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Scalar fields, density perturbations and the Chaplygin gas

1. Introduction

Among the several ideas being discussed presently in cogiyadne can find the interesting
proposal of unifying dark matter and dark energy with the oBa single component with an
‘exotic’ equation of state. A somewhat popular candidateplaying the role of a unified dark
matter is the so-called Chaplygin gas, an exotic fluid whosenroharacteristic is to have the
product between its pressupeand its energy density as a negative constant. Many works can be
found in the literature studying the implications of the us®a cosmological fluid, of the Chaplygin
gas and its generalizations, such as the modified Chaplygindgfined by the equation of state [1]

p=(y—-1)p—Mp~H, (1.1)

whereM, u andy are free parameters.
From the condition for conservation of energy, with an adigbexpansion of the universe
guantified through the scale faciar

d_p - _3%7 (1.2)
p+p a

one obtains, foy # 0 andu # —1, the expression
1
o= [A+ (B—A) a—3V<1+“>] i (1.3)

whereA=M/yandB = pé*“. Such result, in conjunction with the Friedmann equation,

2, k_8n
a2_3p7

whereH = &/a, may yield solutions foa = a(t).

(1.4)

2. Scalar fields

Both energy density and pressure of the modified Chaplygincga be related to a homoge-
neous scalar fielg [2], through the transformation equations

¢2
p= 7+V(¢) (2.1)
and
¢2
DZ?—V(‘P% (2.2)

where the first term in the right side of each equality comesis to the kinetical energy of the
field, while the second one corresponds to its potentialgggler

If one assumes that the value of field decreases with the sixpanf the universe, one may
write

NI=

p=—(p+p)2. (2.3)

However,

p_ 00 _dpda_dp

T dt  dadt da H. (2.4)
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Figure 1: Graphs for(b versusp, wherep = ¢ — ¢o. In all graphsA > 0 andu = 1, while y assumes three
values, 1/2, 1 and 3/2.

Finally, the Friedmann equation may be susbstituted inldisisresult to give

do = —dalwl " (2.5)

8p (a)a2 —k

The important fact to notice here is that one does not neebtsoroan explicit solution foa= a(t)
in order to obtaira = a(¢). This means thap may be seen as a surrogate quantity to be used in
the place of the cosmological tine

For flat spaces = 0, and then one can use the substitution

3y(ip) |Alcosh2i— A
a —Z(B—A) ) (2.6)
valid for y # 0 andu # —1, to easily obtain
1
_ 1 [|Alcoshzi—A) 2 27
¢ (pY) |Ajcosh2i+ A 2.7)
and |Alcosh2i— A
p cosh2i—
V)= |2—- Yy 2.8
(¢) 2 [ y‘A’COSh?J+A:| ’ (2.:8)

whereu = /6ny(1+ ) (¢ — ¢o), with ¢o being a constant of integration. Graphs fp(rcp) and
V (@), wherep = ¢ — ¢o, are presented in Figures 1 and 2.
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Figure 2: Graphs for the potentisd (¢), wherep = ¢ — ¢o. In all graphsA > 0 andu = 1, while y assumes
three values, 1/2, 1 and 3/2, and only for this last one therii@t presents two minima.

For spaces with curvaturd ¢ 0) the obtention of analytic solutions for the functicagp )
andV (¢) seems to be feasible only for certain valuegtaindy, such as the combination=4/3
andu = 0, when

V(p)=A+(B-A) (3" . (2.9)

This potential may have two minimg, given by the conditions

exp[\/ﬁ(fpm— ¢o)} + 3 1A (2.10)

16m,/]A[ (B—A) Al

valid only if A > 0, and

ok? A
exp{Z\/ﬁ(dJm—rpo)] = e A B A A (2.11)

valid only fork £ 0 if A> 0. In the flat case only one of the above conditions may be acheya
only in the presence of curvature the two may be valid simelbasly.

3. Density perturbations

The scalar field representation may also be of some utibtyekample, in the mathematical
analysis of the evolution of perturbations [3], where tHevant quantity, the density contrastis
usually seen as a function of the cosmological timhe conformal time; or the scale factoa.
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To give an specific example, and without considering theray@g problem” [4], one can rewrite
the equation for the perturbations (cf. equation 4.122 fRadmanabhan [5]),
d?6 3-15w+6v2dé kA6 35

—_ e — p— p— 2
Tzt oa 1ot T2 = 222 (1—6v2 — 3w’ + 8w) , (3.1)

Ip

wherew = p/p, V> = b

in consideration.
The scalar representation suggests the use of the variable

andk is the wavenumber of the Fourier mode of the density pertiana

1 Al __(B=AY —san
w= > <1 A cosh21> = ( A >a , (3.2)
where, again,
u= /611y (1+ ) (¢ — o) . (3.3)
and, by doing this, one can obtain, for example, a very gésehation for the wavemodk = 0,
2
WY
0= Ay
wht s 2x 2x
+02m2|:1 1—3—y,1+x,2—§/,w s (34)

wherex=1/[2(1+ u)], with ¢; andc; being arbitrary constants.
An analogous procedure, with a change of variable motiviayetie scalar field representation,
allows one to obtain, for the cage= 0 andy = 2/3, the analytical solution [6]

5=05. +d_, (3.5)

wherec] andc, are arbitrary constants,

1 coslt+1\"
- (=== 3.6
* " sinhtcosift < sinht > (3.6)

and wherev = (1+4k2)/? andf = (4M)Y/2t.

4. Conclusion

The relations between the modified Chaplygin gas and a cagjical scalar field shown in
this work, with results which incorporate the possibiliiyh@aving a negative value fak, indicate
that models using the modified Chaplygin gas as a single flaig afso be studied using a repre-
sentation in terms of a scalar field. For example, in cosmotate may be interested in solutions
for the scale factor when there is curvature. Since, for absgies with the modified Chaplygin
gas acting as a single fluid, few of such analytic solutiomskaown, the usage of a scalar field as
an auxiliary quantity offers, at least in principle, anathay for the search of new solutions. Also,
the representation of the modified Chaplygin gas in termssobéar fieldp opens another road for
the study of the evolution of perturbations, and as such it beaseen as a mathematical tool of
some value.
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