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In this work we study the quasinormal spectra of gravitatiqerturbations ofl-dimensional
plane-symmetric AdS black holes in the context of the AdS/€6rrespondence. The perturba-
tion equations are written for two different gauge-invati@ariables: in the first the variables are
chosen in such a way to put the radial part of the fundamenqtatéons into a Schrédinger-like
form; in the second we have a new set of fundamental varialiiese the imposition of Dirichlet
boundary conditions at infinity leads exactly to the quasima frequencies associated to black
hole here studied. The AdS/CFT correspondence helps oneda@ifi appropriate condition to
be applied to each set of variables at the AdS space bourndardér to produce identical QNM
spectra for a given sector of perturbations, and more, ligagjiasinormal modes will correspond
to the poles of the stress-energy tensor correlators inubefigld theory. We investigate analyt-
ically the quasinormal spectrum for small wavenumbergiddrequencies, and large number of
spacetime dimensions. Using series solutions, we obtaimerigally the dispersion relations of
the first few modes in the low-, intermediate- and high-wawveher regimes, and we analyzed
the eikonal limit.
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New results on quasinormal modes

1. Introduction

Theoretical studies on black holes in asymptotically anti-de Sitter spacetimesatieacted
substantial attention since the advent of the anti-de Sitter/conformal field/tt®dS/CFT) cor-
respondencd]1]. Such a correspondence has established a magigiegn quantities in the bulk
AdS black-hole physics and observables in a boundary finite-tempefatld theory, and appears
to be valid for an arbitrary number of spacetime dimensions, extrapolatingottfigimal formula-
tions. According to the AdS/CFT correspondence, an asymptotically AdR btae is, in the CFT
side, associated to a system in thermal equilibrium whose temperature is thengl#é@mperature
of the black hole. In such a context, black hole perturbations corrésgposmall deviations from
equilibrium of the CFT thermal system, and the characteristic damping time oflpatittns, which
is given by the inverse of the imaginary part of the fundamental QNM frecyyes a measure of
the dynamical timescale of approach to thermal equilibrium of the corregmpuodnformal field
theory [2].

There are important issues in the study of the vibrational modes of AdS btacles to be
analyzed in a fullyd-dimensional context. We can mention the arbitrariness in the choice of
gauge-invariant combinations of metric variations as fundamental variablés gravitational
perturbations, and the ambiguity in defining an appropriate condition foruaigimpormal modes at
AdS spacetime boundary. In some of the works on this sulfe¢t [3, 4rdiog to the AAS/CFT
duality, the ambiguities characteristic of classical-field dynamics at AdS tipasewere elimi-
nated by defining the quasinormal (QN) frequencies as the poles, in délce s frequency and
momentum, of retarded Green functions in the dual field theory. Thesethedrelated subjects
are investigated here considering AdS black holes in spacetimes of grpitiraber of dimensions.

2. The background spacetime

The background spacetime considered here represehtiirmensional plane-symmetric as-
ymptotically anti-de Sitter (AdS) black hol@][§], 6]. The spacetime can be locailyew as a
product of a two-dimensional spacetimé&?, spanned by a timelike coordinateand a radial
spacelike coordinate = r/r, and a(d — 2)-dimensional space? 9~2 with constant sectional
curvatureK = 0 [[4, B]. With such a decomposition, the background metric in Schwarzsigkeld
coordinates takes the form

+i d?, (2.1)

U2R2 u2f (u)

rp 2
ds? = —f(u) dt*+ % dXdx

for which f (u) = 1— u9-1 with r,, being the event horizon radius. The Hawking temperature of the
black brane i = (d — 1)r,,/4nR?, whereRis the AdS radius. The coordinatési =2, 3,....,d—1,
span thez 9-2 space.

The radial coordinatea covers, without singularities, the whole region of interest for the anal-
ysis of the QNM of the AdS black hole of metrif (.1), namely, the ramge(1,0). The event
horizon is located at = 1, and the AdS spatial infinityr (— ) is atu = 0.
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3. Fundamental equationsfor the gravitational perturbations

Following the procedure presented in REf. [7], the gravitational peatianbs are grouped into
three distinct classes (sectors) that can be tensorial, vectorial, orgeglarbations, corresponding
respectively to the scalar, shear and sound symmetry channels forawitatjonal fluctuations
considered in Ref[]3]. Here we present the fundamental equationsddinds of variables il
spacetime dimensions, the Kovtun-Starinets (KS) and Regge-Wheelbir{R¥/Z) variables.

3.1 Master equationsfor the RWZ variables

Kodama and Ishibashf][8] showed that for a black brane in four or rapagetime dimen-
sions, the Einstein equations for the gravitational perturbations can beaetb three independent
second-order wave equations in a two-dimensional static spacetime, wat@agorresponding to
each one of the perturbation modes. After Fourier decomposition of sralripation functions,
Pp(t,u) = [ Dp(u)€“'dw, the perturbation equations take a Schrédinger-like form,

d?o
dtzp + (0% = Vp)®Pp =0, (3.1)
wheret, is the normalized tortoise radial coordinate, defineddbydr, = —f(u). The labelp

can beT, V or Sdepending of the perturbation sector: tensorial, vectorial and scesuectively.

Vp is the effective potential, and the parameieiis the normalized frequency defined by =
[((d—1) w] /41T = (RPw) /1, , whereT stands for the Hawking temperature of the black brane. For
example the tensorial effective potential is given by

dd-2) (d—2)2ud-3

+ ; (3.2)

VT(U) = f(u) q2+ a2 4

where the parameteris the normalized wavenumber defineddoy: [(d — 1) K] /41T = (R?K) /rp.
The explicit form of\,, andVs can be found in Ref[]9].

3.2 Master equationsfor the KSvariables

Another choice of fundamental variables for the gravitational pertunhaticas suggest by
Kovtun and Starinetd][3]. Here the fundamental equation for the tenseébr for the KS vari-
ables ind spacetime dimensions is given by

d—1-f w2 — g2
g [uf} Z\+ [ff} Z: =0, (3.3)

where the primes indicate derivatives with respect to the coordinated f = f (u) is the horizon
function. The fundamental equations for the vectorial and scalar sexzarbe see if][9].

An important characteristic of classical field evolutions on asymptotically Ad®etimes is
the variety of choices for the boundary conditions at spatial infinity. hrega, these can be Dirich-
let, Neumann or Robin boundary conditions. So we need to establish arnivbterion before
to choose a specific condition. In the AdS/CFT context, a natural criterisacis that the QNM
frequencies of a certain field correspond to poles of two-point cdiwaldunctions of the dual



New results on quasinormal modes

operator in the boundary field theory [3, 4]. When we consider a Veri@tsuch that the master
equation for the gravitational perturbations is of the fofm|(3.1), in gémieeaDirichlet condition

at spatial infinity is the ‘correct’ boundary condition. There is ooheexception: for scalar-type
perturbations in four spacetime dimensions, the boundary condition that ted@NM frequen-
cies corresponding to poles of retarded correlation functions is of Rgp# However, when
we consider the variablg, the Dirichlet condition at spatial infinity leads to QNM frequencies
corresponding to poles of retarded correlation functions for all dgkES)].

4. The spectra quasinormal

4.1 Small wavenumbers, large frequencies

There is an alternative analysis for large frequencies with finite waveergnbamelyo > q.
To first order approximation such a condition is equivalent to the asymptoticdimit0, as far as
all the other parameters of the model are kept fixed. For all of the pattarbequations with KS

variables we have g . )
—-1- 1o
"
wherep denotes the perturbative sector, as already indicated. It is obviouBghf.]) necessarily
imply in identical non-hydrodynamic quasinormal frequencies at0 for all of the perturbation
types. With this result we conclude that the dispersion relations for laggeiéncies are the same
for all the three perturbation sectors of a black brane. It is worth notibarg the very good

agreement between the analytical and the numerical results as we carTabi][i.

Tensorial Vectorial Scalar
d 0 10, oR 10, o 10,
4 — — 1.84942 2.66385 1.84942 2.66385
5 3.11945 2.74668 3.11945 2.74667 3.11945 2.74668
6
7

4.13591 2.69339 4.13591 2.69339 4.13591 2.69339
5.00747 2.61247 5.00760 2.61266 5.00758 2.61249

Table 1: The frequencies of the first non-hydrodynamic QNM for alltpdration types, calculated with
q=0.

4.1.1 Largenumber of spacetime dimensions

In this section we analyze the perturbation equations when the number etispacimen-
sions is large, namelg — oo with finite o andq. For simplicity, in this analysis we consider
the master equations for the RWZ gauge-invariant variables [Ef. (B1ijhich case the analysis
reduces to investigate the asymptotic form of the effective potentials in thedimitd. We thus
find

VT—>:Lzzf<l+ud1>, V\,—>A(Lzzf<l—3udl>, vseijzzf(wu“). 4.2)

It is seen that in such a limit the tensorial and scalar potentials are the sanreovdn in the
intervening region between the AdS boundary and the horizen@< 1), the second term of the
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above expressions within the parentheses tend to zero in thallimito, so that the potentials are
identical in this region. Moreover, the tensorial, scalar and vectoriahtiate approach the same
values at the boundaries. These results suggest that the QNM spletiieatbree perturbation
sectors for largel are identical. This is an important result because it shows the isospectfality o
the gravitational QNM of higher-dimensional AdS black holes.

4.2 Eikonal limit

In asymptotically AdS spacetimes the eikonal limit is especially interesting, singe-dar
modes can be very long-lived J1[[,]12]. A WKB analysis suggests thrahitensor-type grav-
itational perturbations (and therefore also scalar fields)ran > 1, the following asymptotic

behavior holds
2d-2
d-3

RwF" = g+, (%)"Tl q &, (4.3)

2d-2
r M T 1T
I_In = } (\/ﬁ(d—l) |:d+1+2n:| r(2d1—2)> 67%7

2 2

asq — o [[L0, [12]. So largeg modes are very long-lived, and they could play a prominent role in
the BH'’s response to generic perturbations.

Our numerical results are consistent with tréd-3/(d+1) dependence of the characteristic
frequencies, fod = 4, 5, and 6. Our results are also highly consistent with the functionahdepe
dence orr.,q as given by equatior (4.3). Then, wesumethe power-law behaviof (4.3) ipand
r, and fit the numerical results to the following function

20—2
RwN™ = g+ (arRellMy] +iay Im[M]) (%) R (4.4)

thereby testing the prefactor ip (§.3). Our results in this analysis are strdiegitors that Eq[(4.3)
is consistent with all our numerical results for scalar fields or tensordyaetational, but does
not account for the correct quantitative behavior of these weakly-dammumetés for the vectorial
and scalar sectors. Though the equatjor] (4.3) captures the esseali@ltiye behavior witr

q for vector-type (see Fig] 1) and scalar-type gravitational perturbmiti@mly can describe quan-
titatively the numerical results if multiplied by a real constant, which dependbenvertonen.
This clearly suggests a new form far,.

5. Conclusions

Our analytical results provide that the dispersion relations for largeiémcjes are the same
for all the three perturbation sectors and suggest that the QNM spectiaded are identical.
Our numerical results confirm the eikonal limit for tensor-type gravitatigeaturbation. They
are strong indicators that Ed._(4.3) can describe qualitatively but dutescnount for the correct
quantitative behavior for vectorial-type and scalar-type gravitationaligmtions.
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Figure 1: Numerical results for the fundamental vectorial QNM freggies of ar, /R = 1 black hole.
Left panel: real componernitr (top to bottom arel = 6,5,4). Right panel: imaginary componeaf (top
to bottom forq > 20 corresponds td = 4,5,6). Dotted lines are the analytical prediction, correctgdb
prefactora.
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