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The Hawking radiation is one of most interesting known effects of black hole physics. Since its
discovery in 1974 by Hawking, this phenomenon has been an object of study of great interest.
Despite the large number of works on this subject, details of the quantum evolution of black holes
are still unknown. In large part, this is due to the complexity of the calculations necessary to
get such results. In order to calculate the Hawking radiation, but avoiding mathematical compli-
cations, many years ago Christensen and Fulling had proposed a method to derive the Hawking
radiation flux in terms of trace anomalies, which is a very simple way to obtain consistent re-
sults, since the anomaly is given in terms of the spacetime curvature invariants. This approach is
successful in the calculation of the stress tensor of the Hawking radiation emitted by black holes
in two-dimensional spacetimes, where all the nonzero components of the stress tensor can be
obtained. However, in the case of four-dimensional spacetimes the Christensen-Fulling method
does not furnish a complete result, since the transverse components of the stress tensor cannot
be determined. In this work we review such an approach and apply it to two-dimensional static
black holes in asymptotically Minkowski and anti-de Sitter (AdS) spacetimes. For black holes in
asymptotically AdS spacetimes a straightforward application of the Christensen-Fulling method
does not provide correct results. To overcome this problem, we propose a slight modification
of the method, where we argue that the trace anomaly due the background curvature of the AdS
spacetime, without the black hole, should be deducted from the total trace anomaly, and hence we
get the correct results for the energy flux of the Hawking radiation in all AdS spacetimes we have
tested.
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Hawking radiation and conformal anomalies in two-dimensional AdS spacetimes

1. Hawking radiation and the Christensen-Fulling approach

According to classical physics it is expected that nothing can leave the interior of a black hole.
That is, any particle that crosses the black hole horizon is subject to a so strong gravitational field
that it can never return, and so, being ordered to fall into the physical singularity inside such objects.
As shown by Hawking [1, 2], this scenario is modified when quantum effects are considered in the
vicinity of a black hole, or in an accelerated reference frame. In both of these cases, there is particle
creation. Hawking showed that a black hole can evaporate, emitting radiation with a characteristic
black body spectrum, with temperature entirely determined by its mass, electric charge and angular
momentum. This radiation emission could cause a total “disappearance" of the black hole, making
it expel all its mass in a large explosion.

In the method proposed by Christensen and Fulling [3], the trace anomaly is used to obtain the
flux of energy due to Hawking radiation. In such an approach it is assumed that the quantum states
preserve the symmetry of the spacetime, which reflects on the symmetry of the energy-momentum
tensor. Moreover, it is assumed that the energy-momentum tensor is time independent. With these
hypotheses, the conservation equation

∇µT µ

ν = 0, (1.1)

provides equations for all the nonzero components of energy-momentum tensor, except for the
energy density Tt

t , which can be obtained through the relation

T t
t = T α

α −T i
i , (1.2)

as long as the trace of the energy-momentum tensor is known. In general, the equations for the
nonzero components of the stress tensor provided by (1.1) can be solved in terms of a function of
the trace of the anomalous stress tensor and of two integration constants. Such constants can be
determined by physically acceptable boundary conditions in the asymptotic limits.

2. The spacetime geometry

The geometry of the spacetime in the vicinity of the black holes studied in this work can be
described by a metric of the form

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dΩ

2, (2.1)

where f (r) is given by

f (r) = a+α
2r2− b

r
+

c
r2 . (2.2)

The parameters b and c are proportional, respectively, to the mass and to the electric charge squared
of the black hole, α is related to the cosmological constant by α2 = −1

3 Λ. Parameter a assumes
the values −1, 0 and +1. The event horizon is given by the largest root (rh) of the equation
f (r) = 0, such that f (r) > 0 for r > rh. The metric of the surfaces of constant t and r is given
by dΩ2 = dθ 2 + Z(θ)2dϕ2, where the function Z(θ) depends on the value of a, and there are
three possibilities: (i) Hyperbolic symmetry (Z(θ) = sinhθ) when a = −1; (ii) Planar symmetry
(Z(θ) = 1) when a = 0; Spherical symmetry (Z(θ) = sinθ) when a = 1 [4].
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Using techniques of dimensional reduction, it is possible to obtain an equivalent two-dimensional
metric given by

ds2 =− f (r)dt2 +
1

f (r)
dr2. (2.3)

In this work we focus on this two-dimensional metric.

3. Trace anomalies

In quantum field theory an anomaly is a break of a classical symmetry. An important effect
of quantization of fields in curved spacetime is the emergence of gravitational anomalies (also
called conformal anomalies). Such anomalies arise as a violation of energy conservation and, for
instance, in the case of massless fields they appear as the conformal invariance violation. This
symmetry break appears explicitly in the energy-momentum tensor, which acquires nonzero trace.

In general, the trace of the anomalous energy-momentum tensor can be given in terms of
the spacetime curvature invariants [5]. For a single scalar field evolving in a two-dimensional
spacetime the trace anomaly of the stress tensor is given by

T α
α =

1
24π

R, (3.1)

where R stands for the Ricci scalar.

4. The stress tensor for two-dimensional black holes

For the two-dimensional metric (2.3) the Ricci scalar is given by, R = − f ′′(r), and thus the
trace anomaly is

Tα
α =− 1

24π

(
2α

2− 2b
r3 +

6c
r4

)
. (4.1)

From the conservation equation (1.1) and from the trace identity (1.2) we find that the equa-
tions for the nonzero components of the stress tensor are

∂rT r
t = 0, ∂rT r

r +
f ′

2 f
(2T r

r −T α
α ) = 0, (4.2)

which integrate respectively to

T r
t =−A, Tr

r(r) =
1

f (r)
{B−A+H2D(r)} , (4.3)

where A And B are two integration constants, and the function H2D(r) is given by

H2D(r) =
∫ r

rh

f ′(r′)
2

T α
α (r′)dr′ (4.4)

The total energy density, Tt
t , can be obtained using the trace identity (1.2).
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Therefore, in terms of the coordinates (t,r∗), r∗ being the tortoise coordinate, the full stress
tensor can be written in the form

T ∗ν
µ =

Tα
α(r)− H2D(r)

f (r)
0

0
H2D(r)

f (r)

+
A

f (r)

[
1 −1
1 −1

]
+

B
f (r)

[
−1 0
0 1

]
. (4.5)

In order to determine the integration constants A and B, it is appropriate to write the stress
tensor as a function of the null coordinates u = t + r∗ and v = t− r∗. Thus, we have

Tuu =
1
4

[2B+2H2(r)− f (r)T α
α (r)] , Tuv = Tvu =−1

4
f (r)T α

α (r), Tvv = Tuu−A, (4.6)

The quantum state that represents the Hawking radiation is the vacuum state that satisfies the
Unruh vacuum boundary conditions, i.e., no flux of ingoing particles at infinity, Tvv(r→ ∞) = 0,
and without energy flux at the past horizon, Tuu(V → 0) = 0. With this conditions the integration
constants become

A = lim
r→∞

[Tuu(r)−Tvv(r)] , B = 0. (4.7)

Hence, for a single scalar field the energy flux of the particles created by the black hole is given be

T r
t (→ ∞) = A =

1
48π

κ
2 +

1
48π

lim
r→∞

(
f (r) f ′′(r)− [ f ′(r)]2

4

)
. (4.8)

This result holds for all nonrotating black holes in two spacetime dimensions, independently from
its energy and mater content. However, in order to determine the integration constants we must
specify the global charges, i.e., the values of the parameters a, b and c. We perform such an
analysis for four distinct black holes in the following.

4.1 Asymptotically Minkowski spacetimes

Spacetimes with an asymptotic trivial structure are spacetimes for which the metric becomes
the Minkowski metric gµν = diag{−1,1,1,1} in the asymptotic region (r→ ∞). For such kind of
spacetimes the term in the horizon function f (r), cf. equation (2.2), related to the cosmological
constant cannot be present, which means Λ = 0. Next we calculate the energy flux of Hawking
radiation for two spherically symmetric black holes in spacetimes with Minkowskian asymptotic
structure.

4.1.1 Schwarzschild black hole

For the Schwarzschild spacetime the global parameters that define the mass M and electric
charge of the black hole in the horizon function (2.2) are respectively b = 2M and c = 0, i.e., no
electric charge. The spherical symmetry is established by a = 1. In this case, the trace anomaly
(3.1) results in Tα

α = M
6πr3 , and then, H2D(r) = M2

24π

( 1
16M4 − 1

r4

)
. With these results and equations

(4.6) and (4.7) we obtain the energy flux of the Hawking Radiation emitted by the Schwarzschild
black hole,

Tt
r(r→ ∞) =− 1

768πM2 . (4.9)

This result agrees with the original result obtained by Christensen and Fulling [3].
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4.1.2 Reissner-Nordström black hole

For the Reissner-Nordström spacetime the global parameters are a = 1, b = 2M and c = Q,
in the horizon function (2.2). The trace anomaly becomes Tα

α = 1
24π

(
4M
r3 − 6Q2

r4

)
, and hence we

have, H2D(r) = 1
24π

(
−M2

r4 + 2MQ2

r5 − Q4

r6 + M2

r4
h
− 2MQ2

r5
h

+ Q4

r6
h

)
. The energy flux of the radiation is

Tt
r(r→ ∞) =−M2−Q2

48πr4
h

. (4.10)

4.2 Asymptotically anti-de Sitter spacetimes

Spacetimes with a non-trivial asymptotic structure, i.e., with a nonzero curvature at infinity
and for which the curvature is negative are known as asymptotically anti-de Sitter spacetimes. In
particular, the metric of of the anti-de Sitter spacetime is given by (2.1) with f (r) = 1+α2r2. Note
that this spacetime does not present a black hole, but have a nonzero trace given by T α

α = − α2

12π
.

Following the same procedure as above, we obtain that the components of the stress tensor in
terms of null coordinates u and v are Tuu = α2

48π
, Tvv = α2

48π
−A and Tuv = Tvu = −1

4 f (r)T α
α (r) =

α2

48π

(
1+α2r2

)
. Thus, we have a nonzero energy density at infinity. Moreover, both the components

Tuv and Tvu diverge at infinity. These nonzero energy density and radiation flux cannot be associated
to quantum effects due to a black hole. Let us present two examples of such inconsistency.

4.2.1 Schwarzschild-anti-de Sitter black hole

The geometry of the Schwarzschild-AdS spacetime is given by the metric (2.1) and a horizon
function (2.2) with global parameters a = 1, b = 2M, c = 0 and with a nonzero cosmological
constant α 6= 0. For this black hole the Christensen-Fulling approach gives that energy flux (4.8) is

Tt
r(r) =− 1

48π

[
α

4r2 +2α
2 +

M2

r4
h

+
2Mα2

rh
+α

4r2
h

]
, (4.11)

which diverges at infinity. Of course, this result does not agree with the energy flux of the Hawking
radiation [2].

4.2.2 Black string

The charged planar black string [4] has global parameters given by a = 0, b = 4M, c = 4Q2

and α 6= 0, for which we obtain the following energy flux of radiation

Tt
r(r) =

1
24π

[
α

4r2 +α
4r2

h +
4α2M

rh
− 8α2Q2

r2
h

+
4M2

r4
h
− 16MQ2

r5
h

+
16Q4

r6
h

]
, (4.12)

which again does not agree with the Hawking result [2].

5. Modification of the Christensen-Fulling approach for AdS spacetimes

We propose here a slight modification of the Christensen-Fulling method for asymptotically
AdS spacetimes. We do this by subtracting the trace anomaly of the stress tensor due to the
background metric, i.e., we eliminate the anomaly due the curvature of the background AdS
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spacetime, without the black hole: T α

(b)α = − α2

12π
. Thus, we get an effective anomaly given by,

T(e f )
α

α
= T α

α −T(b)
α

α
, that is due solely to the black hole. For the horizon function (2.2) this effec-

tive anomaly results in

T(e f )
α

α
=− 1

24π

(
f ′′(r)− f ′′(b)(r)

)
. (5.1)

Using this effective anomaly to calculate the energy flux of the Hawking radiation we obtain that

A =
1

48π
κ

2 +
1

48π
lim
r→∞

[
f (r) f ′′(r)− f(b)(r) f ′′(b)(r)−

1
4

([
f ′(r)

]2−[ f ′(b)(r)
]2
)]

. (5.2)

It is easy to see that the second term of this equation vanishes, giving the correct result for the
Hawking radiation [1, 2]. Also, the components, Tuv = Tvu = −1

4 f (r)T(e f )
α

α
(r) = 0, of the stress

tensor are now well defined in the asymptotic limit.
In fact, using the result (5.2) and replacing the values of the global parameters of mass and

electric charge we get the correct energy flux of Hawking radiation for the Schwarzschild-AdS
black hole, namely,

Tt
r(r→ ∞) =− 1

48π

[
α

4r2
h +

2Mα2

rh
+

M2

r4
h

]
. (5.3)

Also, for the black string we obtain

Tt
r(r→ ∞) =− 1

48π

[
α

4r2
h +

4α2M
rh

+
4α2Q2

r2
h

+
4M2

r4
h
− 16MQ2

r5
h

+
16Q4

r6
h

]
. (5.4)

as expected.

6. Conclusions

In this paper we reviewed the Christensen-Fulling method to calculate the stress tensor of
the Hawking radiation emitted by black holes. The application of this method is well established
for asymptotically Minkowski spacetimes. However, as seen above for spacetimes with nontrivial
asymptotic structure this method fails. We present a proposal to circumvent this problem by sub-
tracting the trace anomaly due to the background metric, and show that the resulting effective trace
anomaly and the same Christensen-Fulling approach give then the correct energy flux for a few
particular cases.
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