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We consider a model that describes a charged particle ireduispacetime with external gauge
fields by means of a recently proposed covariant phase-$pawalism. In this formalism, which

is more suited to find invariants, the phase-space bractethanged to an extended algebra con-
taining the field strength of the gauge fields. However thdrdaution from the electromagnetic
interaction will alter the set of the Killing tensor equat#in order to obtain some conserved
guantities. With the Killing tensor still there is a geonmettuality that implies in a completely
non-trivial metric associated to the spacetime. Usingriesric some geometrical invariants and
currents are considered.
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Phase-space dynamics symmetries

1. Introduction

The symmetries in curved spacetime was intensively inyatd a long time ago and is
still the subject of many applications related to intedigbof geodesics motion, separability of
Hamilton-Jacobi and scalar field equations, higher dinmeraiblack-holes and much more (see a
recent review [1] and references therein). An important €ancerning geodesics is with respect
with their associated isometries. These are generatedltiggvector fields and with these fields
conserved quantities are constructed along the geodesicrm@he extension of isometries using
higher rank tensors can be considered in the phase spa@seafation of the geodesic motion
by means of a particle in curved space. In this case, corseuantities, in the Hamiltonian for-
malism, can be described with multiples of a particle momeantracted with symmetric Killing
tensors of higher rank [2]. The symmetries in phase spaceiassd with these conserved quanti-
ties, are also known as hidden symmetries in spacetime aneaeot directly present in the metric
transformations. Besides symmetry property, there is traditg one. A system that is dual to
another can retain some properties in a simplified (or neraty formulation but described with
different variables or parameters. However, in the phaseespnalysis, it was proposed a new
kind of duality [2] known as geometric duality. Using thiseowe consider how the phase space
symmetries for a charged particle in curved spacetime ctarrde a new kind of dual metric.
From this metric conserved currents and geometrical iamgsiwill be considered beyond other
subjects that will be discussed in the following sections.

2. Symmetries and Killing Tensors

When we consider an isometry, it is represented by the weallvknequation for a Killing
vectoréH

O(uéy) = 0. 2.1)

We can consider a generalization of (2.1) for objects of éiglank, i.e., for tensorial fields
defined in the spacetime. In this case, we have

D(HEV]_Vszn) = 07 (22)

D(/J fvl)vzwvn =0, (2.3)

where in (2.2) we have a definition of a Killing tens@y,, ,,...,,0f ordern > 1, with &y,y,...y;,) =
év,..vy, Which represents a order totally symmetric tensor. Analogously, for an amsyetric
tensor, we define in (2.3) a Killing-Yano TensQy, ,...y, With f1u, - = fuivpeovy-

An important property of the Killing Tensor object (2.3) @&gps when we use a standard
Hamiltonian for a neutral particle in curved spade= %p“ pvg"Y(x), which implies in a constant
of motion given byé ) = %E“"pu py, Since its time evolution is given by

{&2),H} = {PupvE", pApod**} (2.4)
2
= 3PP P Dindap) =0, (2.5)
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whereé, g is a symmetric second rank Killing tensor and it was usedtdmedsrd Poisson brackets.

We can interpret from the equation (2.4) that we can have ailttaman in a spacetime with
metric £#V and a Killing tensomg®?, or even, in the original form, a spacetime with metgtt’
and Killing tensoré 2. This dual aspect is known as geometric duality, as propivsig]. In this
aspect is defined a contravariant dual megHt given by

G = EHY = g Eq 0. (2.6)
If this contravariant metric is non-degenerate, we canidensts inverse by, since

g“pgpv = 55- (2-7)

3. The Covariant Dynamics and Extended Geometric Duality

If we consider the Hamiltonian of a charged particle movim@g ispace with metrig,,, inter-
acting with an external gauge fiefq,,
_ 1 Hv 3
H= %g MMy (3.1)
where

My =pu—dA, (3.2)

is a gauge invariant momenta, the dynamics is now manifaseimodified brackets [3]

of o of o of o0
(f.glc= L 99 o 99 . g (3.3)

axHon, ony,oxk T HYen, an,
for phase-space functiorigx”, 1, ) ; g(x*,M,) and supplemented with the field-strenght. This
formulation is useful to find invariants in phase-space,dained in [3], since the standard Hamil-
tonian (using exclusively canonical momenta) is not appatgd for this goal. An application of
this formulation could be useful in the model proposed intptfind possible relations between
invariants and experimental measurements.
Using (3.3), we consider

{&ac) Hlc = {MuMyEHY, MNP e (3.4)
2
- §n“nﬁrﬂm(A Eap) +qn“nﬁsp(BFa)p =0, (3.5)

and we can see that there are additional conditions to cenaigeometric duality in the covariant
phase-space dynamics.

The Generalized Killing Tensor equation, in the sense &)(20 solve will be (3.5), and now
this equation with an additional condition on the Killingriger, will imply in a new kind of dual
metric and probably in new invariants in the covariant plesece.

Firstly, as a particular case, we consider the Kimura méfica recent use of this metric see
[6]) and consider it in the equations (2.2) for= 2 in order to find the Killing tensor compatible
with the set of equations in (2.5).
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From the Kimura metric represented by

ISP ST T eI 2
dsZ_bdt r2b2dr r2(d6? +sirf0de?), (3.6)

we obtain the second rank Killing tens&y,, whose nonzero components are given by:

£11(r,0) = (—czr%+c3)r4, (3.7)
&20(r,0) = cp/r?, (3.8)
&33(r,0) = (czl:—j +cg)r?) (3.9)
E(r,0) = —%r4c1(—1+ co20), (3.10)
Ea4(r,0) = —%czrzbz(—u—cosze)

+r4(—%3c5(10— 15c020 + 6c0s40 — co$H0) /(—1+ co26)

—%104(3+ costf — 4co20) /(—1+ co0), (3.11)

wherec;(i=1,---,c7) are constants.

The Kimura metric is the only one to imply in an irreduciblesed rank Killing tensor (non-
degenerate) obtained by a contraction of third rank KillMamo tensors [6]. This fact motivate us
to consider this metric in our calculations.

At this point is important to observe that if we consider tlyaamics in terms of a covariant
bracket, the Killing tensor to be obtained must obey an @it condition,

Fap@PPEon +FapdPP&pa =0, (3.12)

which belongs to the second term in (3.5).
Considering in general form a gauge field

Ay = (f(r,0),9(r,0),h(r,0),i(r,0)), (3.13)

a nontrivial solution of (3.5), among a lot of others possibblutions according to integral con-
stants, is given by

b
Ell(l',e) = (—Cgr—2 —|—C3)I’4, (3.14)
&20(r,0) = cp/r?, (3.15)
2
£5(1,6) = (cong +Calr*, (316)
E1(r,0) = ricysirfo, (3.17)
i(r,0) = Wﬂ%s, (3.18)
1
2,5, ,c0820 co0 1
E44(I’,6) N bC3—|—C4(r b, ( 4 B 2 +Z)
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+(bcz + ¢4) (b?Co + C4r?)sir? o), (3.19)
h(r,0) = / dg(grée)erer(e), (3.20)
f(r,0) = F1(0) (3.21)

whereq(r, 8), F1(8) and F,(0) are arbitrary functions, angl(i = 1,---,7) are constants.

With the additional restriction (3.12), we can note that¢haill be more parameters to choose
in order to furnish a final form of a dual metric in the covatiphase-space formulation. In this
way we can obtain many classes of dual metrics accordingeteldttromagnetic field interaction.

4. Conserved currents and geometrical invariants from dual space

Since from a second rank symmetric Killing-Tensor we caraiobtnany classes of dual
metrics, we discuss what kind of antisymmetric object cdaddobtained from an antisymmetric
Killing-Yano tensor of the same order.

For this case we note the existence of another conservedityudat now related with the
Killing-Yano Tensor as found in [5]. Let us consider a partéc case of rank 2, antisymmetric
Killing-Yano Tensor , however in the dual metric space.

In this case, since the spacetime admits a Killing-Yano @enge can construct a dual current
given by

o8 = (PRI 2forR 1 2FVRE 4 FO0R) (4.1)
which satisfies

0o [%P =0 (4.2)

by means of the following identities:

~ ~ ~ ~ 1 ~
Ula RBV])\E =0, Qg ng)\ +2D[B Ry])\ =0, g Rg 5 Up R=0. 4.3)

We note in (4.1) the use of dual metric, and the objects tHiatddrom it. This expression is a
huge one, since involve a lot of terms from dual part. The [gay#nterpretation of this expression
in dual space still needs exploration.

Another point that still needs attention is the singulabighaviour of the dual metric space. A
geometrical invariant that explore this behaviour is thet&chmann invariant,

K =RYYR a0, (4.4)

that in this case is obtained by the full contraction of thaldRiemann tensor, in the sense that it
was obtained from Riemann tensor defined in terms of the daaien Another geometrical invari-
ant could be explored to perform the horizon behaviour indihal space and will be considered
elsewhere. It is important to note, that for the nontrivinbbKimura metric, the determinagtof
the dual metric is a large expression, and implies in a degenenetric ifc, = 0 as we can see in
the following:

§ = —sirfOcor®(cob? 4 car?)(c3b® — cacob?r? — cobescogOr? + cobeyr?
+Cobosr? + c3c5c0L0r? — ccoSOr — caosr — cacar® + c3r?). (4.5)
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From this expression we can infer a huge extension of theskhhetann geometrical invariant
(4.4). The details of this analysis, as well applied to ottetegories of metrics, will be reported
elsewhere.

Finally the possible interchange betwegn, and f,, in the geometric duality will be the
subject of future investigations, beyond the influence i t¢bnserved currents and geometrical
invariants in dual spaces.

Acknowledgments

The author would like to thanks useful discussions with Jo&erederico that helps to improve
the work. Thanks also to the Organizing Committee of the SH#TG for a successful event.

References

[1] V. P. Frolov and D. Kubiznak, Class. Quant. Gray.(2008) 154005.
[2] R. H. Rietdijk and J. W. van Holten, Nucl. PhyB472, 427 (1996).
[3] J. W. van Holten, Phys. Ref275 (2007) 025027.

[4] L. A. Cabral, G. Gusev and N. M. Sotomay@iassical magnetoresistance of a two-dimensional
electron gas constrained to non-planar topographies indwitlattice under tilted magnetic fieldlP
conference proceedings, US,893 (2007) 563-564.

[5] D. Kastor and J. Traschen, JHBR08 (2004) 045.
[6] F. C. Popa and O. Tintareanu-Mircea, Mod. Phys. L& (2007) 1309-1318.



