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We consider a model that describes a charged particle in curved spacetime with external gauge

fields by means of a recently proposed covariant phase-spaceformalism. In this formalism, which

is more suited to find invariants, the phase-space brackets are changed to an extended algebra con-

taining the field strength of the gauge fields. However the contribution from the electromagnetic

interaction will alter the set of the Killing tensor equations in order to obtain some conserved

quantities. With the Killing tensor still there is a geometric duality that implies in a completely

non-trivial metric associated to the spacetime. Using thismetric some geometrical invariants and

currents are considered.
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Phase-space dynamics symmetries

1. Introduction

The symmetries in curved spacetime was intensively investigated a long time ago and is
still the subject of many applications related to integrability of geodesics motion, separability of
Hamilton-Jacobi and scalar field equations, higher dimensional black-holes and much more (see a
recent review [1] and references therein). An important fact concerning geodesics is with respect
with their associated isometries. These are generated by Killing vector fields and with these fields
conserved quantities are constructed along the geodesic motion. The extension of isometries using
higher rank tensors can be considered in the phase space representation of the geodesic motion
by means of a particle in curved space. In this case, conserved quantities, in the Hamiltonian for-
malism, can be described with multiples of a particle momenta contracted with symmetric Killing
tensors of higher rank [2]. The symmetries in phase space associated with these conserved quanti-
ties, are also known as hidden symmetries in spacetime sinceare not directly present in the metric
transformations. Besides symmetry property, there is the duality one. A system that is dual to
another can retain some properties in a simplified (or non-trivial) formulation but described with
different variables or parameters. However, in the phase space analysis, it was proposed a new
kind of duality [2] known as geometric duality. Using this one we consider how the phase space
symmetries for a charged particle in curved spacetime can determine a new kind of dual metric.
From this metric conserved currents and geometrical invariants will be considered beyond other
subjects that will be discussed in the following sections.

2. Symmetries and Killing Tensors

When we consider an isometry, it is represented by the well known equation for a Killing
vectorξ µ

∇(µξν) = 0. (2.1)

We can consider a generalization of (2.1) for objects of higher rank, i.e., for tensorial fields
defined in the spacetime. In this case, we have

∇(µξν1ν2···νn) = 0, (2.2)

∇(µ fν1)ν2···νn
= 0, (2.3)

where in (2.2) we have a definition of a Killing tensorξµ1µ2···µnof ordern > 1 , with ξ(ν1ν2···νn) =

ξν1···νn, which represents an order totally symmetric tensor. Analogously, for an antisymmetric
tensor, we define in (2.3) a Killing-Yano Tensorfµ1µ2···µn with fµ1µ2···µn = f[ν1ν2···νn].

An important property of the Killing Tensor object (2.3) appears when we use a standard
Hamiltonian for a neutral particle in curved spaceH = 1

2 pµ pνgµν(x), which implies in a constant
of motion given byξ(2) = 1

2ξ µν pµ pν , since its time evolution is given by

{ξ(2),H} = {pµ pνξ µν , pλ pρgλρ} (2.4)

=
2
3

pα pβ pλ ∇(λ ξαβ) = 0, (2.5)
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whereξαβ is a symmetric second rank Killing tensor and it was used the standard Poisson brackets.
We can interpret from the equation (2.4) that we can have a Hamiltonian in a spacetime with

metric ξ µν and a Killing tensorgαβ , or even, in the original form, a spacetime with metricgµν

and Killing tensorξ λβ . This dual aspect is known as geometric duality, as proposedin [2]. In this
aspect is defined a contravariant dual metric ˜gµν given by

g̃µν = ξ µν = gµα ξαρgρν . (2.6)

If this contravariant metric is non-degenerate, we can consider its inverse by ˜gµν , since

g̃µρ g̃ρν = δ µ
ν . (2.7)

3. The Covariant Dynamics and Extended Geometric Duality

If we consider the Hamiltonian of a charged particle moving in a space with metricgµν inter-
acting with an external gauge fieldAµ ,

H =
1

2m
gµνΠµΠν (3.1)

where

Πµ = pµ −qAµ (3.2)

is a gauge invariant momenta, the dynamics is now manifest inthe modified brackets [3]

{ f ,g}C =
∂ f
∂xµ

∂g
∂Πµ

−
∂ f

∂Πµ

∂g
∂xµ +qFµν

∂ f
∂Πµ

∂g
∂Πν

(3.3)

for phase-space functionsf (xµ ,Πν) ; g(xµ ,Πν) and supplemented with the field-strenghtFµν . This
formulation is useful to find invariants in phase-space, as obtained in [3], since the standard Hamil-
tonian (using exclusively canonical momenta) is not appropriated for this goal. An application of
this formulation could be useful in the model proposed in [4]to find possible relations between
invariants and experimental measurements.

Using (3.3), we consider

{ξ(2C),H}C = {ΠµΠνξ µν , Πλ Πρgλρ}C (3.4)

=
2
3

ΠαΠβ Πλ ∇(λ ξαβ) +qΠαΠβ ξρ(β F ρ
α) = 0, (3.5)

and we can see that there are additional conditions to consider a geometric duality in the covariant
phase-space dynamics.

The Generalized Killing Tensor equation, in the sense of (2.5), to solve will be (3.5), and now
this equation with an additional condition on the Killing Tensor, will imply in a new kind of dual
metric and probably in new invariants in the covariant phasespace.

Firstly, as a particular case, we consider the Kimura metric(for a recent use of this metric see
[6]) and consider it in the equations (2.2) forn = 2 in order to find the Killing tensor compatible
with the set of equations in (2.5).
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From the Kimura metric represented by

ds2 =
r2

b
dt2−

1
r2b2 dr2− r2(dθ2 +sin2θdφ2), (3.6)

we obtain the second rank Killing tensorξµν , whose nonzero components are given by:

ξ11(r,θ) = (−c2
b
r2 +c3)r

4, (3.7)

ξ22(r,θ) = c2/r2, (3.8)

ξ33(r,θ) = (c2
b2

r2 +c4)r
4, (3.9)

ξ41(r,θ) = −
1
2

r4c1(−1+cos2θ), (3.10)

ξ44(r,θ) = −
1
2

c2r2b2(−1+cos2θ)

+r4(−
1
16

c5(10−15cos2θ +6cos4θ −cos6θ)/(−1+cos2θ)

−
1
4

c4(3+cos4θ −4cos2θ)/(−1+cos2θ), (3.11)

whereci(i = 1, · · · ,c7) are constants.
The Kimura metric is the only one to imply in an irreducible second rank Killing tensor (non-

degenerate) obtained by a contraction of third rank KillingYano tensors [6]. This fact motivate us
to consider this metric in our calculations.

At this point is important to observe that if we consider the dynamics in terms of a covariant
bracket, the Killing tensor to be obtained must obey an additional condition,

Fαβ gβρ ξρλ +Fλβ gβρ ξρα = 0, (3.12)

which belongs to the second term in (3.5).
Considering in general form a gauge field

Aµ = ( f (r,θ),g(r,θ),h(r,θ ), i(r,θ )), (3.13)

a nontrivial solution of (3.5), among a lot of others possible solutions according to integral con-
stants, is given by

ξ11(r,θ) = (−c2
b
r2 +c3)r

4, (3.14)

ξ22(r,θ) = c2/r2, (3.15)

ξ33(r,θ) = (c2
b2

r2 +c4)r
4, (3.16)

ξ41(r,θ) = r4c1sin2θ , (3.17)

i(r,θ) =
(bc3 +c4)F1(θ)

c1
+c5, (3.18)

ξ44(r,θ) =
r2

bc3 +c4
(r2b2c1

2(
cos22θ

4
−

cos2θ
2

+
1
4
)
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+(bc3 +c4)(b
2c2 +c4r2)sin2θ), (3.19)

h(r,θ) =

∫ ∂g(r,θ)

∂θ
dr +F2(θ), (3.20)

f (r,θ) = F1(θ) (3.21)

whereg(r,θ), F1(θ) and F2(θ) are arbitrary functions, andci(i = 1, · · · ,7) are constants.
With the additional restriction (3.12), we can note that there will be more parameters to choose

in order to furnish a final form of a dual metric in the covariant phase-space formulation. In this
way we can obtain many classes of dual metrics according to the electromagnetic field interaction.

4. Conserved currents and geometrical invariants from dual space

Since from a second rank symmetric Killing-Tensor we can obtain many classes of dual
metrics, we discuss what kind of antisymmetric object couldbe obtained from an antisymmetric
Killing-Yano tensor of the same order.

For this case we note the existence of another conserved quantity, but now related with the
Killing-Yano Tensor as found in [5]. Let us consider a particular case of rank 2, antisymmetric
Killing-Yano Tensor , however in the dual metric space.

In this case, since the spacetime admits a Killing-Yano Tensor, we can construct a dual current
given by

j̃αβ = −
1
4
( f̃ γλ R̃αβ

γλ −2 f̃ αγR̃β
γ +2 f̃ βγ R̃α

γ + f̃ αβ R̃) (4.1)

which satisfies

∇α j̃αβ = 0 (4.2)

by means of the following identities:

∇[α R̃βγ ]λε = 0, ∇α R̃α
βγλ +2 ∇[β R̃γ ]λ = 0, ∇α R̃α

β −
1
2

∇β R̃= 0. (4.3)

We note in (4.1) the use of dual metric, and the objects that follow from it. This expression is a
huge one, since involve a lot of terms from dual part. The physical interpretation of this expression
in dual space still needs exploration.

Another point that still needs attention is the singularitybehaviour of the dual metric space. A
geometrical invariant that explore this behaviour is the Kretschmann invariant,

K̃ = R̃µνλρR̃µνλρ , (4.4)

that in this case is obtained by the full contraction of the dual Riemann tensor, in the sense that it
was obtained from Riemann tensor defined in terms of the dual metric. Another geometrical invari-
ant could be explored to perform the horizon behaviour in thedual space and will be considered
elsewhere. It is important to note, that for the nontrivial dual Kimura metric, the determinant ˜g of
the dual metric is a large expression, and implies in a degenerate metric ifc2 = 0 as we can see in
the following:

g̃ = −sin2θc2r4(c2b2 +c4r2)(c2
2b3−c3c2b2r2−c2bc5cos2θ r2 +c2bc4r2

+c2bc5r2 +c3c5cos2θ r4−c2
1cos2θ r4−c3c5r4−c3c4r4 +c2

1r4). (4.5)
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From this expression we can infer a huge extension of the Kretschmann geometrical invariant
(4.4). The details of this analysis, as well applied to othercategories of metrics, will be reported
elsewhere.

Finally the possible interchange betweenξµν and fµν in the geometric duality will be the
subject of future investigations, beyond the influence in the conserved currents and geometrical
invariants in dual spaces.
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