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Hamilton-Jacobi formalism on the Null-Plane: Applications

1. Introduction

A physical system is called singular when the determinant of its Hessian matrix is zero. For
these systems we cannot perform the Legendre transformation, and then, the Hamiltonian function
is not well-defined. Dirac’s constraint formalism [1] is the usual method to analyze singular sys-
tems. In this formalism the constrains are divided between first and second-class, the first ones
being generators of gauge transformations, in accordance to Dirac’s conjecture, and the second
ones with which it is possible to build Dirac’s Brackets.

Carathéodory showed [2] that, for regular systems, we can use equivalent Lagrangians to ob-
tain the Hamilton-Jacobi (HJ) equation directly from the Least Action Principle. Güler [3] has
generalized this procedure for singular system. In this case, if the system has k canonical con-
straints, it is necessary to consider k + 1 HJ differential equations. In order to have an integrable
system we need to fulfill the Frobenius’ integrability condition, which has shown to be equivalent
to the Consistency Condition of the Dirac Formalism [4].

Since Güler’s work, several improvements have been done, from working with second order
Lagrangians [5], higher-order Lagrangians [6], first-order Lagrangians [7], higher derivatives [8],
and later the construction of Generalized Brackets (GBs) for any non-involutive system [9].

In [10], Dirac showed a new time variable to describe the dynamical evolution of a system.
This time variable, τ ≡ x+, is a light-cone coordinate, used to describe the plane of all the light
rays in the Minkowski space-time; this is the null-plane. Huszar [11] and Steinhardt [12] have
studied systems on the null-plane using the Dirac formalism. The aim of this paper is to show two
examples of fields on the null-plane using the HJ formalism. First, we study the Real Scalar Field
in (1+1) - dimensions, and then, the Electromagnetic Field in (1+3) - dimensions. For all these
fields we build their GBs, and field equations.

2. The Scalar field in (1+1) - dimensions

In (1+d) - dimensions, the light-cone coordinates are defined as

x+ ≡ 1√
2
(x0 + xd), x− ≡ 1√

2
(x0− xd), xi = xi, i = 1, ...,d−1. (2.1)

At the beginning of the study of constrained fields, we take the Scalar Field in (1+1) - dimen-
sions on the null-plane. The Lagrangian density for this system is

L =
1
2

∂µφ∂
µ

φ − 1
2

m2
φ

2 = ∂+φ∂−φ − 1
2

m2
φ

2 (2.2)

whose Euler-Lagrange (EL) equation is the Klein-Gordon-Fock (KGF) equation

2∂+∂−φ +m2
φ = 0 . (2.3)

In the context of HJ formalism, we have two Hamiltonian functions

H ′τ =
∫

dx− H ′τ ≡
∫

dx− [πτ +H0] = 0 , (2.4)

H ′φ =
∫

dx− H ′φ ≡
∫

dx− [π −∂−φ ] = 0 , (2.5)
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where πτ = ∂S/∂τ , π = ∂S/∂φ is the conjugate momenta, and H0 is the Canonical Hamiltonian

H0 =
∫

dx− H0 =
∫

dx−
1
2

m2
φ

2 . (2.6)

The fundamental differential can be written with the respective Hamiltonian densities

dF =
∫

dy−
[
{F(x),H ′τ(y)}dτ +{F(x),H ′φ (y)}dφ(y)

]
. (2.7)

Now we have to test the integrability condition for H φ

dH ′φ = −m2
φdτ −2∂− dφ = 0 . (2.8)

No new constraint is found.
We have seen that H ′φ is not in involution, since the PB with itself is non zero, then it is

possible to build the GBs. In order to achieve this, we have to consider the 1×1 matrix

M(x,y) = {H φ (x),H φ (y)}=−2∂
x
−δ (x−− y−) , (2.9)

where the index x indicates that the derivation is given with respect to the x point. This matrix has
inverse

M−1(x,y) = −1
4

ε(x−− y−)+ f (x+) . (2.10)

where ε(x−− y−) is the sign function, and f (x+) depends on the boundary condition of the prob-
lem. The GBs are defined by

{F(x),G(y)}∗ = {F(x),G(y)}

−
∫

dz−
∫

dw−{F(x),H φ (z)}M−1(z,w){H φ (w),G(y)} , (2.11)

from where we get the following the non-zero GBs

{φ(x),φ(y)}∗ = −1
4

ε(x−− y−)+ f (x+) , (2.12)

{φ(x),π(y)}∗ =
1
2

δ (x−− y−) , (2.13)

{π(x),π(y)}∗ = −1
2

∂
x
−δ (x−− y−) . (2.14)

We can see that f (x+) is only present in one of the GBs.
Since M(x,y) is regular, we can build the inverse, and we can represent the evolution of any

function F(x) with only one parameter, τ . This means that the equations of motion now are given
by

dF = {F(x),H ′τ}∗dτ =
∫

dy− {F(x),H ′τ(y)}∗dτ . (2.15)

Then we have

∂+φ = m2
∫

dy−
[
−1

4
ε(x−− y−)+ f (x+)

]
φ(y) , (2.16)

∂+π = −1
2

m2
φ . (2.17)
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If we derive (2.16) with respect to x− and, since ∂− f (x+) = 0, we get the KGF equation in light-
cone coordinates (2.3). We observe that the KGF equation is independent of the value of the
function f (x+). However, the uniqueness of the equation of motion (2.16, 2.17), and of the GB is
guaranteed only if an appropriate boundary condition is imposed on the field.

3. The Electromagnetic field

Now we will study the Electromagnetic field in (1+3) - dimensions on the null-plane. The
Lagrangian density is given by

L = −1
4

FµνFµν =−1
4
[ −2F2

+−+4η
i jF+iF− j +η

i j
η

klFikFjl ] , (3.1)

where Fµν = ∂µAν −∂νAµ . The EL equations in light-cone coordinates are

0 = ∂−F−+ +∂iF i+ , (3.2)

0 = ∂+F+−+∂iF i− , (3.3)

0 = ∂+F+i +∂−F−i +∂ jF ji . (3.4)

In the HJ formalism, the Electromagnetic field has four Hamiltonian functions

H ′τ =
∫

d3x H ′τ ≡
∫

d3x [πτ +H0] = 0 , (3.5)

H ′+ =
∫

d3x H ′+ ≡
∫

d3x π
+ = 0 , (3.6)

H ′i =
∫

d3x H ′i ≡
∫

d3x
[
π

i +η
i jF− j

]
= 0, i = 1,2, (3.7)

where we used the notation d3x ≡ dx−d2x, and the Canonical Hamiltonian density is given by

H0 =
1
2
(π−)2 +

1
4

η
i j

η
klFikFjl −A+(∂iπ

i +∂−π
−) . (3.8)

Indeed, we have a dynamical relationship

π
− ≡ ∂L

∂ (∂+A−)
= F+− . (3.9)

The fundamental differential is

dF =
∫

d3y
[
{F,H ′τ(y)}dτ +{F,H ′+(y)}dA+(y)+{F,H ′i(y)}dAi(y)

]
, (3.10)

since τ,A+ and Ai are the independent variables of this theory. Using (3.10) we set dH ′+ = 0, in
order to test the integrability condition which gives us a new constraint

H ′ω =
∫

d3x H ′ω ≡
∫

d3x
[
∂iπ

i +∂−π
−]

= 0 , (3.11)

while the integrability condition for H ′i, that is, dH ′i = 0, gives us a relation

dH ′i = (η im
η

kl
∂lFkm−η

i j
∂ jπ

−)dτ +2η
i j

∂−dA j = 0 . (3.12)
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The integrability condition for H ′ω is identically satisfied since Fµν is antisymmetric, and no
more Hamiltonian functions are given. The system is, therefore, complete.

The matrix of the Poisson brackets of the Hamiltonians H ′+, H ′i and H ′ω is singular, and
the system is still not integrable, since H ′i are non-involutive. The largest regular sub-matrix is
given by

Mi j(x,y)≡ {H ′i(x),H ′ j(x)}= 2η
i j

∂
x
−δ (x−− y−) δ

2(x−y) , (3.13)

which is regular and has inverse

M−1
i j (x,y) =

1
4

ηi j ε(x−− y−)δ 2(x−y) . (3.14)

The uniqueness is guaranteed imposing boundary conditions to the gauge field. With this inverse
the GBs are defined by

{F(x),G(y)}∗ = {F(x),G(y)}

−
∫

d3z
∫

d3w {F(x),H ′i(z)}[M−1
i j ](z,w){H ′ j(w),G(y)} , (3.15)

and the fundamental GBs are
(
δ 3 (x− y)≡ δ (x−− y−)δ 2(x−y)

)
{Aµ(x),Aν(y)}∗ =

1
4

δ
i
µδ

j
ν ηi j ε(x−− y−) δ

2(x−y) , (3.16)

{Aµ(x),πν(y)}∗ = δ
ν
µ δ

3(x− y)− 1
4

δ
k
µ

[
δ

ν
k ∂

x
−−δ

ν
−∂

x
k
][

ε(x−− y−)δ 2(x−y)
]

(3.17)

{π
µ(x),πν(y)}∗ = −1

4
η

lk [
δ

µ

k ∂
x
−−δ

µ

−∂
x
k
][

δ
ν
l ∂

x
−−δ

ν
−∂

x
l
][

ε(x−− y−)δ 2(x−y)
]

(3.18)

Then, equation of motions are given by the fundamental differential

dF =
∫

d3y
[
{F,H ′τ(y)}∗dτ +{F,H ′+(y)}∗dA+(y)+{F,H ′ω}∗(y)}dω(y)

]
, (3.19)

from where we get the following equations

∂+A+ = 0 , (3.20)

∂+A− = π
−+∂−A+−∂−∂+ω , (3.21)

∂+Ai =
1
4

∫
dy−d2y [∂ x

i π
−(y)−η

jk
∂

x
k Fji(y)] ε(x−− y−) δ

2(x−y)−∂i∂+ω , (3.22)

∂+π
+ = ∂iπ

i +∂−π
− , (3.23)

∂+π
− = −1

4
η

i j
∂

x
i ∂

x
j

∫
dy−d2y π

−(y) ε(x−− y−) δ
2(x−y) , (3.24)

∂+π
i =

1
2

η
i j

∂
x
j π

−+
1
2

∂ jF ji , (3.25)

equation (3.21) is equivalent to the dynamical relationship (3.9) if we set ∂−∂+ω = 0. Since ω

is an arbitrary field, it is always possible to choose it to fulfill this requirement. In fact, the best
condition would be to set ∂+ω = 0, and in this case, all above characteristics equations becomes
consistent to the Euler-Lagrange field equations of the system, as well as to the former integrability
conditions.
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4. Final Remarks

In this work we analyzed, through the HJ formalism, the Real Scalar field and the Electro-
magnetic field on the null-plane. In these examples we have deal with a matrix which contains the
operator ∂ x

−δ (x− y) which is a characteristic of the null-plane dynamics. Since the inverse of this
matrix is not unique, we have a family of inverses, all of them differ by a boundary term.

It becomes necessary to choose appropriate boundary conditions to achieve a unique solution
of the characteristics equations. This can be achieved by making the boundary terms present on
the generalized brackets equal to zero, and then, the dynamics on the reduced phase space becomes
well defined.

The GBs for the Real Scalar field are the same obtained using the Dirac formalism. How-
ever, the GBs are different from the obtained by the Electromagnetic field. This is due to the fact
that the null-plane dynamics requires a lesser number of fields to describe the system. In this last
application it is left with a set of involutive constraints, that are equivalent to the first-class con-
straints in Dirac’s formalism. It is our intention, in future works, to study the relations between
these constraints and gauge invariance under the scope of the HJ formalism.
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