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1. Introduction

More than one decade ago, the celebrated Korteweg-de Vries (KdM}ieq,
U+ [UP + U], =0, (1.1)
was generalized to a class of nonlinear equations, namdnas) equations[[iL], given by
U+ u"+ (UM, =0, m>0,1<n<3. (1.2)

For some values ahandn, solutions ofK (m, n) equations have compact support and independent
wave amplitude width[[1]. This kind of solution is calle@mpactorand, in nature, is different
from a KdV soliton, that narrows as the amplitude increases.

In the classical soliton theory, integrability and elastic collisions are closeipamied but,
in the realm of thek(m,n) equations, albeit some conservation laws have been derived, it is not
known whether these equations are integrafjle [2]. A lot of effort le@s lzarried out in order to
understand the nonlinear mechanism that underlies processes dibgrib@n, n) equations|[B[]4,
H], including an analogous generalization of the Sine-Gordon equfjohigésymmetry methods
have also been used for this purpose, and a partial symmetry classifiafiiém, n) equations has
been achieved]T] §] 9].

In order to derive generalizations of a partial differential equatiotaadard procedure is to
choose a starting symmetry, that usually is considered as the symmetry of aesigtive set
of equations. This approach has been adopted to obtain, for instameratized Fokker-Planck
equations which admits the Lie symmetry of a specific diffusion equafidn [1Qit goal here
is to follow along this line and study and classify soém, n) equations. Considering the Lie
symmetry algebra of the classical KdV equation, &ay,, then we proceed to find all equations in
a given class oK (m,n) equations that are invariant und&yy. The class we have studied is the
nonlineark (m,n) equations with space- and time-dependent coefficients.

2. Determining equations

Let us start by noting that, associated with §q.|(1.1), there is a set ofgereof Lie symme-
tries given by

X1:0X7
X2 =6,
X3:2tdx+aU7

These generators fulfill the following commutation relations

X1, Xa] = Xa,

[X2,X3] = 2X1 ,

[X2,Xq] = 3%z,

X3, Xq] = —2X3,

[X1, %] = [X1,X3] =0. (2.1)
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We use this KdV equation Lie algebra, denoted heréday, to deriveK(m,n) equations. Let us
consider a nonlinear generalization of Hg.|(1.2) with space- and timexdepecoefficients, that
is,

U+ [Fu™+g(UMwdy =0, (2.2)

wheref = f(x,t) andg = g(x,t). This equation is written as

U 4 agu™ + ag U™ Tuy + apu"2u2 + agu™ Ly + agu™ 3u 4 asu™ Zuglek + asU™ tux =0, (2.3)
where
aO fX 9
a; = mf,
a, = n(n—1)gy,
az = Ng,
a = n(n—1)(n—2)g,
as = 3n(n—1)g,
a = Nng. (2.4)
A vector field of the form
X =n(u,xt)dy+ 61(u,X,t)x+ 62(u,x,t)c (2.5)

is a symmetry generator of Eq. (1.1) if Ef. {2.3) is form invariant undeirtfigitesimal transfor-
mationX = x+€6;,t' =t + €6, andu’ = u+ €. This leads to the following set of determining
equations:

aU" 1 duuu+ asu™ 2duu+ 2a4u"39,) B2(u,x,t) =0,
BagU™ dux + 2asu™ 20, + 2agu™19y) Bo(u,x,t) =0,
e : (asU™ *duuu+ asu"2duu — aa"3dy) 61(u,x,t) =0,
eqs : (3asu™ 1dy) B (u,x,t) =0,

eq : (
(
(
(
egs : (3agu" 1y +asu"2dy) Bx(u,x,t) =0,
(
(
(
(
(

e :

et : (3asu™ Yo+ 2asu" 1dk) B>(u,x,t) =0,

e : (3agu™ 1dux+asu™ 2dy) Bo(u,x,t) =0,

e : (3agu" 1y, + 2asu"29y,) Bo(u,x,t) =0,

e : (3agu"1dy) Bx(u,x,t) =0,

etuo : (6agu™ 1duy) 61(u,x,t) =0,

eq : 3agu" 10,6, (u,x,t) =0,

ez : (3dy) Or(U,x,t) — (386U uxx+ asu™ 20k + 2agu™ 1 dux + 280" 24y ) Bo(U,x,t) =0,
es : (3asU" L duux+ 285U" 2ux + 3auu™ 30y + agu™ tay + au"24,) Bo(u,x,t) =0,
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(Oxae)

edus @ (nut—u) n(uxt)+ ( —30X> O1(u, X, 1)

+ (aGUnldxxx+ (0;26) + a3un 1axx‘f‘ alumilax —o0u+ at) 92(U,X,t) =0,

m—2

edss : (3asU" 1Oyt asu™ 2O+ 283U 1 dux + aru
(dxaG)
as

m) n(u,x.t)
<aGU 1axxx+ agu"~ :dex‘f‘a —4aoum0u—|—ﬂt> 01 (u,x,t)

— (al (m;:f’) - (0:1)> um‘1> B(u,x,t) =0,

eq]_6 (3a6un_10uux+ 2a5un_zaux+ 3a4un_3ax - a3un_1auu + a2 (un_zau - un_3)) n (U, X,t)

- <3aeunlduxx+ asU" 20y + 2agu™ 19, + apu" 2 (%Z‘G) — 0x> ) B1(u,x,t)

— ((Gx@)u" 2 —3a1u™ 1ay) 61 (u, x,t) < < (%36) _ (G2 > u”‘z) B(u,x,t) =0,
etz : (a6 duuu"‘ asu” 20uu+2a4( - 30 ) (u,Xx
- <3a6u duux‘f‘ 2asu" 2au +a4(0xa5) -3 — (0« ) +33Un 1auu) B1(u,x,t)

— (28u"24,) B1(u,x,t) — <a4< (%3) > > (ux,t) =0,

e : (3asU" 1+ as (U 20, — u"3)) n(u,x.t)
(9a6u” LPux+ as (0226) — (das)u" 2 — agun‘lc?u) 01(u, x,t)

— <a5 <(a;:6) — (0;25)> u”2> B2(u,x,t) =0,

etho © (B6U" M dxx+ BaU" T Okx+ U™ ok +ag (UM + U™ (m—n+1)) + &) n(u,x.t)

(s (1929020 )Y g0
) <a° (ﬁ? ) @) “m> B2(uxt) =0,

quO . (3a6un_laux+ a5un_zax) r’(ua 9

X,t)
0 0
— <3a5unlﬁxx+a3u”1 <( ;26 ! ;le) —0X>> B1(u,x,t)

- <a5 (%26) - (023)> u”‘1> B2(u,x,t) =0. (2.6)

The substitution of the dominant derivative from Eg.|1.1) into the determisystem of in-
finitesimal symmetry transformations results in a set of equations in the coetffigiei = 0, ..., 6.

3. TheK(m,n) equations with variable coefficients

In order to find the< (m, n) generalized equations, we impose that [q] (2.3) admits subalgebras
of fxqv as symmetry Lie algebras. Recalling thgdy is spanned by the generatdfsi =1,2,3,4,
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we have the following cases.

Symmetry {X4} : By imposing this symmetry generator to E[g. [2.3), the resulting system of equa
tions in the coefficients;, i =0,...,6, is

eq : Lm <a0 <(6Xa6)x+3(ata:6)t+2<m—n—2>) —((7Xao)x—3(dtao)t> =0,

2 a6
eq %u’“‘l <a1 <(a;6a6)x+°(dta6)t+2(m n— )) (0xan)Xx— 3(Gray )t > =0,
1 0
eq : éu”‘2 <a2 <( ;:6) 1) (0yaz)x — 3(Ga)t ) 0,
eq : }u”*1 <a3 <(0xa5) 1) (0vaz)x— 3(daa)t > 0,
2 a6
eg : %U”‘?’ <a4<(d;26)x+3( ) ) (Oxaa)x— 3(Gau)t > =0,
1 0,
e : éu”‘2 <a5 ( ;:6)x+3(dta26)t> — (0Xa5)x3(0ta5)t> =0,
e : 2<(axa6)x+3(dtaﬁ)t> —nt+1-0. 3.1)
36 36
Taking the general solution of the system given by Egs} (3.1) into Egb.i(@plies that
U+ [fu™+g(u")x, =0, (3.2
with
f(xt) = 9T and  g(xt) = @2 (3.3)

beingc; andc; arbitrary constants. The choice of symmetreg, X,}, {X2, X4} and{X3,X,}
leads to the same result &4} .

Symmetry {X3} : Following the prescription described, we have another clak$mfn) equations
with variable coefficients

f(u,xt) = Sleld-mx/2u nf(f:i) and  g(u,xt) = 2el-nx2u (3.4)

with ¢; andc; as arbitrary constants.
Symmetries{X1, X5, X3, X4} : Finally, replacing separately the coefficients of each genekator
i = 1,2,3,4, into the system of determining Egp. {2.6), we have obtained
— t A(1— 2t _ Gt 4(1— 2t
f(uxt) = el=mx/2U  ang  g(u,x,t) = 2eld-mx/2au (3.5)

with arbitrary constants; andc,.

4. General Remarks

In this work we have used the known symmetry algebra of the classical §daten /x4y, to
find and classifyk (m,n) equations with space- and time-dependent coefficients. This programme
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required an intensive use of computer algebra, and we have usedcltegpeSADE Symmetry
Analysis of Differential EquationdfL]] for solving the determining equations. These equations
with variable coefficients are particularly useful to understand the narlimechanism that under-
lies processes described by #ém, n) equations. For this class of nonlinear KdV-type equations,
a study of symmetry invariant solutions is in progress.
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