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1. Introduction

In these lectures we present an alternative method of calculus of trajectories and motions of
test particles in the vicinity of a massive body, and a similar method for obtaining approximate
solutions of Einstein’s equations in vacuo. Both methods are based on successive approximations
of solutions which are presented as infinite series in powers of some small parameter. Although we
are still far from the results obtained by the usual methods of post-Newtonian approximations, the
present approach is very well suited for recurrent numerical calculations.

Facing a highly non-linear and complex theory like Einstein’s General Relativity one is forced
to use approximation techniques in order to find realistic solutions. There are usually two alterna-
tive ways to treat the problem:

a) when a linearized version of theory exists, to find an exact solution of the simplified theory,
and then add small perturbations transforming it into something that is closer to the exact theory
solution;

b) when an exact (usually very symmetric) solution of the exact theory is at hand, try to deform
it slightly and obtain, by successive approximations, a more general solution of the exact theory.
This situation is be represented by the following diagram:

Full (exact) theory −→ Simplified (linearized) theory

↓ ↓
Approximate solutions . . . . . . Exact solutions

of exact theory of approximate theory

In General Relativity this diagram, which we would like to become commutative, represents
two different approaches to the solution search in General Relativity: both cases are represented
in the literature. The classical way to obtain the perihelion advance, as treated by Einstein, con-
sists in solving in quadratures the geodesic equation describing the motion of a test particle in a
Schwarzschild background, then in taking an approximate integral by expanding the integrand in
powers of MG/r, supposed very small in realistic situations, and keeping only the linear term of
the expansion. This approach is represented by the left side of the diagram.

The relativistic two-body problem including gravitational radiation was treated in an oppo-
site manner: first, the exact solution of the equation of motion was found in the Newtonian the-
ory, which can be considered as a limit of General Relativity when c → ∞; then, starting from
Minkowskian space-time and the Newtonian solution, corrections were added simultaneously to
the trajectories and to the metric, with small parameter being v/c, its square also supposedly pro-
portional to MG/r. This is represented on the right side of the diagram below:
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General Relativity c→∞−→ Newtonian theory

↓ ↓
Special exact solution Post-Newtonian

(circular orbit, approximations∼ v2/c2

Schwarzschild background)

↓ ↓
Successive deformations . . . . . . Post–post-Newtonian

"epicycles" approximations∼ v4/c4

ε ∼ eccentricity

In what concerns the two-body problem and the description of motion of bodies in the vicinity
of a massive central body, the first approach has been successfully exploited by Ll. Bel, N. Deruelle,
Th. Damour, G. Schaeffer, L. Blanchet, and others ([2], [3], [4], [5] )

The second approach has been tested on the two-body problem in General Relativity quite
recently, by one of the authors of this paper (RK), in collaboration with with A. Balakin, J.-W. van
Holten, R. Colistete Jr. and C. Leygnac ([6], [7], [8], [9])..

The problem of motion of planets in General Relativity, considered as test particles moving
along geodesic lines in the metric of Schwarzschild’s solution, has been solved in an approximate
way by Einstein ([1]) who found that the perihelion advance during one revolution is given by the
formula

∆φ =
6πGM

a(1− e2)
(1.1)

where G is Newton’s gravitational constant, M the mass of the central body, a the greater half-axis
of planet’s orbit and e its eccentricity.

This formula is deduced from the exact solution of the General Relativistic problem of motion
of a test particle in the field of Schwarzschild metric, which leads to the expression of the angular
variable ϕ as an elliptic integral, which is then evaluated after expansion of the integrand in terms
of powers of the ratio GM

r when it can be supposed to be very small.
It has been successfully confronted with observation, giving excellent fits not only for the or-

bits with small eccentricities (e.g., one of the highest values of e displayed by the orbit of Mercury,
is e = 0.2056), but also in the case when e is very high, as for the asteroid Icarus (e = 0.827), and
represents one of the best confirmations of Einstein’s theory of gravitation. In the case of small
eccentricities it can be developed into a power series:

∆φ =
6πGM

a
(1+ e2 + e4 + e6 + . . .). (1.2)

One can note at this point that even for the case of planet Mercury, the series truncated at the
second term, i.e., taking into account only the factor (1+e2) will lead to the result that differs only
by 0.18% from the result predicted by relation (1.1), which is below the actual error bar.

In what follows, we show how one can obtain the same results without taking integrals, but just
by successive approximations around a circular orbit with constant angular velocity, leading to an
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iterative process of solving ordinary linear differential systems. The small parameter here will be
not MG/r, which can take any value, but the excentricity e, controlling the maximal deviation from
the initial circular orbit. It is amazing that with this method the effect of the perihelion advance is
obtained already at the first order in the expansion in powers of e.

2. Geodesic deviations

In order to compare two close geodesics, one needs to see how a parallelly transported vector
is modified when transported along the one or another neighbor geodesic. In fact, if an infinites-
imal vector field is defined along a given geodesic curve, it may serve to produce another curve,
infinitesimally close to the first one. A natural question can be asked then, is the new curve also
a geodesic ? The answer is positive if the infinitesimal deformation vector satisfies the so-called
geodesic deviation equation.

Given a (pseudo)-Riemannian manifold V4 with the line element defined by metric tensor
gµν (xλ ),

ds2 = gµν (xλ )dxµdxν , (2.1)

a smooth curve xλ (s) parametrized with its own length parameter (or proper time) s is a geodesic
if its tangent vector uµ = (d xµ/d s) satisfies the equation: uµ = (d xµ/d s)

uλ
∇λ uµ = 0 ⇔ Duµ

Ds
=

duµ

ds
+Γ

µ

λρ
uλ uρ = 0. (2.2)

where Γ
µ

ρλ
denote the Christoffel connection coefficients of the metric gµν . Equivalently, the

geodesic equation can be written in its more standard form:

d2 xµ

d s2 +Γ
µ

λρ

dxλ

ds
dxρ

ds
= 0. (2.3)

Suppose now that a small deformation is produced along this geodesic line:

xµ (s)→ x̃µ (s) = xµ (s)+δ xµ (s), (2.4)

In order to check out to what extent the new curve x̃µ (s) has conserved its geodesic character,
we should veriify whether its satisfies its own geodesic equation:

d2 x̃µ

d s2 + Γ̃
µ

λρ

dx̃λ

ds
dx̃ρ

ds
= 0. (2.5)

Applying the Taylor expansion also to the Christoffel symbols,

Γ̃
µ

λρ
= Γ

µ

λρ
(x̃ν) = Γ

µ

λρ
(xν)+∂σ Γ

µ

λρ
(xν)δxσ +O((δxν)2),

and keeping only terms linear in δxλ , we arrive at the following condition on the infinitesimal
vector δxλ :

d2δxµ

ds2 +2Γ
µ

λρ
δxλ d δxρ

ds
+∂σ Γ

µ

λρ

dxλ

ds
dxρ

ds
δxσ = 0+O(δxν)2). (2.6)
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In this form of the geodesic deviation equation one easily identifies the relativistic generalizations
of the Coriolis-type and centrifugal-type inertial forces, represented respectively by the second and
third terms of Eq. (2.6). Although it does not look manifestly covariant, one can put forward its
covariant character by replacing the ordinary second derivative by the covariant one, and adding
compensating terms containing Christoffel symbols and their derivatives to obtain the well-known
covariant form of the geodesic deviation equation:

D2δxµ

Ds2 = R µ

λρσ

dxλ

ds
dxσ

ds
δxρ . (2.7)

This first-order geodesic deviation equation is often called the Jacobi equation, and is manifestly
covariant. Note that it represents only the linear approximation - one can say that if the deviation
δxµ satisfies the equation (2.7), then the curve x̃µ (s) = xµ (s)+δ xµ (s) close to the geodesic curve
xµ (s) is also a geodesic, but only up to the terms of quadratic and higher order in δxµ which we
deliberately neglected.

Now, one can become more ambitious and ask that the neighbor curve to the geodesic be a
geodesic not only up to the linear approximation, but up to a given order in powers of the small
deviation δxµ . As in the usual differential calculus, we should expand the functions x̃µ (s) into a
Taylor series containing all the higher-order corrections, which we can stop at the desired order of
approximation:

x̃µ (s) = xµ (s)+δ xµ (s)+
1
2!

δ
2 xµ (s)+

1
3!

δ
3 xµ (s)+ ... (2.8)

It should be stressed now that although the first deviation δxµ transforms as a vector, the second
and higher-order deviations do not; for example, after a coordinate change xµ → yλ ′ (xµ) we shall
have

δyλ ′ =
∂yλ ′

∂xµ
δxµ , but δ

2yλ ′ =
∂yλ ′

∂xµ
δ

2xµ +
∂ 2yλ ′

∂xµ∂xν
δxµ

δxν , (2.9)

including the terms quadratic in the first deviations. However, it is easy to introduce a covariant
quantity of the same order; we shall denote it by bµ ; in order to make clear the infinitesimal
character of this vectorial quantity, let us introduce the notation with small parameter ε in the
following manner: let now

dxµ

ds
= uµ (s), δxµ (s) = ε nµ (s),

then it is easy to check that the vector defined as

ε bµ (s) = δ
2 xµ(s)Γ

µ

λν

dxλ

ds
dxν

ds
= δ

2 xµ (s)+ Γ
µ

λν
nλ nν . (2.10)

Developing the geodesic equation up to the second order in ε , after some algebra using the the
Bianchi and Ricci identities for the Riemann tensor, we get the following condition for the vanish-
ing of the second order terms:

D2bµ

Ds2 +R µ

ρλσ
uλ uσ bρ

= [∇νR µ

λρσ
−∇λ R µ

νσρ ]uλ uσ nρnν +4R µ

λρσ
uλ nρ

(
Dnσ

Ds

)
. (2.11)
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Note that the second-order deviation vector bµ(s) satisfies an inhomogeneous extension of the
first-order geodesic deviation equation, with the same left-hand side as for the first deviation nµ ,
but with the extra terms on the right-hand side, containing various expressions quadratic in the first
deviation and its first derivatives.

The procedure can be extended to an arbitrarily high order geodesic deviations δ nxµ(s), al-
lowing us to construct a desired set of geodesics in the neighborhood of the reference xµ

0 (s), when
the congruence of geodesics is not given a priori in closed form. Indeed, all that is needed is the
set of deviation vectors (nµ

0 (s),bµ

0 (s), ...) on the reference geodesic; these vectors are completely
specified as functions of s by solving the geodesic deviation equations (2.7), (2.11) and their ex-
tensions to higher order, for given xµ

0 (s). As in the case of the first-order deviation, it is sometimes
convenient to write equation (2.11) in the equivalent but non-manifest covariant form

d2bµ

ds2 +∂ρ Γ
µ

λσ
uλ uσ bρ +2Γ

µ

λσ
uλ dbσ

ds

= 4
(

∂λ Γ
µ

σρ +Γ
ν
σρ Γ

µ

λν

) dnσ

ds
(uλ nρ −uρnλ )

+
(

Γ
τ
σν ∂τ Γ

µ

λρ
+2Γ

µ

λτ
∂ρ Γ

τ
σν −∂ν ∂σ Γ

µ

λρ

)
(uλ uρnσ nν −uσ uνnλ nρ).

(2.12)

Again, the above formula is valid up to the third-order terms; one can continue ad infinitum pro-
ducing better approximations each time. The third-order deviation vector and its equation can be
found in ([8]).

Now we can proceed to the simple application of these formulae to the two-body problem
treated as motion of a test particle with negligible mass m when compared to the mass M of the
central body.

3. Deviations from circular orbits

Let us consider the geodesic deviation equation starting with a circular orbit in the field of
a spherically-symmetric massive body, i.e. in the Schwarzschild metric. The geodesic deviation
analysis in General Relativity has been performed by S.L. Bazanski and P. Jaranowski ([10], [11],
[12]), but only for straight geodesics; a non-geodesic circular motion in the gravitational field of a
massive body was also studied by Aliev and Gal’tsov ([13]). The circular orbits and their stability
have been analyzed and studied in several papers [14, 16, 17] and books, e.g. the well-known
monograph by Chandrasekhar [18].

The gravitational field is described by the line-element (we have put c = 1; G the gravitational
constant):

gµνdxµdxν =−ds2 =−B(r)dt2 +
1

B(r)
dr2 + r2 (dθ

2 + sin2
θ dφ

2) , (3.1)

with
B(r) = 1− 2MG

r
. (3.2)

Let us recall the essential features of the solution of the geodesic equations for a test particle
of mass m << M.

6
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As the spherical symmetry guarantees conservation of angular momentum, the particle orbits
are always confined to an equatorial plane, which we choose to be the plane θ = π/2.

The angular momentum J is then directed along the z-axis. There is another first integral
corresponding to the conserved world-line energy. Denoting the magnitude of J per unit of mass
by ` = J/m, and the energy per unit of mass by ε , we have

dφ

ds
=

`

r2
dt
ds

=
ε

1− 2MG
r

. (3.3)

The equation for the radial coordinate r can be integrated owing to the conservation of the world-line
Hamiltonian, i.e. the conservation of the absolute four-velocity:(

dr
ds

)2

= ε
2 −

(
1− 2MG

r

)(
1+

`2

r2

)
. (3.4)

From this a simplified expression for the radial acceleration is easily derived:

d2r
ds2 =−MG

r2 +
(

`2

r3

) (
1− 3MG

r

)
. (3.5)

The equation (3.4) can in principle be integrated; indeed, the orbital function r(φ) is given by
an elliptic integral [19, 20]. However, to get explicitly an approximate parametric solution to the
equations of motion one can also study perturbations of special simple orbits, namely, the circular
ones.

Observe that for circular orbits r = R = constant, the expressions for dr/ds, Eq. (3.4), and
d2r/ds2, Eq. (3.5), must both vanish at all times. This produces two relations between the three
dynamical quantities (R,ε, `), showing that the circular orbits are characterized completely by spec-
ifying either the radial coordinate, or the energy, or the angular momentum of the planet.

In particular, the equation for null radial velocity gives

ε
2 =

(
1− 2MG

R

)(
1+

`2

R2

)
. (3.6)

Then the null radial acceleration condition (3.5) gives the well-known result

MGR2− `2(R−3MG) = 0 ⇒ R =
`2

2MG

1+

√
1− 12(MG)2

`2

 , (3.7)

leading to the requirement R≥ 6MG for stable circular orbits to exist.
Let us write down the four differential equations that must be satisfied by the geodesic devia-

tion 4-vector nµ (s) close to a circular orbit. We recall that on the circular orbit of radius R (which
is a geodesic in the background Schwarzschild metric) we have:

ut =
dt
ds

=
ε

(1− 2MG
R )

, ur =
dr
ds

= 0,

uφ =
dϕ

ds
= ω0 =

`

R2 , uθ =
dθ

ds
= 0, (3.8)

7
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because r = R = const., θ = π/2 = const., so that sin θ = 1 and cos θ = 0.
The four equations are much easier to arrive at if we use the explicit form of the first-order

deviation equation (2.7). We get without effort the first three equations, for the components nθ , nφ

and nt :
d2nθ

ds2 =−(uφ )2 nθ =− `2

R4 nθ ,
d2nφ

ds2 =− 2`

R3
dnr

ds
, (3.9)

d2nt

ds2 =− 2MGε

R2(1− 2MG
R )2

dnr

ds
. (3.10)

The deviation nθ is independent of the remaining three variables nt , nr and nϕ . The harmonic
oscillator equation (3.9) for nθ displays the frequency which is equal to the frequency of the circular
motion of the planet itself:

nθ (s) = nθ
0 cos(ω0 s+ γ) = nθ

0 cos
(

`

R2 s+ γ

)
. (3.11)

This can be interpreted as the result of a change of the coordinate system, with a new z-axis slightly
inclined with respect to the original one, so that the plane of the orbit does not coincide with the
plane z = 0. In this case the deviation from the plane will be described by the above solution, i.e.
a trigonometric function with the period equal to the period of the planetary motion. Being a pure
coordinate effect, it allows us to eliminate the variable nθ by choosing nθ = 0.

It takes a little more time to establish the equation for nr, using Eq. (2.7):

d2nr

ds2 +2Γ
r
λρ

uλ dnρ

ds
+∂σ Γ

r
λρ

uλ uρnσ = 0. (3.12)

Taking into account that only the components ut and uφ of the four-velocity on the circular
orbit are different from zero, and recalling that we have chosen to set nθ = 0, too, the only non-
vanishing terms in the above equation are:

d2nr

ds2 +2Γ
r
tt ut dnt

ds
+2Γ

r
φφ uφ dnφ

ds
+∂rΓ

r
tt ututnr +∂rΓ

r
φφ uφ uφ nr = 0. (3.13)

Using the identities (3.7) and the definitions (3.8), we get

d2nr

ds2 −
3`2

R4

(
1− 2MG

R

)
nr +

2MGε

R2
dnt

ds
− 2`

R

(
1− 2MG

R

)
dnϕ

ds
= 0. (3.14)

The system of three remaining equations can be expressed in a matrix form:
d2

ds2
2MGε

R2(1− 2MG
R )2

d
ds 0

2Mε

R2
d
ds

d2

ds2 − 3`2

R4 (1− 2MG
R ) −2`

R (1− 2MG
R ) d

ds

0 2`
R3

d
ds

d2

ds2


nt

nr

nϕ

 =

0
0
0

 . (3.15)

The characteristic equation of the above matrix is

λ
4
[

λ
2 +

`2

R4

(
1− 2MG

R

)
− 4MGε2

R4(1− 2MG
R )2

]
= 0, (3.16)
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which after using the identities (3.6) and (3.7) reduces to

λ
4
[

λ
2 +

`2

R4

(
1− 6MG

R

)]
= 0, (3.17)

so that the characteristic circular frequency is

ω =
`

R2

√
1− 6MG

R
= ω0

√
1− 6MG

R
. (3.18)

Obviously enough, the general solution contains oscillating terms cos(ωs); however, before
we analyse in detail this part of solution, let us consider the terms linear in the variable s or con-
stants: as a matter of fact, because of the presence of first and second-order derivatives with respect
to s in the matrix operator (3.15), the general solution may also contain the following vector: (∆ut)s+∆ t

(∆ur)s+∆r
(∆uϕ)s+∆ϕ.

 (3.19)

When inserted into the system (3.15), the solution is the following:

∆ t and ∆ϕ are arbitrary;

∆ur = 0, which means that the radial velocity remains null; and

3`2

R4

(
1− 2MG

R

)
∆r =

2MGε

R2 ∆ut − 2`

R

(
1− 2MG

R

)
∆uϕ = 0. (3.20)

This condition coincides with the transformation of the initial circular geodesic of radius R to
a neighbor one, with radius R + ∆r, with the subsequent variations ∆ut and ∆uϕ added to the
corresponding components of the 4-velocity in order to satisfy the condition gµν uµuν = 1 in the
linear approximation.

Let us choose the initial phase to have (with nr
0 > 0):

nr (s) =−nr
0 cos(ωs), (3.21)

which corresponds to the perihelion position. What remains to be done is to compare this frequency
with the fundamental circular frequency ω0 = `/R2 of the unperturbed circular orbital motion.

The discrepancy between the two circular frequencies ω and ω0 is exactly what produces the
perihelion advance, and its value coincides with the value obtained in the usual way (1.1) in the
limit of quasi-circular orbits, i.e. when e2 → 0: we get both the correct value and the correct sign.

Let us display the complete solution for the first-order deviation vector nµ (s) which takes into
account only the non-trivial degrees of freedom:

nθ = 0, nr(s) =−nr
0 cos(ω s), nϕ = nϕ

0 sin(ω s), nt = nt
0 sin(ω s). (3.22)

The only independent amplitude is given by nr
0, because we have

nt
0 =

2MGε

R2(1− 2MG
R )2ω

nr
0 =

2
√

MG
√

R
(
1− 2MG

R

)√
1− 6M

R

nr
0 , (3.23)

nϕ

0 =
2`

R3ω
nr

0 =
2ω0

Rω
nr

0 =
2

R
√

1− 6MG
R

nr
0 . (3.24)
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The trajectory and the law of motion are given by

r = R− nr
0 cos(ωs), (3.25)

ϕ = ω0 s+ nϕ

0 sin(ω s) =
√

MG

R3/2
√

1− 3MG
R

s+ nϕ

0 sin(ω s), (3.26)

t =
ε

(1− 2MG
R )

s+ nt
0 sin(ω s) =

1√
1− 3MG

R

s+ nt
0 sin(ω s), (3.27)

where the phase in the argument of the cosine function was chosen so that s = 0 corresponds to the
perihelion, and s = π

ω
to the aphelion.

The coefficient nr
0, which also fixes the values of the two remaining amplitudes, nt

0 and nϕ

0 ,
defines the size of the actual deviation, so that the ratio nr

0
R becomes the dimensionless infinitesimal

parameter controlling the approximation series with consecutive terms proportional to the consec-
utives powers of nr

0
R .

What we see here is the approximation to an elliptic orbital movement as described by the
presence of an epicycle (exactly like in the Ptolemean system, except for the fact that the Sun is
placed in the center instead of the Earth, and that the epicycle happens to be an ellipse rather than
a circle). As a matter of fact, the development into power series with respect to the eccentricity
e considered as a small parameter, and truncating all the terms except the linear one, leads to the
Kepler result [21],

r(t) =
a(1− e2)

1+ e cos(ω0 t)
' a [1− e cos(ω0 t)] , (3.28)

which looks almost as our formula (3.25) if we identify the eccentricity e with nr
0

R and the greater
half-axis a with R; but there is also the additional difference, that the circular frequency of the
epicycle is now slightly lower than the circular frequency of the unperturbed circular motion.

But if the circular frequency is lower, the period is slightly longer: in a linear approximation,
we have

ω =

√
`2

R4

(
1− 6MG

R

)
, (3.29)

hence keeping the terms up to the third order in MG
R ,

T ' T0

(
1+

3MG
R

+
27
2

(MG)2

R2 +
135
2

(MG)3

R3 + ...

)
. (3.30)

Then obviously one must have ∆ϕ

2π
= ∆T

T0
from which we obtain the perihelion advance after

one revolution

∆ϕ =
6πMG

R
+

27π(MG)2

R2 +
135π(MG)3

R3 + ... (3.31)

Note that at this order of approximation we could not keep track of the factor (1− e2)−1,
containing the eccentricity (here replaced by the ratio nr

0
R ) only through its square. In contrast, we

obtain without effort the coefficients in front of quadratic or cubic terms in MG
R . This shows that

our method can be of interest when one has to consider the low-eccentricity orbits in the vicinity
of very massive and compact bodies, having a non-negligible ratio MG

R .

10
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It is obvious that at this order of approximation we could not keep track of the factor (1−e2)−1,
containing the eccentricity (here replaced by the ratio nr

0
R ) only through its square. In contrast, we

obtain without effort the coefficients in front of terms quadratic or cubic in MG
R . This shows that

our method can be of interest when one has to consider the low-eccentricity orbits in the vicinity
of very massive and compact bodies, having a non-negligible ratio MG

R .
In order to include this effect, at least in its approximate form as the factor (1+e2), we must go

beyond the first-order deviation equations and investigate the solutions of the equations describing
the quadratic effects.

After inserting the complete solution for the first-order deviation vector (3.22)–(3.24) into the
system (2.11) and a tedious calculation, we find the following set of linear equations satisfied by
the second-order deviation vector bµ(s):


d2

ds2
2MGε

R2(1− 2MG
R )2

d
ds 0

2MGε

R2
d
ds

d2

ds2 − 3`2

R4 (1− 2MG
R ) −2`

R (1− 2MG
R ) d

ds

0 2`
R3

d
ds

d2

ds2


bt

br

bϕ

= (nr
0)

2

Ct

Cr

Cϕ

 , (3.32)

The common factor (nr
0)

2 shows the explicit quadratic dependence of the second-order devi-
ation vector bµ on the first-order deviation amplitude nr

0. The expressions on the right-hand side
Ct ,Cr and Cϕ are functions M, R, ω0, ω , ε , sin(2ωs) and cos(2ωs):

Ct =−
6(MG)2(2− 7MG

R )ε sin(2ωs)
(1− 3MG

R )(1− 2MG
R )2R6ω

, (3.33)

Cr =
3MG

[
(2− 5MG

R + 18(MG)2

R2 )− (6− 27MG
R + 6MG

R2
2
)cos(2ωs)

]
2(1− 3MG

R )(1− 6MG
R )R4

, (3.34)

Cϕ =−
6MG(1− MG

R )ω0 sin(2ωs)
(1− 3MG

R )R5ω
. (3.35)

The solution of the above matrix for bµ(s) has the same characteristic equation of the matrix
(3.15) for nµ(s), and the general solution containing oscillating terms with angular frequency ω is
of no interest because it is already accounted for by nµ(s). But the particular solution includes the
terms linear in the proper time s, constant ones, and the terms oscillating with angular frequency
2ω . Being interested in the quantities directly accessible to observation, we give here the eplicit
expressions of br(s) and bϕ(s):

br =
(nr

0)
2

2R(1− 6MG
R )

[
3(2− 5MG

R + 18(MG)2

R2 )

1− 6MG
R

+
(

2+
5MG

R

)
cos(2ωs)

]
, (3.36)

bϕ =
(nr

0)
2

ω0

R2(1− 6MG
R )

[
−

3(2− 5MG
R + 18(MG)2

R2 )

1− 6MG
R

s+
1− 8MG

R
2ω

sin(2ωs)

]
. (3.37)

Now we need to calculate 1
2 δ 2xµ in order to obtain the geodesic curve xµ with second-order

geodesic deviation; again, we show only the components δ 2r and δ 2ϕ:

δ
2r =

(nr
0)

2

R(1− 6M
R )

[
5− 33M

R + 90M2

R2 − 72M3

R3

(1− 2M
R )(1− 6M

R )
−
(

1− 7M
R

)
cos(2ωs)

]
, (3.38)

11
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δ
2
ϕ =

(nr
0)

2
ω0

R2(1− 6M
R )

[
−

3(2− 5M
R + 18M2

R2 )

1− 6M
R

s+
5− 32M

R
2ω

sin(2ωs)

]
. (3.39)

The fact that the second-order deviation vector bµ turns with angular frequency 2ω enables us to
get a better approximation of the elliptic shape of the resulting orbit. The trajectory described by xµ

including second-order deviations is not an ellipse, but we can match the perihelion and aphelion
distances to see that R 6= a and e 6= nr

0/R when second-order deviation is used. The perihelion
and aphelion distances of the Keplerian, i.e., elliptical orbit are a(1− e) and a(1 + e). For xµ ,
the perihelion is obtained when ωs = 2kπ and the aphelion when ωs = (1 + 2k)π , where k ∈ Z.
Matching the radius for perihelion and aphelion, we obtain the semimajor axis a and the eccentricity
e of an ellipse that has the same perihelion and aphelion distances of the orbit described by xµ :

a = R+2
(nr

0)
2

R
+O

(
(nr

0)
4

R3

)
e =

nr
0

R
+O

(
(nr

0)
3

R3

)
. (3.40)

In the limit case of MG
R → 0, there is no perihelion advance and a = R

[
1+2(nr

0
R )2
]

and e = nr
0

R , so
the second-order deviation increases the semimajor axis a of a matching ellipse compared to the
first-order deviation, when a = R and e = nr

0
R .

4. Third-order terms and gravitational radiation

With the third-order approximation we are facing a new problem, arising from the presence of
resonance terms on the right-hand side. It is easy to see that after reducing the expressions on the
right-hand side, which contain the terms of the form

cos3
ωs, sin ωs cos2

ωs

and the like, we shall get not only the terms containing

sin 3ω s , and cos 3ω s

which do not create any particular problem, but also the resonance terms containing the functions
sin ω s and cos ω s , whose circular frequency is the same as the eigenvalue of the matrix-operator
acting on the left-hand side.

As a matter of fact, the equation for the covariant third-order deviation hµ can be written
in matrix form, with principal part linear in the third-order deviation hµ , represented by exactly
the same differential operator as in the lower-order deviation equations. The right-hand side is
separated into two parts, one oscillating with frequency ω , and another with frequency 3ω:

d2

ds2
2Mε

R2(1− 2M
R )2

d
ds 0

2Mε

R2
d
ds

d2

ds2 − 3`2

R4 (1− 2M
R ) −2`

R (1− 2M
R ) d

ds

0 2`
R3

d
ds

d2

ds2


ht

hr

hϕ

=

= (nr
0)

3

 Bt sin(ωs)+Ct sin(3ωs)+ sDt cos(ωs)
Br cos(ωs)+Cr cos(3ωs)+ sDr sin(ωs)
Bϕ sin(ωs)+Cϕ sin(3ωs)+ sDϕ cos(ωs)

,

(4.1)
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where the coefficients Bk, Ck and Dk, k = t,r,ϕ are complicated functions of MG
R .

The proper frequency of the matrix operator acting on the left-hand side is equal to ω; the
terms containing the triple frequency 3ω will give rise to the unique non-singular solution of the
same frequency, but the resonance terms of the basic frequency on the right-hand side will give
rise to secular terms, proportional to s, which is in contradiction with the bounded character of the
deviation we have supposed from the beginning. The term proportional to s on the right-hand side
is eliminated in the differential equation for hr when dhϕ

ds and dht

ds are replaced by theirs values.
Poincaré [22] was first to understand that in order to solve this apparent contradiction, one

has to take into account possible perturbation of the basic frequency itself, which amounts to the
replacement of ω by an infinite series in powers of the infinitesimal parameter, which in our case
is the eccentricity e = nr

0
R :

ω → ω + eω1 + e2
ω2 + e3

ω3 + . . . , (4.2)

Then, developing both sides into a series of powers of the parameter e, we can not only recover
the former differential equations for the vectors nµ , bµ , hµ , but get also some algebraic relations
defining the corrections ω1, ω2, ω3, etc.

The equations resulting from the requirement that all resonant terms on the right-hand side be
canceled by similar terms on the left-hand side are rather complicated. We do not attempt to solve
them here. However, one easily observes that the absence of resonant terms in the second-order
deviation equations forces ω1 to vanish, while the next term ω2 is different from 0.

Similarly, as there are no resonant terms in the equations determining the fourth-order devia-
tion, because all four-power combinations of sine and cosine functions will produce terms oscillat-
ing with frequencies 2ω and 4ω; as a result, the correction ω3 will be also equal to 0. Next secular
terms appear at the fifth-order approximation, as products of the type cos5ωs, sin3ωscos2ωs, etc,
produce resonant terms again, which will enable us to find the correction ω4, and so on, so that the
resulting series representing the frequency ω contains only even powers of the small parameter nr

0
R .

The decomposition of the elliptic trajectory turning slowly around its focal point into a series
of epicycles around a circular orbit can also serve for obtaining an approximate spectral decompo-
sition of gravitational waves emitted by a celestial body moving around a very massive attracting
center.

It is well known that gravitational waves are emitted when the quadrupole moment of a mass
distribution is different from zero, and the amplitude of the wave is proportional to the third deriva-
tive of the quadrupole moment with respect to time (in the reference system in which the center of
mass coincides with the origin of the Cartesian basis in three dimensions, see Ref. [?]).

Of course, it is only a linear approximation, but it takes the main features of the gravitational
radiation emitted by the system well into account, provided the velocities and the gravitational
fields are not relativistic and the wavelength of gravitational radiation is large compared to the di-
mensions of the source (quadrupole approximation).

More precisely, let us denote the tensor Qi j of a given mass distribution µ (xi), where i, j,=
1,2,3, see Ref. [38]:

Qi j =
∫

µ xi x jdV = ∑
α

mαxαi xα j, (4.3)

where mα are point masses.
Let

−→
OP be the vector pointing at the observer (placed at the point P), from the origin of the

13
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coordinate system coinciding with the center of mass of the two orbiting bodies whose motion
is approximately described by our solution in a Fourier series form. It is also supposed that the
length of this vector is much greater than the characteristic dimensions of the radiating system, i.e.
| −→OP |� R.

Then the total power of gravitational radiation P emitted by the system over all directions is
given by the following expression (see Ref. [38]):

P =
G

5c5

(
d3Qi j

dt3
d3Qi j

dt3 − 1
3

d3Qii

dt3
d3Q j j

dt3

)
. (4.4)

When applied to Keplerian motion of two masses m1 and m2, with orbit equation and angular
velocity given by

r =
a(1− e2)

1+ e cosϕ
,

dϕ

dt
=

√
G(m1 +m2)a(1− e2)

r2 , (4.5)

the total power P now reads

P =
8
15

G4

c5
m2

1m2
2(m1 +m2)

a5(1− e2)5 (1+ e cosϕ)4 [12(1+ e cosϕ)2 + e2 sin2
ϕ
]
. (4.6)

We shall calculate the P in Eq. (4.4) with our solution xµ using second-order geodesic devia-
tion, to inspect the non-negligible effects of the ratio M

R . We have the explicit solutions r(s), ϕ(s)
and t(s), so to calculate dQi j

dt we need only the derivatives with respect to s, i.e., d f
dt = d f

ds /
dt
ds can

be applied successively to obtain d3Qi j
dt3 . So we finally get P as function of s, which is not shown

here because it is a very large expression that nevertheless can be easily obtained using a symbolic
calculus computer program.

As we want to compare the two total powers P during one orbital period (between perihelions),
P in the Kepler case is obtained from the numerical solution for ϕ(t) calculated from Eq. (4.5),
and P of the geodesic deviation case has to use s(t) obtained from t(s) by means of successive

approximations, starting with s = t
ε

√
1− 2M

R .
There are many possible ways to compare a Keplerian orbit with a relativistic one. Here we

assume m1 � m2 and fix the values of a, e, m1; the values of R and nr
0 are calculated to obtain

an exact ellipse (up to the second order in e) in the limit M
R → 0, so R = (1−e2)

(1+e2)a and nr
0 = R e.

Up to first order in e, we have R = a. The choice of M = m1 allows the two total powers P to
be equal when e = 0 and M

R → 0. Figure 1 shows this comparison for a small eccentricity and a
non-negligible MG

R ratio.
Because the emitted total powers P calculated with geodesic deviations depend on the M

R ratio,
we see that the period is not T = 2πa3/2

√
Gm1

(third Kepler’s law), but an increased one,

T =
2πR3/2

√
GM

√
1− 6GM

R

+O

(
(nr

0)
2

R2

)
. (4.7)

This effect is the direct consequence of the form of angular frequency ω that appears in the first
and higher-order geodesic deviations.
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Figure 1: The total power P in three cases as function of t during one orbital period T , with M = m1. The upper
(blue) curve represent the result obtained by post-post-Newtonian approximations, serving as a reference. The lower
(black) curves correspond to the approximations obtained via the epicycle method, with first order only (left), with the
second-order approximation (middle) and the third-order approximation (right). The excentricity has a common value
e = 0.1 . The curves are taken from the reference [23]

Another expected feature of Figure 1: as e (i.e., nr
0

R ) is kept small, the P using geodesic devia-
tions converge very fast in respect of the orders of geodesic deviation.

Caution is required as the use of quadrupole approximation is not allowed for high values of
M
R , so the exact amplitude and shape of P using geodesic deviations can only be calculated if addi-
tional M

R contributions to the gravitational radiation formula are included. This approach, but using
the post-Newtonian expansion scheme, is well developed in Refs. [39, 40, 41].

The two approaches are complementary in the following sense: the post-Newtonian scheme
gives better results for small values of MG

R and arbitrary eccentricity, whereas our scheme is best
adapted for small eccentricities, but arbitrary values of MG

R < 1
6 . In both approaches the emission

of gravitational radiation is estimated using the quadrupole formula, based on a flat-space approxi-
mation.

The next challenge is to include finite-size and radiation back-reaction effects. In the post-
Newtonian scheme some progress in this direction has already been made. In this aspect our result
may be regarded as the first term in an expansion in m

M . Other applications can be found in problems
of gravitational lensing and perturbations by gravitational waves.

The shortcoming of this method, which was entirely focused on the trajectories, was the total
lack of any variation of the gravitational field, i.e. the Schwarzschild metric which was maintained
invariable for all orders of geodesic deviation. This fact reduced the validity of the method only to
the case of test particles with mass m negligible when compared with the mass M of the central body
appearing in the Schwarzschild background metric. More precisely, the successive approximations
of planet’s trajectory remain valid as long as the dimensionless parameter (m/M) can be considered
as negligibly small, i.e. (m/M) << 1. When the mass m is not a negligible quantity, its presence
must inevitably alter the geometry of the initial Schwarzschild metric, and its influence can be
therefore represented by a power series in the small parameter (m/M).

Now we shall describe the departure from the initial Minkowskian or Schwarzschild metrics in
terms of the embedding functions. Embeddings of the exterior Schwarzschild geometry in pseudo-
Euclidean flat spaces are known since a long time ([28], [29], [27]), and once such an embedding
is given, all intrinsic geometric quantities of the embedded manifold can be expressed in terms
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of derivatives of the embedding functions which depend on four “internal” parameters which are
the space-time coordinates. Embedding techniques were also used in certain models of primordial
cosmology, like the change of signature, as in ([24]).

A general analysis of deformations of the embedded Einstein spaces was given in [25]; nev-
ertheless, only the theoretical setup was considered, without any concrete solution describing
Ricci-flat deformations of known exact Einstein spaces, and in the first place, Minkowskian or
Schwarzschild.

Here we shall explore not only the first linear approximation, but also the effects of second
and third order in the expansion of deformations in powers of small parameter ε , including the
corrections describing gravitational waves. We start with the investigation of wave-like deforma-
tions of flat Minkowskian space-time embedded in five or, if necessary, more dimensional pseudo-
Euclidean space. It will appear that the wave-like behavior of the Riemann tensor can be obtained
only in third order terms proportonal to ε3. In the Minkowskian case such a wave can appear even
if the embedding is in five dimensions; but in the case of spherical gravitational wave, more extra
dimensions are necessary in order to accomodate it.

In the case of spherical gravitational waves the exact solution cannot be found at once; instead,
we shall find successive approximations considering first the dominant terms at infinity, behaving
as r−1; then we consider the effects of short-range behavior of the type r−2, r−3, etc., which can
give more information about the source.

5. Isometric embeddings and their properties

Consider the embedding of a four-dimensional Riemannian space parametrized by local coor-
dinates (denoted by xµ , µ,ν = 0,1,2,3 as usual) in a pseudo-Euclidean space EN of dimension N.
The dimension N, yet unspecified, depends on the topology of the Riemannian space under consid-
eration, and may be quite high, as acknowledged in [27]. Locally, any n-dimensional Riemannian
manifold can be embedded in a (pseudo)-Euclidean space of dimension N = n(n+1)/2. Here we
are interested in global embeddings, which may require a relatively low dimension of the “host”
space if the Riemannian space to be embedded possesses some particular symmetry. For exam-
ple, the de Sitter space can be embedded globally in a five-dimensional pseudo-Euclidean space
with signature (+−−−−), and exterior or interior Schwarzschild solutions can be embedded in
a six-dimensional EN with signatures (++−−−−) or (+−−−−−).

Consider a global embedding of a Riemannian space V4 given by the set of embedding func-
tions zA:

zA = zA (xµ), with A,B, ... = 1,2, ...N, µ,ν = 0,1,2,3. (5.1)

The metric tensor of V4 is the induced metric defined as

o
g

µν = ηAB ∂µzA
∂νzB (5.2)

The inverse metric tensor
o
g µν cannot be obtained directly from the embedding functions, but

should be computed from the covariant components as their inverse matrix. From now on we use

the superscript notation in order to make difference between the “basic” induced metric
o
g

µν which

16
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will be considered as a background, and its infinitesimal deformations expanded in terms of an
infinitesimal parameter ε as follows:

gµν =
o
g

µν + ε
1
g

µν + ε
2 2

g
µν + ... (5.3)

induced by the following deformation of the initial embedding functions:

zA (xµ)→ zA (xµ)+ ε vA (xµ)+ ε
2 wA (xµ)+ ... (5.4)

Figure 2: The initial embedding of a Riemannian manifold V4 and an infinitesimal deformation producing
the new embedding Ṽ4

When seen from the ambient pseudo-Euclidean space, the new embedded manifold Ṽ4 is the
result of an infinitesimal deformation of the initial manifold V4 induced by a vector field in EN

(p,q).
It is obvious that such a field, which is defined on the embedded submanifold, can be decomposed
into its normal part (in the sense of the pseudo-Euclidean metric) and a part tangent to V4. The last
part induces an internal diffeomorphism of V4 and can be implemented as a local coordinate trans-
formation. Such deformations do not have any physical meaning, but it is not always necessary
to consider exclusively the deformations orthogonal to the embedded V4; sometimes a deforma-
tion having non-vanishing parallel and orthogonal parts can have less non-zero components in the
ambient space EN

(p,q) than its part orthogonal to the embedded V4 manifold.
Our first aim is to express all important geometrical quantities e.g. the connection coefficients

and the curvature tensor, in terms of embedding functions zA and their partial derivatives. Let us
start with Christoffel connection

o
Γ

λ
µν =

1
2

o
g λρ

(
∂µ

o
g

νρ +∂ν

o
g

µρ −∂ρ

o
g

µν

)
. (5.5)

From the definition of
o
g

µν (5.2) we have the expression for its partial derivatives:

∂λ

o
g

µν = ηAB

(
∂

2
λ µ

zA
∂ν zB +∂µ zA

∂
2
λν

zB
)

. (5.6)
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When substituted into the definition (5.5) it gives

o
Γ

λ
µν = ηAB

o
g λρ

∂ρ zA
∂

2
µν zB. (5.7)

Now, an alternative (although implicit) definition of Christoffel symbols is contained in the equa-
tion that states the vanishing of covariant derivatives of the metric:

∇λ gµν = 0, (5.8)

which after substitution go
µν = ηAB ∂µzA ∂νzB = ηAB ∇µzA ∇νzB leads to the identity

ηAB

[
∇λ ∇µzA

∇νzB +∇µzA
∇λ ∇νzB

]
= 0. (5.9)

Taking the combination ∇λ gµν + ∇µ gλν −∇ν gµλ = 0, we get the identity for arbitrary indices
µ, ν , λ :

ηAB

[
∇λ ∇µzA

∇νzB
]

= 0. (5.10)

Using this result, let us form the following combination of covariant derivatives which vanishes
identically:

ηAB

[
∇µ(∇ρ zA

∇ν∇σ zB)−∇ν(∇ρ zA
∇µ∇σ zB)

]
= 0. (5.11)

Applying the derivation and using the Leibniz rule we get:

ηAB

[
∇µ∇ρ zA

∇ν∇σ zB−∇ν∇ρ zA
∇µ∇σ zB)+(∇ρ zA)

[
∇µ∇ν∇σ zB−∇ν∇µ∇σ zB

]]
= 0.

Recalling that [
∇µ ∇ν −∇ν ∇µ

]
∇ρ zB =

o
R λ

µν ρ ∇λ zB, (5.12)

so that we can write

o
R µν λρ =−ηAB

[
∇µ∇λ zA

∇ν∇ρ zB−∇ν∇λ zA
∇µ∇ρ zB

]
. (5.13)

which is the well known Gauss-Codazzi equation.
The definition of the Riemann tensor by means of derivatives of the embedding functions

given by formula (5.13) looks compact, but is in fact highly non-linear and complicated. This is so
because it contains many Christoffel symbols involved in the second covariant derivatives, which

contain the contravariant metric tensor
o
g µν . The components of the contravariant metric tensor

are obtained as rational expressions in third and fourth powers of ∇µ zA. Nevertheless, the most
important point here is that the Riemann tensor depends only on first and second derivatives of
embedding functions, so that the Einstein equations expressed in terms of the embedding functions
will lead to second-order partial differential equations.

The expressions derived in this section will be very useful in the development of a power series
expansion of infinitesimally deformed embedding.
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6. Infinitesimal deformations of embeddings

Let us consider an isometric embedding of an Einsteinian manifold
o

V 4 in a pseudo-Euclidean
space EN

p,q with signature (p+,q−), with p+q = N:

o
V 4 → EN

p,q, zA = zA (xµ)

with A,B, ... = 1,2, ...N, µ,ν = 0,1,2,3. (6.1)

Consider now an infinitesimal deformation of the embedding defined by a converging series of
terms proportional to the consecutive powers of a small parameter ε . The deformed embedding
defines an Einsteinian space Ṽ4;

zA (xµ)→ z̃A (xµ) = zA (xµ)+ ε v A (xµ)+ ε
2 wA (xµ)+ . . . (6.2)

The induced metric on Ṽ4 can also be developed in a series of powers of ε:

g̃µν =
o
g

µν + ε
1
g

µν + ε
2 2
g

µν + ...

= ηAB

[
∂µzA

∂νzB + ε

(
∂µzA

∂νvB +∂µvA
∂νzB

)
+

+ ε
2
(

∂µvA
∂νvB +∂µzA

∂νwB +∂µwA
∂νzB

)]
. (6.3)

Among possible infinitesimal deformations of the embedding functions zA (xµ)+ ε vA (xµ) there is
a large class of functions vA (xµ) which will not alter the intrinsic geometry of the embedded mani-

fold. The translations vA =Const. obviously do not change the internal metric
o
g

µν = ηAB ∂µzA∂νzB.
Also the generalized Lorentz transformations of the pseudo-Euclidean space EN

(p,q) keep the internal
metric unchanged. Indeed, if we set

zA → z̃A = zA + ε Λ
A
B zB, (6.4)

with ΛA
B constant matrix,

then the first-order correction vanishes if the matrices ΛA
B satisfy the identity

ηAB Λ
B
C +ηCBΛ

C
A = 0,

defining infinitesimal rigid rotations (Lorentz transformations) of the pseudo-Euclidean space EN
(p,q).

The geometric character of our approach enables us to eliminate unphysical degrees of free-
dom using simple geometrical arguments. Remember that in the traditional approach leading to
linearized equations for gravitational fields the starting point is the following development of the
metric tensor:

gµν =
o
g

µν + ε hµν , (6.5)

thus introducing ten components of hµν as dynamical fields. We know however that most of them
do not represent real dynamical degrees of freedom due to the gauge invariance. The metric tensor
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itself does not correspond to any directly measurable quantity. In fact, its components may be
changed by a gauge transformation without changing the components of the Riemann tensor which
is the source of measurable gravitational effects. In particular, the gauge transformation

gµν → g̃µν = gµν +∇µ ξν +∇ν ξµ (6.6)

does not alter the Riemann tensor so that both g̃µν and gµν describe the same gravitational field.
The arbitrary vector field ξ µ generating gauge transformation (6.6) represents four degrees of free-
dom which are redundant in gµν ; this is why in the linearized Einstein equations one may impose
four gauge conditions e.g.

∇µ hµν = 0. (6.7)

The unphysical degrees of freedom can be easily eliminated from the embedding deformation
functions vA(xµ) if we note that any vector field in the embedding space EN that is tangent to the
embedded Riemannian space V4 describes nothing else but a diffeomorphism of V4, in other words
a coordinate change, which has no influence on any physical or intrinsic geometrical quantities.

Vector fields tangent to the four-dimensional embedded manifold V4 can be decomposed along
four arbitrarily chosen independent smooth vector fields in EN tangent to V4. On the other hand,
vector fields transversal to the embedded hypersurface V4 must satisfy the following obvious or-
thogonality conditions:

ηAB ∂µ zA vB = ηAB vA
∇µ zB = 0. (6.8)

For any value of A the four partial derivatives (let us remind that ∇µ zA = ∂µ zA) span a basis
of four vector fields in EN tangent to the submanifold V4; therefore any vector vB satisfying the
orthogonality condition (6.8) is transversal to V4 (as seen in EN).

The orthogonality condition (6.8) imposes four independent equations, which reduce the num-
ber of independent deformation functions vA to N − 4. This means that general non-redundant
deformations can be decomposed along N−4 independent fields XA

(k), k = 1,2, ...,N−4:

vA(xµ) =
N−4

∑
k=1

vk(xν))XA
(k) (x

λ ). (6.9)

The basic fields XA
(k) (x

λ ) can be chosen at will provided they induce a non-singular global vector

field on V4, while the relevant degrees of freedom are contained in N−4 functions vk(xλ ). To take
an example, the de Sitter space can be globally embedded in a five-dimensional pseudo-Euclidean
space E5

1,4 with signature (+−−−−); therefore its global deformations can be described by a
single function v(xλ ) (see [25]).

One may ask the following question: what if the deformation destroys the initial symmetry of
the embedded manifold so that the deformed manifold cannot be embedded in the initially sufficient
N-dimensional pseudo-Euclidean space but needs a flat embedding space of higher dimension ? It
is known that global embeddings of the Kerr metric need more than six flat dimensions sufficient
for the embedding of the exterior (or interior) Schwarzschild solution (see [34],[36], [37]), although
Schwarzschild’s metric can be obtained from Kerr’s metric as a limit when the Kerr parameter a
(the angular momentum) tends to zero.
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The answer is that as long as we investigate only the first-order corrections to geometry, we
should not worry about this issue for the following two reasons: first, when a global embedding is
given, its infinitesimal deformations cannot lead to a global modification of the embedding; second,
if the bigger embedding space was introduced, say EN+m, it would contain the initial embedding
space EN as its linear subspace, so that

EN+m = EN⊕Em,

and its pseudo-Euclidean metric could be represented as a blockwise reducible matrix

ηαβ =

(
ηAB 0

0 ηi j

)
, (6.10)

with A,B, ... = 1,2, ...N, i, j, ... = 1,2, ..m, α,β , ... = 1,2, ....,N +m. Accordingly, any deformation
of the initial embedding can be decomposed in two parts, one contained in the initial embedding
space EN and another one in the complementary subspace Em:

vα = [vA, vm ]. (6.11)

But the initial embedding functions had their components entirely in the first subspace EN , zα =
[zA, 0 ], therefore the deformed embedding functions can be written as

z̃α = [zA + ε vA, ε vk ], (6.12)

so that the induced metric of the deformed embedding will be

gµν =
o
g

µν + ε
1
g

µν + ε
2 2

g
µν + ...

= ηAB

(
∂µzA

∂νzB
)

+ ε ηAB

(
∂µzA

∂νvB +∂µvA
∂νzB

)
(6.13)

+ ε
2

[
ηAB

(
∂µvA

∂νvB +∂µzA
∂νwB +∂µwA

∂νzB
)

+ηi j

(
∂µ vi

∂ν v j
)]

...

From this one can see that the deformations towards extra dimensions do not contribute to
the first-order corrections of any geometrical quantities obtained from the deformed embedding
functions. This is why we shall not consider such deformations while investigating at first only the
terms linear in the infinitesimal parameter ε .

Our principal aim now is to establish the explicit form of connection and curvature components
induced on the infinitesimally deformed embedding Ṽ4. To this end we must calculate the approxi-
mate expression of the contravariant metric tensor gµν . If the covariant metric is decomposed as in
(5.3),

gµν =
o
g

µν + ε
1
g

µν + ε
2 2

g
µν + ...

then we have the following formulae defining the corresponding decomposition of gµν :

gµν =
o
g µν + ε

1
g µν + ε

2 2
g µν + . . .

= gµν − ε
o
g µρ

o
g νσ

1
g

ρσ − ε
2

[
o
g µρ

o
g νσ

2
g

ρσ

]
+ε

2

[
o
g µρ

o
g νσ

o
g λκ

1
g

ρλ

1
g

σκ

]
, (6.14)
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which shows that also the contravariant metric tensor depends exclusively on the first derivatives
of the embedding functions, although in a quite complicated manner.

In what follows we shall keep only the first order terms linear in ε .
Let us start by computing the first (linear) correction to the components of the Christoffel

connection, which develops in Taylor series as

Γ
λ
µν =

o
Γ

λ
µν + ε

1
Γ

λ
µν + ε

2 2
Γ

λ
µν + ..., (6.15)

then by definition we have:

1
Γ

λ
µν =

1
2

o
g λρ

(
∂µ

1
g

νρ +∂ν

1
g

µρ −∂ρ

1
g

µν

)
+

1
2

1
g λρ

(
∂µ

o
g

νρ +∂ν

o
g

µρ −∂ρ

o
g

µν

)
(6.16)

=
1
2

o
g λρ

(
∂µ

1
g

νρ +∂ν

1
g

µρ −∂ρ

1
g

µν

)
− 1

2
o
g λσ

o
g ρκ

1
g

σκ

(
∂µ

o
g

νρ +∂ν

o
g

µρ −∂ρ

o
g

µν

)
.

One easily checks that

1
2

o
g λρ

(
∂µ

1
g

νρ +∂ν

1
g

µρ −∂ρ

1
g

µν

)
= ηAB

o
g λρ

[
∂ρzA

∂
2
µν vB +∂ρvA

∂
2
µν zB

]
, (6.17)

while the second term after some algebra gives

1
2

1
g λρ

(
∂µ

o
g

νρ +∂ν

o
g

µρ −∂ρ

o
g

µν

)
=−ηAB

o
g λρ

[
∂ρ zA o

Γ
σ
µν ∂σ vB +∂ρ vA o

Γ
σ
µν ∂σ zB

]
. (6.18)

Combining together (6.17), (6.17) and (6.18) we find the final expression

1
Γ

λ
µν = ηAB

o
g λρ

[
∇ρzA

∇µ∇ν vB +∇ρvA
∇µ∇ν zB

]
. (6.19)

This expression has a tensorial character as it should be, because by definition both quantities
Γ λ

µν and Γ̃ λ
µν , transform as connection coefficients, therefore their difference must transform as

a tensor, and this is true for any term of the development into series of powers of ε .

The coefficients
1
Γ

λ
µν will be useful for the derivation of geodesic equations in the deformed

space-time, but they are not necessary for the computation of the first-order deformation of the
Riemann tensor, which can be determined as follows. Let us develop second covariant derivatives
of the deformed embedding functions z̃A yields:

∇̃µ∇̃ν z̃A = ∇̃µ∇̃ν zA + ε ∇̃µ∇̃ν vA +O(ε2)

= ∇µ∇ν zA + ε

[
∇µ∇ν vA−

1
Γ

λ
µν ∇λ zA

]
+O(ε2). (6.20)

The Riemann tensor induced on the deformed embedding is defined by the same formula as in the
previous section (5.13):

R̃ νµ λρ = ηAB

[
∇̃µ∇̃λ z̃A

∇̃ν ∇̃ρ z̃B− ∇̃ν ∇̃λ z̃A
∇̃µ∇̃ρ z̃B

]
(6.21)
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Note that in order to calculate the components of the Riemann tensor induced on the deformed
manifold Ṽ4 we use not only the deformed embedding functions z̃A, but also the “deformed" co-
variant derivations ∇̃µ . Now, when we insert the expressions like (6.20) into the definition of
Riemann tensor components (6.21), we shall encounter, besides the zeroth-order initial Riemann

tensor
o
Rµνλρ and the second-order corrections proportional to ε2, just two types of terms linear in

ε:
ε ηAB ∇µ∇λ zA

∇ν∇ρ vB and ε ηAB ∇µ∇λ zA 1
Γ

λ
νρ ∇λ zB. (6.22)

The terms of the second type vanish by virtue of the identity (5.10); therefore the first-order cor-
rection to the components of Riemann tensor can be written as follows:

1
R νµλρ = ηAB

[
∇µ∇λ zA

∇ν∇ρ vB +∇µ∇λ vA
∇ν∇ρ zB

− ∇ν∇λ zA
∇µ∇ρ vB−∇ν∇λ vA

∇µ∇ρ zB
]

(6.23)

To establish the form of linear correction to Einstein’s equations we need to know the components
of the first-order correction to the Ricci tensor and the Riemann scalar. These quantities are readily
computed as follows:

1
R µρ =

o
g νλ

1
R µνλρ +

1
g νλ

o
R µνλρ , (6.24)

Consequently, the first-order correction to the Riemann scalar is:

1
R =

o
g µν

1
R µν +

1
g µν

o
R µν . (6.25)

Finally, The first-order correction to the Einstein tensor, i.e. the left-hand side of Einstein’s equa-
tions is:

1
G µν =

1
R µν −

1
2

1
g

µν

o
R−

1
2

o
g

µν

1
R = (6.26)

=
1
R µν −

1
2

o
g

µν

o
g λρ

1
R λρ −

1
2

o
g

µν

1
g λρ

o
R λρ −

1
2

1
g

µν

o
R.

In what follows, we shall always suppose that the initial Riemannian manifold is a solution of
Einstein’s equations, i.e. an Einstein space which is Ricci-flat and consequently has zero scalar cur-
vature, too. Therefore the linear correction (of the first order in small parameter ε) to the Einstein
tensor will reduce to:

1
R µν −

1
2

o
g

µν

o
g λρ

1
R λρ (6.27)

In the absence of any extra gravitating matter (besides the matter generating the basic solution, e.g.
the central spherical body for Schwarzschild’s solution) the equations to solve can be written in
form of a matrix acting on the first-order correction to the Ricci tensor:(

δ
λ
µ δ

ρ

ν −
1
2

o
g

µν

o
g λρ

)
1
R λρ = 0 (6.28)
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But this amounts to the Ricci flatness up to the first order, because the operator acting on the right
on the Ricci tensor in (6.28) is non-singular; in fact, it is its own inverse:(

δ
λ
κ δ

ρ

σ −
1
2

o
g

κσ

o
g λρ

)(
δ

κ
µ δ

σ
ν −

1
2

o
g

µν

o
g κσ

)
= δ

λ
µ δ

ρ

ν (6.29)

From this we infer that in an Einsteinian background the first-order correction in vacuo should
satisfy the equation

1
R λρ = 0. (6.30)

In the case when the energy-momentum tensor is present (supposing however that it describes
the influence of matter weak enough in order to keep the basic solution unchanged), one must use
the full Einstein’s tensor on the right-hand side. The first correction, linear in ε , reduces then to
only two terms due to the fact that the initial solution is an Einstein space in vacuo so that

o
R λρ = 0

and
o
R = 0:

1
R µν −

1
2

o
g

µν

o
g λρ

1
R λρ =

[
δ

λ
µ δ

ρ

ν −
1
2

o
g

µν

o
g λρ

]
1
R µν =−8πG

c4 Tµν , (6.31)

and this in turn, due to the idempotent property (6.29), can be written equivalently as

1
R µν =−8πG

c4

[
δ

λ
µ δ

ρ

ν −
1
2

o
g

µν

o
g λρ

]
Tλρ (6.32)

which may prove to be more practical for further calculations especially when the energy-momentum
tensor has a particularly simple form.

Let us expand the deformed embedding functions into the power series of small parameter ε

as before, this time keeping the terms up to the third order:

z̃A (xµ) = zA (xµ)+ ε vA (xµ)+ ε
2 wA (xµ)+ ε

3 hA (xµ)... (6.33)

The metric tensor g̃µν of the deformed embedding is given by the formula (6.3), and the first order
correction to the Christoffel connection coefficients was already given in eq. (6.19).

The second order correction to the Christoffel connection can be found from the expansion in
powers of ε of the formula (5.10) which is valid also on the deformed manifold:

ηAB

[
∇̃λ ∇̃µ z̃A

∇̃ν z̃B
]

= 0. (6.34)

From the expansion, identifying the terms proportional to ε2, one readily gets:

2
Γ

λ
µν = ηAB

o
g λρ

[
∇ρvA

∇µ∇ν vB +∇ρwA
∇µ∇ν zB +∇ρzA

∇µ∇ν wB−

−
1
Γ

σ
µν (∇ρ vA

∇σ zB +∇ρ zA
∇σ vB)

]
. (6.35)
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As we shall see, the third order corrections to the Christoffel symbols do not appear in the third
order expansion term of the Riemann tensor, therefore we do not write them down explicitly here.
The second order terms in the expansion of the Riemann tensor are given by the following formula:

2
Rµνσρ = ηAB

[
∇ν∇σ zA

(
∇µ∇ρwB−

1
Γ

κ
µρ∇κvB−

2
Γ

κ
µρ∇κzB

)
+

+
(

∇ν∇σ vA−
1
Γ

κ
νσ ∇κzA

)(
∇µ∇ρvB−

1
Γ

κ
µρ∇κzB

)
+ (6.36)

+
(

∇ν∇σ wA−
1
Γ

κ
νσ ∇κvA−

2
Γ

κ
νσ ∇κzA

)
∇µ∇ρzB− (µ ↔ ν)

]
The terms proportional to

2
Γ are zero according to (5.10), because they contain the products of first

and second covariant derivatives of the original embedding functions contracted with the Euclidean
metric, ηAB ∇µ∇λ zA∇νzB = 0. With a little algebra we find:

2
Rµνσρ = ηAB

[
∇ν∇σ zA

∇µ∇ρwB +∇ν∇σ wA
∇µ∇ρzB −

− ∇µ∇σ zA
∇ν∇ρwB−∇µ∇σ wA

∇ν∇ρzB]+
+ ηAB

[
∇ν∇σ vA

∇µ∇ρvB−∇µ∇σ vA
∇ν∇ρvB

]
+

o
g

κλ

[
1
Γ

κ
µσ

1
Γ

λ
νρ −

1
Γ

κ
νσ

1
Γ

λ
µρ

]
,

where the
1
Γ

1
Γ terms contain only z and v functions. To write down the second-order correction to

Einstein equations we need also the explicit form of the correction to the Ricci tensor:

2
Rνρ =

o
g µσ

2
Rµνσρ +

1
g µσ

1
Rµνσρ +

2
g µσ

o
Rµνσρ (6.37)

and the scalar curvature
2
R =

o
g µσ

2
Rµσ +

1
g µσ

1
Rµσ +

2
g µσ

o
Rµσ (6.38)

with the w-functions contained only in
2
Rµνσρ and in

2
g µσ .

Obviously, if the first-order deviation was Einsteinian, i.e. not only the initial space-time was
Ricci-flat, but also R1

νρ = 0, the second-order correction to the scalar curvature contains only
the first contribution, go µσ R2

µσ , and the correction to Einstein’s equations reduces again to the
vanishing second-order Ricci tensor, R2

µσ = 0.
Finally, the third order correction to the Riemann tensor can be obtained by expanding the

Gauss-Codazzi formula applied to the deformed manifold:

R̃ µν λρ =−ηAB

[
∇̃µ∇̃λ z̃A

∇̃ν∇ρ z̃B− ∇̃ν ∇̃λ z̃A
∇̃µ∇̃ρ z̃B

]
. (6.39)

and expanding all the quantites in powers of ε . This gives the following result:

3
Rµνσρ = ηAB

[
∇ν∇σ zA

∇µ∇ρhB +∇ν∇σ hA
∇µ∇ρzB +

+ ∇µ∇σ vA
∇ν∇ρwB +∇µ∇σ wA

∇ν∇ρvB− (µ ↔ ν)
]
+

+
[

o
g

κλ

(
2
Γ

κ
µσ

1
Γ

λ
νρ +

1
Γ

κ
µσ

2
Γ

λ
νρ

)
+

1
g

κλ

1
Γ

κ
µσ

1
Γ

λ
νρ − (µ ↔ ν)

]
, (6.40)
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Again, in order to write down the third correction to Einstein’s equations, we should get the
explicit expression for the third order correction to the Ricci tensor.

3
Rνρ =

o
g µσ

3
Rµνσρ +

1
g µσ

2
Rµνσρ +

2
g µσ

1
Rµνσρ +

3
g µσ

o
Rµνσρ , (6.41)

Again, because the third-order correction to the scalar curvature is given by the formula

3
R =

o
g µσ

3
Rµσ +

1
g µσ

2
Rµσ +

2
g µσ

1
Rµσ +

3
g µσ

o
Rµσ , (6.42)

and if the previous two orders were Ricci-flat, the third order correction to Einstein’s equations will

reduce to the Ricc-flatness of the third order,
3
Rµν = 0.

7. Plane waves in a flat background space-time

In a Minkowskian space-time M4 parameterized by cartesian coordinates xµ = [ct,x,y,z] all
connection coefficients identically vanish, as well as the components of the Riemann and Ricci
tensors. The flat Minkowskian space can be embedded as a hyperplane in any pseudo-Euclidean
space with more than four dimensions and signature (1+,(N− 1)−). Let us choose the simplest
case of embedding in five dimensions:

M4 → E5
1,4

with the first four components denoting a Minkowskian space-time vector in cartesian coordinates:

z1 = ct, z2 = x, z3 = y, z4 = z, z5 = 0, (7.1)

the last cartesian coordinate considered as an extra dimension of E5
1,4 orthogonal to the M4 hy-

perplane. All covariant derivatives in (6.21) can be replaced by partial derivatives, and all second
derivatives of linear embedding functions are identically zero. Therefore in order to investigate non
trivial deformations of the Minkowskian space embedded as a hyperplane we must go the second
order in ε . This leads to the following equation resulting from the requirement of vanishing of the
Ricci tensor:

2
Rµρ = 0 =⇒

o
g λν

ηAB

[
∇µ∇λ vA

∇ν∇ρ vB−∇ν∇λ vA
∇µ∇ρ vB

]
= 0

We shall not consider infinitesimal deformations of the first four coordinates because they coincide
with coordinate transformations in V4; therefore the only non vanishing component of vA is the
remaining fifth coordinate deformation, expanded in a series of powers of ε:

z5 = ε v(xµ)+ ε
2 w(xµ)+ ε

3 h(xµ)+ ...

In order to keep the Einstein equations satisfied after deformation up to the second order terms, we
must have

2
Rµρ=

o
g λν

[
∇µ∇λ v∇ν∇ρ v−∇ν∇λ v∇µ∇ρ v

]
= 0 (7.2)
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Any function of linear combination of cartesian coordinates is an obvious solution of Eq. (7.2).
Indeed, if we set:

v(xµ) = f (kµ xµ) (7.3)

inserting the derivatives of v(kµ xµ) into (7.2) results in the following simple equation :

o
g λν

[
kµkλ kνkρ v′2− kνkλ kµkρ v′2

]
= kνkν v′2

[
kµkρ − kρkµ

]
= 0, (7.4)

But in fact, this deformation does not have any physical meaning, because the Riemann tensor,
which is the only observable quantity, identically vanishes:

2
Rµνλρ =

[
kµ kλ kν kρ − kν kλ kµ kρ

]
= 0 (7.5)

The vanishing of the Riemann tensor is not surprising, because the deformation considered looks
like a deformation of a plane into a cylinder, which does not alter its intrinsic flat geometry.

The fact that there are no wave-like solutions at the first order of deformation of Minkowskian
spacetime suggests that the same situation will prevail when we shall investigate other Einsteinian
manifolds embedded in a pseudo-Euclidan flat space, e.g. the Schwarzschild solution. If the
contrary was true, one could keep the wave-like propagating deformations also in the flat limit,
which would contradict the absence of such solutions among the first-order deformations of the
Minkowskian space-time.

This means that the only hope to produce contributions to the Riemann tensor behaving like
a propagating gravitational field, i.e. the gravitational waves, is to consider the third (and higher)
order deformations of embedded Einsteinian manifolds. The third order variation for the Riemann
tensor in the case of deformations of all orders orthogonal to the embedded manifold reduces to the
formula (6.40) given in the previous section.

The linear contribution coming from the expressions containing third-order deviation linearly
does vanish because the derivatives of the corresponding z5 coordinate are identically zero.

A wave-like behavior of the Riemann tensor can be produced if we assume that w depends on
variables orthogonal to the worldlines parallel to the vector k. For the sake of simplicity, let us start
with the first order deformation in the direction of fifth coordinate, i.e. orthogonal to the embedded
Minkowskian hyperplane M4 as a plane wave propagating along the z-axis:

v(xµ) = A cos(ωt− kz).

According to our general analysis, by virtue of (7.5), this deformation does not contribute to
the Riemann tensor, which remains zero even at the second order. Now let us add up the second
order deformation depending on the variables x and y only:

z5 = εA cos(ωt− kz)+ ε
2 w(x,y) (7.6)

The only contribution to the third order correction to the Riemann tensor has the form given by the
formula (6.40) in which the covariant derivatives can be replaced by partial derivatives given that
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all Christoffel symbols vanish in cartesian coordinates. The function w(x,y) must have some non
vanishing second order derivatives; let us make the simplest choice and set w(x,y) = Bxy, with B
= Const having the dimension cm−1.

Then the only non vanishing second derivative is ∂ 2
xyw = B. Taking into account the form of

(6.40), the only non vanishing components are:

3
Rµxyρ =

(
∂

2
µy v ∂

2
xρ w+∂

2
µy w ∂

2
xρ v− ∂

2
xy v ∂

2
µρ w−∂

2
xy w ∂

2
µρ v
)

(7.7)

and all other components obtained from this one by permutations of indexes allowed by the well

known symmetries of Riemann’s tensor, like e.g.
3
Rxµρy, etc.

Now, given that v does not depend on x and on y, the only non vanishing term in (7.7) is the
one containing ∂x∂yw = B; so that we have

3
Rµxyρ =−∂

2
xy w ∂

2
µρ v =−B ∂

2
µρ v (7.8)

There is no contribution to the Ricci tensor coming from
o
g

xy 3
Rµxyρ because the Minkowskian metric

tensor is diagonal and
o
g

xy
= 0; therefore, to make the Ricci tensor vanish up to the third order means

that the following equation must be satisfied:

o
g µρ

3
Rµxyρ =−B

o
g µρ

∂
2
µρ v = 0 (7.9)

This is the wave equation for v, imposing the dispersion relation ω2 = c2 k2.
This particular form of the “modulating" function w(x,y) can be easily generalized. As a first

step, let us consider an arbitrary quadratic form in variables x and y: let us put

w = Ax2 +Bxy+C y2

Besides the non vanishing component
3
Rµxyρ , two other components of Riemann tensor will appear

now:
3
Rµxxρ = 2A, and

3
Rµyyρ = 2C

which have the same structure as the (x,y) component (7.8):

3
Rµxxρ = −∂

2
xx w ∂

2
µρ v =−2A ∂

2
µρ v,

3
Rµyyρ = −∂

2
yy w ∂

2
µρ v =−2C ∂

2
µρ v, (7.10)

The components (xx), (xy) and (yy) of the Ricci tensor vanish if the same condition (7.9) is sat-
isfied; but now we shall also make sure that all other components of the Ricci tensor vanish, too,
which will be true if the following trace is zero:

o
g xx 3

Rµxxρ +
o
g yy 3

Rµyyρ = −∂
2
xx w ∂

2
µρ v−∂

2
xx w ∂µ∂ρv

= −(2A+2C) ∂
2
µρ v (7.11)
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leading to the extra condition on the coefficients A and C, namely, A =−C, thus leaving only two
degrees of freedom for the function w. This suggests the quadrupolar character of the gravitational
wave, which deforms the space simultaneously in two directions perpendicular to the direction of
propagation; notice that if w depended only on one transversal variable, say x, the vanishing of the
Ricci tensor would impose w = 0 (or a constant, which would not have any physical meaning at
all).

The same is true for any homogeneous polynomial of two variables x and y, provided it satisfies
the two-dimensional Laplace equation ∂ 2

xx w + ∂ 2
yy w = 0. Finally, we can generalize our result by

stating that the deformation of Minkowskian space-time embedded as a hyperplane in an five-
dimensional Euclidean ambient space leads to the vanishing of the Ricci tensor up to the third
order in small parameter ε if it has the form

z5 = ε cos(ωt− kz)+ ε
2 w(x,y)+O(ε3) (7.12)

provided ω2 = c2k2 and w satisfies the two-dimensional Laplace equation ∇2w = 0. The only
non-vanishing components of the Riemann tensor are then

3
Rtxyt ,

3
Rtxxz,

Taking into account that the corresponding Riemann tensor ε3 3
Rµνλρ is linear both in v and

w, we can compose by superposition a transversally polarized plane wave of arbitrary shape and
spectrum, propagating with the phase velocity equal to the speed of light.

However, although from a purely mathematical point of view an w(x,y) satisfying the two-
dimensional Laplace equation becomes a solution to the third-order correction to Einstein’s equa-
tions, we claim that only the quadratic functions of x and y represent a physically acceptable case.
This is because constant and linear functions w make vanish not only the Ricci tensor, but also Rie-
mann’s tensor as well (due to the second derivatives of the zero-order linear embedding functions
zA).

The quadratic functions w lead to a constant (on the x,y-plane) Riemann tensor, multiplied by
the oscillating factor cos(ωt− kz), which is acceptable for an infinite plane wave.

But if we take a cubic or higher degree polynomial in x,y as the modulating function w, the
Riemann tensor will become linear (or higher degree) in x,y, becoming infinite at spatial infinity,
which is physically unacceptable. Therefore only the second degree polynomial fully characterizes
the plane gravitational wave, conveying it only two degrees of freedom. The two independent
polynomials being x2− y2 and xy, one can form their complex combination x2− y2 + 2ixy, which
under the rigid rotation in the x− y plane, x + iy→ eiφ (x + iy will take on the factor e2iφ , typical
for the spin 2fields.

8. Spherical waves in a flat background

The particular form of plane wave solution suggests also the form of a spherical wave. The
first-order deformation vA far from the source should contain a factor propagating in radial direc-
tion, while the second-order deformation wA should depend on the angular variables. We should
not expect total vanishing of the second-order correction to the Riemann tensor like it happened
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in the case of plane waves. It is important that there will be no propagating terms at that order of
approximation; static terms vanishing at spatial infinity like r−2 or r−3 can be neglected and in fact
describe the approximation to the static part of the space-time deformation inevitably produced by
the source of spherical gravitational waves.

Let us start with the first-order deformation of Minkowskian space-time embedded as a hyper-
plane in some pseudo-Euclidean space; it has one component along one extra dimension perpen-
dicular to the Minkowskian hyperplane M4. We suppose that is depends on the variables r and t
only:

v5 = v5 (t, r) (8.1)

Being perpendicular to the embedded manifold M4 as seen from the host space, this deformation
does not contribute to the first-order correction to the Riemann tensor. In order to evaluate the
second-order correction to the Riemann tensor,

2
Rµνλρ , we need to insert the expressions for second

covariant derivatives of v. In a flat space parameterized by spherical coordinates the non-vanishing
Christoffel symbols are:

Γr
θθ

= −r Γr
ϕϕ = −r sin2

θ

Γθ
rθ

= r−1 Γ
ϕ

rφ
= r−1

Γθ
ϕϕ = −sinθ cosθ Γ

φ

θϕ
= cosθ

sinθ
.

and in the case when v is a function only of t and r the non-vanishing combinations are:

∇t∇r v = ∂
2
tr v, ∇t∇t v = ∂

2
tt v

∇r∇r v = ∂
2
rr v, ∇θ ∇θ v = r ∂rv, ∇ϕ∇ϕ v = r sin2

θ ∂rv (8.2)

We consider the same deformation of the fifth coordinate as before:

z5 = ε v5(xµ)+ ε
2 w5(xµ)+ ε

3 h5(xµ)+ . . .

The first order deformation of the Ricci tensor is still zero, because the deformation is per-
formed orthogonally to the embedded manifold. In the case of the Minkowskian background even
the first-order correction to the Riemann tensor is automatically zero. This is easy to see in cartesian
coordinates, when all second derivatives of the linear embedding functions do vanish identically.
This will remain true in any curvilinear coordinate system, too.

In order to make vanish also the the second order correction to the Einstein equations in vacuo
we have to satisfy the eq. (7.2). Because we are looking for radiative solutions, we shall neglect all
terms which decay at spatial infinity more rapidly than 1/r, keeping only the radiative part. Let us
set

v5(xµ) =
A cos(ωt− kr)

r
. (8.3)

With the choice for v5(t,r) given above (8.3), it is easy to see that
1
Rµνλρ = 0 and the only

components of
2
Rµ ν λ ρ that we need to calculate are:

2
Rt r r t

2
Rt θ θ t

2
Rt θ θ r

2
Rr θ θ r

2
Rθ φ φ θ ,
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The explicit calculus yields the following result (in what follows, in order to make the formulae
shorter, we have put Ω = ωt− kr):

2
Rt r r t =−A2ω2

c2r4 −
A2ω2 cos2 Ω

c2r4

2
Rt θ θ t =−A2ω2k

c2r
sinΩcosΩ+

A2ω2 cos2 Ω

c2r2

2
Rt θ θ r =

A2ωk2

cr
sinΩcosΩ+

A2ωk
cr2

(
sin2

Ω− cos2
Ω
)
− A2ω

cr3 sinΩcosΩ

2
Rr θ θ r =−A2k3

r
sinΩcosΩ+

A2k2

r2 cos2
Ω− 2A2k2

r2 sin2
Ω+

+
4A2k

r3 sinΩcosΩ− 2A2

r4 cos2
Ω

2
Rθ ϕ ϕ θ = sin2

θ

(
A2k2 cos2

Ω+
2Ak

r
sinΩcosΩ+

A2

r2 sin2
Ω

)
Among the second-order corrections to the Ricci tensor there are only two non-vanishing compo-
nents of radiative character, i.e. behaving at infinity like 1/r:

2
Rϕϕ = sin2

θ
2
Rθθ ∼

(
k2c2−ω

2) sin2
θ

sin(Ω) cos(Ω)
r

(8.4)

and they do vanish provided that ω2 = k2c2. Nevertheless, although the presence of terms behaving
at infinity like r−1 could be interpreted as a gravitational wave, it should not be there at spatial
infinity, i.e. in the plane wave limit, where the wave-like behavior could be observed only in the
corrections of the third order; what is worse, we get everywhere the quadratic expressions like sinΩ

and cosΩ, which will give rise to terms like sin2Ω and cos2Ω. whose frequency is the double of the
basic frequency Ω, and there is no reason to observe such frequencies in a gravitational wave whose
source was supposed to oscillate with the frequency Ω. The same is also true for the components
of the second-order correction to the metric tensor, which is also quadratic in the first derivatives
of v.

The very form of these undesirable terms suggests how they can be suppressed. It is quite clear
that in order to cancel double frequencies (quadratic terms) we should add a deformation toward
an additional (here sixth) dimension, of the form:

v6(t,r) = A
sin(ωt− k r)

r
≡ A

sin(Ω)
r

(recall that v5(t,r) = Ar−1 cosΩ). The contributions to the second-order corrections to Riemann’s

tensor
2
Rµ ν λ ρ are the same as the ones coming from v5(t,r), with the substitution

cosΩ→ sinΩ, sinΩ→−cosΩ

Now all the cross terms sinΩcosΩ cancel each other, and for each term containing sin2
Ω there

will be a corresponding term with cos2 Ω instead, so that their sum will produce a constant.
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With two simultaneous deformations in two extra dimensions, opposite in phase, v5(t,r) =
Ar−1 cosΩ and v6(t,r) = Ar−1 sinΩ, there are no more radiative terms in the second-order Riemann
tensor, whose only non-vanishing components are the following:

2
Rt r r t =−3A2ω2

c2r4

2
Rt θ θ t =

A2ω2

c2r2

2
Rr θ θ r =−2A2k2

r2 − 2A2

r4

2
Rθ ϕ ϕ θ = sin2

θ

(
A2k2 +

A2

r2

)
2
Rt θ θ r = 0,

2
Rt ϕ ϕ r = 0. (8.5)

and of course,
2
R t ϕ ϕ t = sin2

θ
2
R t θ θ t ,

2
Rr ϕ ϕ r = sin2

θ
2
Rr θ θ r.

The terms behaving like r−2 or r−4 can be dealt with and eventually cancelled via introducing
extra dimensions. By the same token, the correction to the metric tensor does not contain any
time-dependent functions, being now reduced to the following form:

2
g tt =

ω2A2

c2r2 ,
2
g tr =

2
g rt =

ωkA2

cr2 ,
2
g rr =

k2A2

r2 . (8.6)

A short calculus gives the non vanishing components of the second-order Ricci tensor:

2
Rt t =

A2ω2

c2r4 ,
2
Rr r =−3A2ω2

c2r4 +
2A2k2

r4 +
4A2

r6

2
Rθ θ =

A2ω2

c2r2 +
A2

r4 ,
2
Rϕ ϕ = sin2

θ

(
A2ω2

c2r2 +
A2

r4

)
. (8.7)

As in the plane wave case, we expect the radiative behavior to appear in the third order of
approximation. But now Einstein’s equations in vacuo can be expanded not only in a series of
powers of small deformation parameter ε , but each term of this expansion can be represented as a
series of negative powers of r. Therefore, our strategy is based on the analysis of the radiative terms
first (behaving at spatial infinity as r−1), considering all more rapidly decaying terms as negligible
at this stage.

The third order correction to the Riemann tensor is given by the equation (6.40), from which
we can easily calculate the third-order correction to the Ricci tensor. Note that in the third order,

the Ricci tensor contains only the contraction of the unperturbed metric tensor
o
g µν with the third-

order Riemann tensor, because in this particular case
1
g µν = 0. We shall suppose that the second-

order deformations represent as before a monochromatic spherical wave, whereas the third-order
deformation functions wA do not depend on time t, wA = wA(r,θ ,ϕ), A = 5 or 6.. Under these
assumptions the ten independent components of the third-order correction to the Ricci tensor are
as follows

3
Rtt = ∇t∇t v

[
−∇r∇rw+

o
g θθ

∇θ ∇θ w+
o
g ϕϕ

∇ϕ∇ϕw
]
,

3
Rtr = ∇t∇r v

[
o
g θθ

∇θ ∇θ w+
o
g ϕϕ

∇ϕ∇ϕw
]
,
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3
Rrr = ∇r∇r v

[
o
g θθ

∇θ ∇θ w+
o
g ϕϕ

∇ϕ∇ϕw
]
+∇r∇r w

[
∇t∇tv+

o
g θθ

∇θ ∇θ v+
o
g ϕϕ

∇ϕ∇ϕv
]
,

3
Rtθ = ∇t∇r v∇r∇θ w

3
Rtϕ = ∇t∇r v∇r∇ϕ w,

3
Rrθ =

[
∇t∇t v+

o
g ϕϕ

∇ϕ∇ϕ v
]

∇r∇θ w,
3
Rrϕ =

[
∇t∇t v+

o
g θθ

∇θ ∇θ v
]

∇r∇ϕ w,

3
Rθθ = [∇r∇r v−∇t∇t v] ∇θ ∇θ w+

∂rv
r

[
∇θ ∇θ w+

1
sin2

θ
∇ϕ∇ϕ w

]
−∇r∇rw∇θ ∇θ v

3
Rθϕ = [∇r∇r v−∇t∇t v] ∇θ ∇ϕ w

3
Rϕϕ = [∇r∇r v−∇t∇t v] ∇ϕ∇ϕ w+ sin2

θ
∂r v
r

[
∇θ ∇θ w+

1
sin2

θ
∇ϕ∇ϕ w

]
In these formulae we displayed only the generic form, common for both indices A = 5 or 6, and

replaced
o
g tt by 1 and

o
g r r by −1. It is quite easy to determine the behavior of each of these

components at spatial infinity, r → ∞. Let us do it systematically, by groups of terms displaying
similar behavior:

- The last three components,
3
Rθθ ,

3
Rθϕ and

3
Rϕϕ , contain the common factor

[∇r∇r v−∇t∇t v] =
(

ω2

c2 − k2
)

Acos Ω

r
− 2k A sin Ω

r2 − 2Acos Ω

r3 . (8.8)

The r−1-like term is cancelled if the dispersion relation k2c2 = ω2 is satisfied, which we shall
supposed true from now on. Then only the terms behaving like r−2 are left.

Other two terms present in
3
Rθθ and

3
Rϕϕ contain the factor r−1 ∂r v, which also behaves like r−2

at least. The last remaining expression that may cause trouble is−∇r∇rw∇θ ∇θ v; by an appropriate
choice of the function w(r,θ ,ϕ)we shall ensure that it also behaves like r−3 at least.

Therefore, there are no radiative terms at infinity in the last three components of the Ricci
tensor

- The first three components,
3
Rtt ,

3
Rtr and

3
Rrr, contain the common factor corresponding to the

angular part of the three-dimensional Laplace operator,[
o
g θθ

∇θ ∇θ w+
o
g ϕϕ

∇ϕ∇ϕw
]

=− 1
r2

[
∂

2
θθ w+

cosθ

sinθ
∂θ w+

1
sin2

θ
∂

2
ϕϕ w

]
, (8.9)

which behaves like r−2; besides, the factors containing the derivatives of the first-order correction

v all start with the term proportional to r−1, which makes the components
3
Rtt ,

3
Rtr and

3
Rrr behave

at least like r−3.
- Finally, the remaining four components,

3
Rtθ ,

3
Rtϕ ,

3
Rrθ and

3
Rrϕ , contain, besides the factors

with second derivatives of v, the factor ∇r∇θ w or ∇r∇ϕ w. Explicitly, these expressions are given
by the formulae

∇r∇θ w = ∂
2
rθ w− 1

r
∂θ w, ∇r∇ϕ w = ∂

2
rϕ w− 1

r
∂ϕ w. (8.10)

Now, there is an obvious solution to the above equations which consists in choosing the linear
dependence on r,

w(xµ) = r Q(θ ,φ) (8.11)
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This ansatz cancels identically the four components of the Ricci tensor,
3
Rtθ ,

3
Rtϕ ,

3
Rrθ and

3
Rrϕ , but

the function Q(θ ,ϕ) inserted in the last three components will produce the leading factor behaving
like r−1, which we wanted to avoid.

However, there is no reason to require from these four components of the third-order correction
to the Ricci tensor to vanish identically, while keeping the terms behaving like r−2 in other compo-
nents. In fact, there is an alternative choice, admitting that the functions wA can be developed into
series of negative powers of r, starting with the zero-power term:

wA (r,θ ,ϕ) =
∞

∑
p=0

r−p wA
p(θ ,ϕ), (8.12)

This form of the second-order deformation makes the terms (8.10) decay at spatial infinity like r−1

or faster, and taking into account that the terms with the second derivatives of v’s also start with
the dependence r−1 , we are sure that all the components of the third-order correction to the Ricci
tensor have their leading term at infinity behaving as r−2; still, certain components present in the
Riemann tensor will behave like r−1, which can be interpreted as a spherical gravitational wave.

What we should prove now is that although we have the approximate Ricci-flatness satisfied
asymptotically (up to the terms behaving like r−1 at spatial infinity), the Riemann tensor has at least
some components behaving like r−1, so that there is a spherical gravitational wave at spatial infinity.
Inserting the second-order deformations (A,B = 5,6) given by (8.12) along with the spherical wave
found in the second-order approximation into the formula for the third-order correction to the
Riemann tensor (6.40), and keeping only the leading terms in negative powers of r, we observe
(see the full list of terms in the Appendix 1) that only the first two terms in the expansion of the
second-order (∼ ε2) deformations wA, namely

wA
0 (θ ,ϕ)+

wA
1 (θ ,ϕ)

r
,

can produce, when combined with the first-order deformation vB ∼ Acos(ωt−kr)
r , the terms behaving

at infinity like r−1. But there is one component,

3
Rθϕθϕ = ∇θ ∇θ v∇ϕ∇ϕ w+∇ϕ∇ϕ v∇θ ∇θ w

whose leading term is independent of r even at spatial infinity:

k sin(Ω)
[

∂
2
ϕϕw0(θ ,ϕ)− sinθ cosθ ∂θ w0(θ ,ϕ)+ sin2

θ ∂
2
θθ w0(θ ,ϕ)

]
The obvious solution is w0 = Constant , but this corresponds to a pure gauge and does not change
the induced metric. Other solutions should contain the dependence on the azimuthal angle ϕ re-
specting periodicity, i.e. they must be proportional to eimϕ , which will result in the following
condition [

−m2 w0(θ ,ϕ)− sinθ cosθ ∂θ w0(θ ,ϕ)+ sin2
θ ∂

2
θθ w0(θ ,ϕ)

]
= 0, (8.13)

that will ensure the vanishing of the radiative part of the component
3
Rθϕθϕ of the Riemann tensor.

This is in agreement with our result for the plane gravitational wave, for which the component
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3
Rxyxy was zero when the direction of propagation was along the z-axis; in the case of a spherical
wave the propagation is along the radial direction, so that the "purely transversal" component of
the Riemann tensor becomes precisely Rθϕθϕ .

Now, if we set m = 0, the obvious solution is Q = K cosθ ; if m 6= 0, the solution is the
combination of two functions,

C1

[
cosθ −1
cosθ +1

]√m2+1
2

+C2

[
cosθ −1
cosθ +1

]−√m2+1
2

The functions wA
0 (θ ,ϕ) (as well as the functions and wA

1 (θ ,ϕ) and the subsequent terms of
the development (8.12) can be decomposed into the sum of the Legendre polynomials as follows:

wA (θ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

CA
lm Pm

l (cosθ)eimφ (8.14)

They appear in the expressions for the third-order correction to the Ricci tensor via the combi-

nation
[

o
g θθ ∇θ ∇θ w+

o
g ϕϕ∇ϕ∇ϕw

]
, which is the angular part of the Laplace operator in spherical

coordinates. Therefore, as each of the associated Legendre polynomials is a solution of the full
Laplace equation with the corresponding radial part included, which gives the factor l(l + 1), we
shall get[

o
g θθ

∇θ ∇θ +
o
g ϕϕ

∇ϕ∇ϕ

]
Pm

l (cosθ)eimφ =
1
r2

[
m2

sin2
θ
− l(l +1)

]
Pm

l (cosθ)eimφ ,

so that these terms become the sum of linear combinations of the second-order deformations wA.
These in turn can be superposed with the first-order deformations vA in form of portent waves of
different frequencies in order to produce the wave packets with an arbitrary frequency spectrum.

The knowledge of the asymptotic angular behavior should enable us to reconstruct the angular
distribution of matter in the source of the gravitational wave.

Let us summarize the result of our approximation at this stage in the following table:

ε0 ε1 ε2 ε3

1
r 0 0 0

3
R ρ

µ νλ
6= 0,

3
R µν = 0.

1
r2 0 0

2
R ρ

µ νλ
6= 0,

2
R µν 6= 0

3
R ρ

µ νλ
6= 0,

3
R µν 6= 0.

1
r3 0 0 0

3
R ρ

µ νλ
6= 0,

3
R µν 6= 0.

1
r4 0 0

2
R ρ

µ νλ
6= 0,

2
R µν 6= 0

3
R ρ

µ νλ
6= 0,

3
R µν 6= 0.

1
r5 0 0 0

3
R ρ

µ νλ
6= 0,

3
R µν 6= 0.

1
r6 0 0

2
R ρ

µ νλ
6= 0,

2
R µν 6= 0.

3
R ρ

µ νλ
6= 0,

3
R µν 6= 0.

Table I: The non-vanishing components of Riemann and Ricci tensors

for the approximate spherical wave solution in Minkowskian background
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The table above shows that in the asymptotic radiative region the dominant terms satisfy Ein-
stein’s equations, i.e. up to the terms behaving at infinity like r−1 the space-time containing the
spherical wave contribution is Ricci-flat. The remaining terms, be it the Riemann or the Ricci ten-
sors, are similar to the Coulomb-like terms in the electromagnetic radiation case in the zone near
the source, where they dominate. However, although the contributions to the Riemann tensor may
(and should be) not equal to zero, The Ricci tensor should vanish at all orders, or at least up to
the maximal number of orders for our approximation to be considered as valid. The non-vanishing
components of the Ricci tensor, starting from the terms decaying like r−2 at infinity and in the first
three lowest powers of the small parameter ε are displayed in the following Table II:

1
r

1
r2

1
r3

1
r4

1
r5

1
r6

2
R tt 0 0 0 A2ω2

c2r4 0 0

2
R rr 0 0 0 −3A2ω2−2A2k2c2

c2r4 0 4A2

r6

2
R θθ 0 A2ω2

c2r2 0 A2

r4 0 0

Table II: The non-vanishing components of second-order Ricci tensor

for the approximate spherical wave solution in Minkowskian background (Rϕϕ = sin2
θ Rθθ )

Our strategy, in what follows, will consist in creating other deformations of the embedding
functions, perhaps in extra dimensions, in order to cancel the non-zero components of the Ricci
tensor displayed in the Table II. To make the Ricci tensor vanish at all orders of r−1 and in all
powers of ε is beyond our possibilities at the moment; still, we proceeding step by step, we shall

cancel at least the dominant terms, of which the most important is
2
R θθ proportional to r−2.

Before going into details, let us draw attention to the physical nature of the problem. The
spherical gravitational wave was produced by the deformations of the flat Minkowskian back-
ground, and is valid only asymptotically, at spatial infinity. But the presence of spherical radiation
coming from the center of coordinates cannot be justified if there is no matter near the center. There
must be some time-dependent mass distribution, because we can be sure that a static mass will not
radiate. Whatever the distribution, if it is bounded in space, from a very great distance it will be
seen as an almost point-like mass varying with time, M(t).

Now, contrary to what may happen in electrodynamics, where the radiation may come from a
charge distribution with total average zero, the function M(t) can never become negative or even hit
the zero value. This means that there is some minimal value below which m(t) can never descend,
so that we can write M(t) = M + m(t), with m(t) usually much smaller than M. This leads us to
the conclusion that the natural background for a spherical gravitational wave is the Schwarzschild
metric, with time-dependent perturbations which are the real source of radiation.

This is why we should combine the embedding of our approximate spherical wave with a
Schwarzschild background. The embedding of the combined solution will certainly need more
than six flat dimensions; let us recall the properties of embeddings of the exterior Schwarzschild
solution.
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9. Spherical wave and the Schwarzschild background

The yet unspecified small parameter ε can be now identified with the measure of the ratio
| max(m(t)) | /M. The rapidity of the time variation will also play an important role, as can be
inferred from the presence of the factor ω2 in the non-vanishing components of the Riemann and
Ricci tensors generated by the wave.

Isometric embeddings of Einstein spaces in pseudo-Euclidean flat spaces of various dimen-
sions and signatures can be found in J. Rosen’s paper in [27]. An embedding of the exterior
Schwarzschild solution which is of particular interest to us , cited in Rosen’s paper, has been
found by Kasner [28], who also proved that the embedding of Schwarzschild’s solution in a five-
dimensional pseudo-Euclidean space is impossible. Kasner’s embedding uses a pseudo-Euclidean
space E6 with signature (++−−−−), using trigonometric functions of time in order to parametrize
the two timelike dimensions, and admits closed time-like curves. In 1959 C. Fronsdal [29] proposed
a similar embedding into pseudo-Euclidean space with the signature (1+,5−), using hyperbolic
functions instead the trigonometric ones. Fronsdal’s embedding is defined as follows:

z1 = MG

(
1− 2MG

r

) 1
2

sinh
(

ct
MG

)
, z2 = MG

(
1− 2MG

r

) 1
2

cosh
(

ct
MG

)
,

z3 =
∫ [1−

(
MG

r

)4

1− 2MG
r

−1

] 1
2

dr,

z4 = r sin θ cos φ , z5 = r sin θ sin φ , z6 = r cos θ

Here M is the mass of the central gravitating body and G denotes Newton’s gravitational
constant. (Note the dimensional factor MG in front of the definitions of z1 and z2 in order to give
these coordinates the dimension of length).

The embedded four-dimensional manifold V4 is parameterized by the coordinates xµ , with
µ = 0,1,2,3 so that x0 = ct, x1 = r, x2 = θ , x3 = φ .

Let us define the flat metric by ηAB = diag(+−−−−−), with A,B, ... = 1,2, ...6.

Then it is easy to check that the induced metric on the embedded manifold has indeed the
usual Schwarzschild form:

ds2 = ηAB ∂µzA
∂νzB dxµdxν = gµν (xλ )dxµdxν = (9.1)

=
(

1− 2MG
r

)
c2dt2−

(
1− 2MG

r

)−1

dr2− r2(dθ
2−sin2

θdφ
2)

In what follows, we use Fronsdal’s embedding of the exterior Schwarzschild space-time into
a pseudo-Euclidean flat space with one time-like and five space-like dimensions.

It is worthwhile to look at the non-vanishing components of the Riemann tensor in the Schwarzschild
space-time. They are displayed in the following Table III:

37



P
o
S
(
I
S
F
T
G
)
0
1
5

P
o
S
(
I
S
F
T
G
)
0
1
5

New approximation methods in General Relativity Richard Kerner

r 1 1
r

1
r2

1
r3

1
r4

o
R trtr 0 0 0 0 2MG

r3 0

o
R tθ tθ 0 0 −MG

r
2M2G2

r2 0 0

o
R rθrθ 0 0 MG

r
2M2G2

r2
4M3G3

r3
8M4G4

r4

o
R θφθφ −2MGr sin2

θ 0 0 0 0 0

Table III: The Riemann tensor for the Schwarzschild background

The Ricci tensor is null, of course. Now, a small deformation of the Schwarzschild embedding may
be produced that alters the components of the Riemann tensor keeping the space-time Ricci flat. It
consists in a small variation of the total mass, M →M +δM. The resulting embedding induces the
Schwarzschild metric corresponding to the total mass M +δM. The resulting first-order correction
to the Riemann tensor (linear in δM) are displayed in the following Table IV:

r 1 1
r

1
r2

1
r3

1
r4

1
R trtr 0 0 0 0 2δMG

r3 0

1
R tθ tθ 0 0 − δMG

r
4MGδMG

r2 0 0

1
R rθrθ 0 0 δMG

r
4MGδMG

r2
12M2G2δMG

r3
32M3G3δMG

r4

1
R θφθφ −2δMGr sin2

θ 0 0 0 0 0

Table IV: First order Riemann tensor due to a small mass
deformation around the Schwarzschild background

One can note that although the non-vanishing components of the Rµνλρ correspond to the same
set of indices as the contributions of a spherical wave in Minkowskian background, the repartition
among the negative powers of r is quite different, as shown in the Table V below:

r 1 1
r

1
r2

1
r3

1
r4

2
R trtr 0 0 0 0 0 3A2ω2

c2r4

2
R tθ tθ 0 0 0 −A2ω2

c2r2 0 0

2
R rθrθ 0 0 0 2A2k2

r2 0 2A2

r4

2
R θφθφ 0 −A2k2 sin2

θ 0 −A2 sin2
θ

r2 0 0

Table V: Second order Riemann tensor for a spherical wave in Minkowskian background
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We saw already in the previous section that six pseudo-Euclidean dimensions were needed to
embed the spherical gravitational wave; the exterior Schwarzschild requires also six dimensions
for global embedding. Most probably, it is impossible to accomodate the two embeddings in the
same six-dimensional flat space without their metrics being modified even at the lowest orders.
This is why we shall look for the common embedding of spherical gravitational waves and the
Schwarzschild background in an eight-dimensional pseudo-Euclidean space with one time-like and
seven space-like directions.

We shall choose the first six dimensions (with the (+−−−−−) signature) for the embedding
of the Schwarzschild space-time defined as in (9.1), and the remaining two space-like dimensions,
z7 and z8, will be supposed to be flat and the corresponding deformations of first and second order
in ε will represent the two degrees of freedom of the spherical wave, producing the contributions
to Riemann and Ricci tensors displayed in the Tables II and IV.

Our aim now is to improve the approximation via cancelling more terms in the Ricci tensor.
The most important terms after the radiative ones are the terms behaving like r−2 at infinity, found
in the second-order Ricci tensor (proportional to ε2). Supposing that in the radiative zone r →
∞ Schwarzschild metric is asymptotically Minkowskian, we neglect the terms coming from the
correction MG/r, but keep the embedding using Fronsdal’s hyperbolic functions. Producing extra
deformations in the first two pseudo-Euclidean dimensions carrying the signature (+−) is the only
way to produce negative contribution to the Ricci tensor able to cancel the positive-definite terms
displayed in the Table IV.

Let us produce a first-order deformation of the first three embedding functions, deforming the
embedding of Minkowskian space-time embedded in six pseudo-Euclidean dimensions. Here λ is
yet unspecified constant with dimension of length:

v1 = λ sinh
ct
λ

f (r), v2 = λ cosh
ct
λ

f (r), v3 = v3(r) (9.2)

with all other components vA equal to zero.
Expanding the function f in a series of negative powers of r as follows:

f (r) =
B
r

+
C
r2 +

D
r3 +

E
r4 + . . .

we obtain the following corrections to the Ricci tensor in four dimensions:

1
r

1
r2

1
r3

1
r4

1
r5

1
r6 other

2
R tt 0 0 0 0 −2BC

r5 −6BD+2C2

r6 0

2
R rr 0 0 0 −2B2

r4 −8BC
r5 −14BD+6C2−4λ 2B2

r6 −2v′3v′′3
r

2
R θθ 0 B2

r2
3BC
r3

B2λ 2+4BD+2C2

r4 0 0 −rv′3v′′3− (v′3)
2

Table VI: The contributions to the second-order Ricci tensor, coming from a vA deformation

As one can see, all the contributions to the second-order correction to the Ricci tensor behaving
at infinity as r−2 are positive-definite, and cannot cancel similar terms generated by the wave-like
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deformation. Moreover, they produce a first-order contribution to the Ricci tensor, behaving like
r−1 at infinity, which was avoided up to now. This is why we shall set the function f equal to zero.

But there is no reason to neglect the second-order deformation of the first two embedding
functions. Let us choose the second-order correction of the same form as the first-order one:

w1 = λ sinh
ct
λ

g(r), w2 = λ cosh
ct
λ

g(r), w3 = w3(r) (9.3)

and the other components zero. The function g is also a series of negative powers of r:

g(r) =
P
r2 +

Q
r3 +

R
r4 +

S
r5 +

T
r6 + . . .

Inserting this deformation alone into the formulae for the second-order correction to the Ricci
tensor we obtain the following result, displayed in the Table VII below:

1
r

1
r2

1
r3

1
r4

1
r5

1
r6

2
R tt 0 0 0 −2P

r4 −6Q
r5 −12R

r6

2
R rr 0 0 0 6P

r4
12Q
r5

20R
r6

2
R θθ 0 −2P

r2 −3Q
r3 - 4R

r4 −5S
r5 −6T

r6

Table VII: The contributions at the second-order Ricci tensor, coming from a wA deformation

Combining the results in the Tables II, VI and VII, we see that all the components of the
second-order correction to the Ricci tensor can be cancelled provided the constants P and Q satisfy
the following two relations:

A2k2−2P = 0, Q = 0, (9.4)

which cancels the components of
2
R µλ behaving at infinity like r−2 and r−3.

At this stage of approximation we get P = 1
2 A2k2; This leads to the conclusion that the leading

term in the second-order correction to the embedding functions of Schwarzschild (or Minkowskian)
background is proportional to the square of the wave number, k2.

The combined embedding of the Schwarzschild metric in six pseudo-Euclidean dimensions
and the wave-like deformations of two extra dimensions produce a four dimensional manifold
embedded in a pseudo-Euclidean space of eight dimensions, with the signature (1+,7−). This
manifold represents an approximate radiative solution of Einstein’s equations similar, up to the
terms behaving like r−4 at spatial infinity, to the solutions found by Boardman and Bergmann
([31]) or by Robinson and Trautman ([32]).

10. Discussion and conclusions

In this article we have set forth a new formalism that makes it easier to consider small perturba-
tions of a given Einsteinian background without unphysical degrees of freedom that mar traditional
computations based on the deformations of the metric. Here the embedding provides us with clear
geometric criterion selecting physical degrees of freedom and eliminating the unphysical ones.

40



P
o
S
(
I
S
F
T
G
)
0
1
5

P
o
S
(
I
S
F
T
G
)
0
1
5

New approximation methods in General Relativity Richard Kerner

We have succeeded the construction of wave solutions in flat space, or in an asymptotically flat
Schwarzschild manifold at spatial infinity. These solutions can display any imposed form due to the
possibility of linear superposition of Legendre polynomials. Once a radiative solution is chosen,
we can extrapolate it towards the smaller values of r where the non-radiative terms prevail. These
can be seen as the corrections to Schwarzschild metric close to the central body that are responsible
for the emission of gravitational waves detected at spatial infinity.

The treatment of this problem is the subject of the work in progress.
Now that the Einstein equations are satisfied up to the second order (ε2) and up to the terms

decaying asymptotically as r−4 or faster, we can try to go farther and cancel the third-order (pro-
portional to ε3) terms of the Ricci tensor in the vicinity of the central mass, i.e. in the non-radiative
region. Note that up to the second order, there was no information about any characteristic of
the wave, which is a third order effect. Let us consider the combination of the Schwarzschild
background with the outcoming gravitational wave: the corresponding Riemann tensors can be su-
perimposed without provoking any modification in the lowest orders of the expansion, as it follows
from the Tables IV and VI.

In order to produce a contribution to the Ricci tensor that would cancel the third-order terms
generated as the side-effects of the wave-like deformation, we may follow the example of the
Reissner-Nordstroem metric, which is not Ricci-flat because of the presence in the Einstein equa-
tions of the energy-momentum tensor of the electromagnetic field generated by the central electric
charge Q. The exact solution is then given by the following modification of Schwarzschild’s metric:

ds2 =
(

1− 2MG
r

+
Q2

r2

)
c2dt2−

(
1− 2MG

r
+

Q2

r2

)−1

dr2− r2(dθ
2−sin2

θdφ
2) (10.1)

This metric can be induced by an embedding identical with Fronsdal’s one, with new coefficients
of the first two embedding functions. It is not Ricci-flat, because its Ricci tensor is proportional to
the energy-mementum tensor of the electromagneetci field of a sperically symmetric distribution of
electric charge density, Q bring its total charge. The Maxwell tensor of such a distribution behaves
at infinity as r−2, and the energy-momentum tensor is proportional to r−4.

In our case, the yet non-vanishing components of the Ricci tensor are exactly of this form.
Because we are looking for the third-order effect, we shall modify Schwarzschild’s embedding

functions by replacing the term Q2/r2 by a term proportional to ε3, of the form W (t,θ ,φ)
rp .

References

[1] Einstein A 1916 Ann. Physik 49 769

[2] Ll. Bel, Annales de l’institut Henri Poincaré (A), 14 (3), p. 189-203 (1971)

[3] T. Damour and N. Deruelle, Annales de l’institut Henri Poincaré (A), (1985); ibid, 1986

[4] L. Blanchet, T Damour, B.R. Iyer, C.M. Will, A.G. Wiseman, Physical Review Letters, (1995)

[5] P. Jaranowski and G. Schäffer, Physical Review D, (1998)

[6] A. Balakin, J.W. van Holten and R. Kerner, Class. and Quant. Gravity17, pp.5009-5024, (2000);
e-Print: gr-qc/0009016

41



P
o
S
(
I
S
F
T
G
)
0
1
5

P
o
S
(
I
S
F
T
G
)
0
1
5

New approximation methods in General Relativity Richard Kerner

[7] R. Kerner, J. Martin, S. Mignemi and J.-W. van Holten. Phys.Rev. D63, 027502 (2001); e-Print:
gr-qc/0010098

[8] R. Kerner, J.W. van Holten and R. Colistete Jr. Class. and Quant. Gravity 18 pp. 4725-4742, (2001);
e-Print: gr-qc/0102099

[9] R. Colistete Jr., C. Leygnac and R. Kerner, Class. and Quant. Gravity 19, pp. 4573-4590, (2002);
e-Print: gr-qc/0205019
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