/thick domain wall orthogonal to the z-axis.
Other choices of the couplings provide more complex backgrounds built from these two
basic backgrounds.

In Reference [R3] Milton wrote the Green’s function for the two-plate setup (using Dirichlet
boundary conditions). This leads to the energy momentum tensor encoding the Casimir
energy -essentially the 7op component- and the Casimir force -essentially the 7, component-.
It is tempting to perform the same calculation for the kink background. This should provide
not only information about the one-loop kink mass shift but should also shed light on the
qualitative nature of the forces exerted by the scalar fluctuations on the kink profiles.

6. Over the last year, an interesting paper by Baacke and Kevlishvili was published [Bf] in
which the one-loop shifts to the classical masses of Nielsen-Olesen vortices were obtained
by using Green’s function methods. The remarkable fact is that the authors gave the quantum
corrections with no restriction in the ratio of Higgs and particle masses.

It seems that the time is ready to tackle the problem of the quantum corrections of Z-
electroweak strings. These topological defects are embedded NO vortices in the neutral
Z,, massive vector field of electroweak theory, and the calculation may will be of experi-
mental interest (even though some imaginary contribution to the energy will arise, because
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electroweak strings are unstable). In fact, there is an interesting paper on this subject, see
[B3], at the non-physical value of the weak angle equal to zero, and even a status report [BS].

. In a longer perspective, one might think of studying the quantum fluctuations of BPS mag-

netic monopoles. The work in [B9] suggests that the bosonic sector of .4~ = 2 supersymmet-
ric Yang-Mills is the right model to look into this problem. Even though van Nieuwenhuizen
et al. succeeded in computing the one-loop mass shift to .#" =2 SUSY monopoles, the diffi-
culties in a purely bosonic framework seem insurmountable. First, the second-order operator
governing the fluctuations is (for the SU(2) group) a 21 x 21 matrix-Schrédinger operator
in three dimensions. Second, the theory is renormalizable, not super-renormalizable. The
coupling constant also receives one-loop divergent contributions that must be canceled by
the secod-order Seeley coefficient. So who is afraid of this big bad wolf?
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