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We consider non-vanishing boundary conditions (NVBC) foe NLS model [[L[]2[]3] in the
context of the hybrid dressing transformation an€lnction approach. In order to write the
NLS model in a suitable form to deal with non-vanishing boanydconditions it is introduced

a new spectral parameter in such a way that the usual NLS pteamill depend on the affine
parameter through the so-called Zukowsky function. In theext of the dressing transformation
the introduction of the affine parameter avoids the constmof certain Riemann sheets for the
usual NLS spectral parameter. In this way one introducesxgha defined for the new spectral
parameter and the relevant NVBC NuSunctions are obtained by the dressing transformation
method. We construct the one and two dark-soliton solutimdicitly.
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Nonvanishing boundary conditions and dark solitons in th&hodel

The nonlinear Schrodinger model (NLS) with vanishing or non-vanisbaumdary conditions
is physically significant since it appears in many applications ranging framlensed matter to
string theory (see e.g[][4]). The NLS model and its multifield extensions istagrable system
(see e.g.[[5] and references therein). Here we provide the affioévi¢edy algebraic formulation
of the NLS model suitably written for nonvanishing boundary conditions thredhybrid of the
dressing and Hirota methods is used to obtain dark soliton solutions of the model.

The convenient form of the NLS for dealing with non-vanishing boundanditions, which
support dark-soliton like solutionf [6], can be written as

Y+ O — 2(|Y2 ~ p*)¢p = 0. (1)
This form of NLS model is supplied with the non-vanishing boundary conitgiven by [IL[R[]3]

p7 X— —%,

= — real .e=¢° 2
1] {p‘gz’ X s too p =real const. ¢ (2)
In order to give a group theoretical construction of the system abaves leonsider the Lax
pair A andB
A=H'4WE? LW E L oC, (3)
B=H2+WE W E L QWE? — W EC —2(WrW™ — p?)HO + ¢,C, (4)

whereW*, ¢; and¢, are the fields of th§|(2) NLS model and the potentidlandB lie in thesTI(Z)
affine Kac-Moody Lie algebra. The Lax pair ifj (3]-(4) provided with #eeo-curvature condition

0,B—&A—[A,B] =0, (5)

furnishes the mode[|1) provided that the following transformatien it,x — ix, ¥+ — WEeF2,
and the identificationy = W+ = (W~)*, are made. The facta™? is introduced for later conve-
nience and means complex conjugation. It was considetgpv, = —p2.
The vacuum solutions to be considered are the ones of constant cratiﬁgl,wgt =peT2, ¢ =
¢>=0; so, the vacuum fielda, andBy from B)-(4) are
Ay =H*4pe2E? + pe?E°, By = H?+ &£ 2pE! - £2pEL. (6)
The vacuum connections can be written in the form
Ay =oww 1 By = Www 1 7)
whereW is the group element

W = (I+k'E, —k E_)e¥%Bgkos, (8)

with k* being constantd] the identity matrix andE., o3 Pauli matrices. The connections i (7)
are called pure gauge solutions and are solutions of the zero-cureandion [§).

Considering a X 2 matrix representation fof|(8) E1(2) algebra, it is possible to write certain
relationships between the parametersk—, ¢, k and A

K=Al, kI = —2pe™? . A7% =4p%+ 22 (9)

A +2¢
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The relationships in[9) show thgtandk assume two possible values in terms\othis requires
the construction of Riemann sheets.
Here it is introduced an affine paramegesuch that the functions

2 2
=55 ) ame-

¢ ¢
4 (10)
K= % <EZ— FE)2> , k= —gﬁz.

become single valued in terms &f The function{ (&) above is known as the Zukowsky function.
The appearance of an affine parameter motivates us to introduce a setmakparameter
associated with the potentialsandB

A=H'-p?H 11w E? LW E? L g,C, (11)
B=H24+p*H 2+ WH(E! - p?E; 1) + W (E! - p%E"Y)
+  KWTE? - WTE? —2WTW HO 4 ¢,C. (12)

The potentials[(J1) and_(12) written in terms of the new spectral pararfiedescribe the NLS
model [}) when the zero-curvature conditiph (5) is used. So, the wacounections correspond-

ing to (I1) and[(72) are given by
Ay = H' — p?H 1+ pe2E0 4 pe?EQ, (13)
By = H2+p*H 2+ pe 2(EL — p?E-Y) 4 pe?(EL — p?E-1) — 2p°HO. (14)

Notice that these potentials are deformations of the onés in (6).
In terms of the new spectral paramefeI(§) takes the form

W — paHi+p?H ) d(HZ—p*H ) (15)

where

P=1-pe?E '+ pe’E"?, pl= (I+e& ?pE;*—€%pEZY). (16)

1+5

Whenp — 0 one ha€ — A, which implies thaP — 1.

1. Thedressing transformation

The dressing transformations are non-local gauge transformatiorectha the fields of the
model preserving their gradation structure; they are made with the aid ofrbup glement©..
and@_, such that

A A= @iA@jEl + 0X919£17
B — B"=0.Bo;'+ 40,01 (1.1)

It is assumed the generalized Gauss decompaosition

Whyt = (Wh!) (whw b (whw ) =o M 'N. (1.2)
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The vector tau functior(x,t) is defined by [[[7]
T(xt) = (Ph¥ 1) |Ao) = ©-NI1[Ao). (1.3)
Once the highest weight stdﬁi)> is an eigenstate @y subalgebra, it is possible to define
fo0x,t) = MY A0) = [Ao) To(x.1), (1.4)
whereTy(x,t) is a function described by
fo(x,t) = (Ao (Wh¥1),|Ao). (1.5)
Using (L.B) and[(1]5) one finds

0 YAo) = - (1.6)

Replacing the fieldsy, andBy, in the form given in[(6), into the dressing transformatipn](1.1),
one gets

A" = 0. (H'—p?H 1+ pe?E% + pe’E®) 0t + o0 0t (1.7)
éh — @7 (H2+p4H_2+p£_2(E}_ *sz:l)
+ pe(Er - p?E-Y) —2p%H%) 0. +06_01 (1.8)

where®_ = exp(Sn-006_n), M = exp(dp) andN = exp(5 1. 6n) . It is possible to find some of
the components, say_1, J_o, in terms of the field$¥*, ¢, and¢,

G1=—(W —peE; + (W —peHEZt+ 0% H (1.9)
G2=—0E +(W —pe?)E-t+ 0% H Y, (1.10)

. 1 1
one findsdka?; = 2(WTW~ —p?), 0%, = —Wr+ Z0% W, ¢ = —5091 and¢, = —a2,. So,
with the aid of [1.p) the solutions in the orbit of the vacuum are given by
(. T

Wt = pe 24 - :pez—ﬁ, (1.11)

where ther* functions are defined by

£ = (A|EX (Wh¥™1) _, [Ao), (1.12)
£ = (AolEL (Whw 1) |Ao). (1.13)

According to the dressing method, the soliton solutions are determined bging@@nvenient
constant group elemenis
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1.1 The 1-dark soliton solution

Let us choose the group elemént €7, F = 3> VIE-"; the relevant functions are

10 = 1+4e % (Ag|PFP 1|Ao), (1.14)
1T = e %1 (A|EL (PFP1)|Ao), (1.15)
1= = e " (A|EL(PFPY)|Ao); (1.16)

so the equationd (L]JL1) provided the matrix element§ in|(1.L4),] (1.15)[ar®),(lutnishes the
solution

_ ale*‘pl
Yyt =pe?+ (1.17)
1+ayvie tpe—2(vZ+p?)
2a—¢1
avse
Y~ = pe? 4] (1.18)

* p2e~4(1—ayvie t1pe=2(v2+p?))’

wherea; is a free parameter anfid = ( x(v + 5) +t(v2 - ﬁ—;) . This is just theone dark-soliton
solution. The relevant matrix elements can be obtained with the aid of the ohede\ex operator
or the integrable highest weight representations OE[{‘@ Kac-Moody algebra. Similarly, one can
seth = €%, whereG=Sy» PIE". In this way one can get anotheme dark-soliton solution.
In order to get insight into the ‘dark’-soliton evolution let us plot the funetig’™W ) for two
successive times. The figure 1 is plotted égr= —2; v =19, e=1p=2, by =-18, and

41 E3

“10 5 0 5 10 10 5 0 5 10
Figure 1: 1-dark soliton evolution for two successive times showimgtlVBCs.

¢1 = 0.5. Notice the nonvanishing boundary condition for the fields-at +- in the figure above.

1.2 The 2-dark soliton solution
In order to obtain 2 soliton solution it is choseh = € €®. The relevant functions become
— 1+ae *(Ag|PFP 1|Ag) + ane] (Ao| PGP 2| Ao) + aze™ 1 (Ao|PFGP | o), (1.19)

0

T
T7 = bie 1 (Ag|EL(PFP1)|Ag) + bae™ (Ao|EX (PGP 1)[Ag) + bae™#1 (Ag|EL (PFGP )| o), (1.20)
T~ = cie 1 (Ag|EL (PFP 1) |Ag) + o™ (Ag|E (PGP 1) |Ag) + cze™ 91 (Ag|EL(PFGP 1) |Ag). (1.21)
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As usual the matrix elements above can be computed through the relevagsthigtight represen-
tation of the affine Lie algebra, however one can avoid those calculatiomsiting these matrix
elements as certain constant parameters which must be determined byagit@oeément of the so-
lutions into the relevant equations of motion. These cumbersome computatiobhe caade with
the aid of a program such as MAPLE. So, one gets the solutionandy/— given by

2 2
aje 9 +ae™ + aa (Mot Va)(p~+Mhva) g 1gh
= pe 2 1€ 7 BET T BB ooty —my) (o v+ p? (VD))
=P B via e 91 _aprpel (p2+vimy)2agapvie f1em

pe 2(vi+p?)  pPHmE  (p*(vE—m?)2—2p2vimy (mE-+v2)+vZme(my+v2)+p?(vi—nE)2) p%e

and
avf ¢, ap’et 2ne2 (M1+v1) (p?+myvy)? —¢

Le b1 el + ajavipe - e bigh

b=y P m 1V PE" i o2y —vy) (p* v + 21 VD))

1- viage 1 agre (p2+vimy)2a avie $1eM
pe2(vZ+p?)  p2+nmE  (pH(vZ—m8)2—2p2vimy(ME+vZ)+vZnE (my+v2)+p2(vi—m2)2)p2e 4

where¢; = x(vq + %:) + (v2— %)t, N1 = X(my + %i) + (m2 — p%/mé)t, andr, = pe2. The cor-
responding 2-dark soliton evolution can be visualized by plotting the fun¢tiorny ) for certain
parameter values (see Fig. 2).
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Figure2: 2-dark soliton evolution for three successive times.
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