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1. Introduction

The two pion decays of the K meson have been an important topic in particle physics for
more than fifty years. The same processes that lead to the discovery of P, C and CP violation
today hold the promise of revealing the first insights into physics beyond the standard model. For
such promise to be achieved, theoretical calculations must be realized whose precision matches
those of the impressive experimental results presented at this conference. The present theoretical
challenge is the calculation of the hadronic matrix elements of four-quark operators which describe
the relevant electro-weak processes at the relatively long distances which characterize the initial
and final kaon and pion states. This current focus on the effects of low energy QCD is the result
of critical work over the past thirty years using perturbative methods to analyze these processes at
short distance. The result of this work is a low energy effective Hamiltonian of the form:

H ∆S=1
eff =

GF√
2

{
10

∑
i=1

[VudV
∗
us zi(µ)−VtdV∗

ts yi(µ)]Qi

}
(1.1)

where we use the notation of Ref. [1]. In Eq. 1.1 the top, bottom and charm quarks are treated
as heavy and their effects have been incorporated using QCD perturbation theory so that the four-
quark operatorsQi contain only three light quarksu, d ands.

Thus, the problem which this talk addresses is the calculation of the matrix elements of
H ∆S=1

eff between an initial kaon state and a final state of two pions in either the I=0 or I=2 state:
〈ππ(I)|H ∆S=1

eff |K〉I=0,2. In principle, lattice QCD is ideally suited for such a calculation. Euclidean
space lattice techniques should permit the calculation of such matrix elements withoutad hocas-
sumptions and with numerical control of all errors. We will now discuss the difficulties posed by
such calculations and the techniques which are expected to overcome them.

2. Operator mixing and renormalization

The 4-quark operatorsQi which appear in Eq. 1.1 are each of dimension six. They are linear
combinations of seven independent operators, which naturally divide into three groups: a single
(27,1) operator, two(8,8) operators and four(8,1) operators. The operators within each group
mix under renormalization as well as with operators of lower dimension. Such a renormalization
pattern is well understood for continuum operators and can be managed using standard techniques
if a chirally invariant regulator, such as dimensional regularization is employed.

For a lattice calculation, these operators must now be defined using a lattice regulator. Given
the essential role played by chiral symmetry in limiting the number of operators which can appear
and their mixing, it is essential to use a lattice fermion formulation which respects chiral symmetry.
The domain wall fermion (DWF) formulation has the needed chiral symmetry with violations that
can be made arbitrarily small as size in the fifth dimension (Ls) is increased. This formulation was
used in the first complete quenched calculations of theK → |0〉andK →π matrix elements of these
ten operatorsQi. [1, 2]. Now the RBC/UKQCD and LHPC collaborations have created substantial
ensembles for 2+1 flavor QCD for a variety of light quark masses and two lattice spacings. These
configurations combined with new larger volume, larger lattice spacing configurations will provide
an excellent foundation for a correctly unitary, full QCD calculation of these decay amplitudes.
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Even with such a chiral lattice formulation, we must still relate the lattice operators with the
equivalent continuum operators appearing in Eq. 1.1. Such a matching between continuum and lat-
tice operators can be accurately carried out using the regularization-independent,Rome/Southampton
RI/MOM scheme, which can be applied to both continuum and lattice operators.

The strength of the RI/MOM scheme is that it can be applied to lattice operators non-perturbatively
by imposing simple conditions on off-shell gauge-fixed Greens functions evaluated using standard
lattice gauge theory techniques. In fact, these techniques have been successfully used to transform
matrix elements of the bare lattice operatorsQlat

i into those of RI/MOM-normalized operators in
both quenched [3, 1] and full QCD [4] calculations. This method is increasingly well understood
[5], with improved techniques giving statistical errors on the percent level. At present the largest
errors, on the 5% level, come from the use of perturbation theory to connect the RI/MOM andMS
schemes. We conclude that the problems of operator normalization and mixing are under adequate
control and pose no special difficulties for the topic at hand.

3. Quadratic divergence

A cause for concern when considering a calculation of the∆I = 1/2K → ππamplitude is the
presence of quadratically divergent terms. In a lattice calculation such terms are finite but larger
than the physical amplitude by a factor proportional to 1/a2. While such terms will not contribute
to any properly constructed physical amplitude, their removal, either by explicit subtraction or by
the averaging of the relevant matrix element to zero may increase statistical or to amplify systematic
errors.

For example, in the standard calculation of the matrix element of the operatorQ6 using leading
order chiral perturbation theory (LO ChPT) a combination ofK → π andK → |0〉 amplitudes is
required in which the later can be viewed as subtracting the quadratic divergence from the former.
These two amplitudes and their much smaller difference is shown in Fig. 1. As can be seen this
subtraction reduces the amplitude by nearly a factor of ten but still gives a result with few percent
statistical errors. These large matrix elements also enhance the systematic errors associated with
finite Ls. However, it can be shown [6, 7] that such errors are at most on the few percent level.
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Figure 1: Matrix elements ofQ6 (circles) which
contain a quadratic divergence, the subtraction
term (squares) and their difference (diamonds).

Figure 2: Example graph containing a quadrat-
ically divergent quark loop which appears in the
〈π|Q6|K〉 matrix element.
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These quadratic divergences resulting from quark loops of the sort shown in Fig. 2 appear
multiplying operatorss(1±γ5)d which vanish when evaluated in momentum conservingK → ππ
matrix elements. However, such terms vanish only after an average over gauge configurations and
therefore may introduce large statistical fluctuations. If necessary, an explicit subtraction can be
introduced which will not affect the average but should reduce the variance to the acceptable level
found in theK → π matrix elements in Fig. 1. Thus, experience withK → π calculations [1, 2]
suggests that theseO(1/a2) components of the∆I = 1/2 operators will not pose serious difficulties.

4. Two pion final state

An important problem associated with suchK →ππcalculations is summarized by the Maiani-
Testa theorem which points out that the large Euclidean time limit used in lattice QCD to project
onto physical states will yield aπ−π state with zero relative momentum, not the physical state
which should appear in the matrix element of interest. There are now two methods to circumvent
this difficulty. The first usesSU(3)×SU(3) ChPT to relate theK → ππamplitudes of interest to
simplerK → π andK → |0〉matrix elements. This avoids dealing directly with a state containing
two pions but, as is discussed in Section 4.1 below, relies on ChPT in a region where its validity
is highly uncertain. The second more promising method is based on finite volume techniques [8].
This second approach is discussed below in Section 4.2.

4.1 Chiral perturbation theory

The first quenched calculations of the completeK → ππamplitude were carried out using
LO ChPT [1, 2]. While the results for the real parts ofA0 andA2 may have been encouraging,
the value ofε ′/ε was near zero and slightly negative—far from the experimental value. However,
Golterman and Pallante [9] discovered that the ChPT structure of the quenched and full theory
was very different, with the quenched theory possessing more singular chiral logarithms than are
present in the complete, unquenched theory.

Such problems with the quenched approximation can be avoided by moving to full QCD sim-
ulations and the RBC/UKQCD collaboration has repeated the earlier quenched work using 2+1 fla-
vor, DWF gauge ensembles [4]. In addition to the inclusion of fermion loops, this new calculation
explores lighter quark masses, including “partially quenched” amplitudes with unequal valence and
sea quark masses, allowing a detailed comparison with ChPT. Unfortunately, the RBC/UKQCD re-
sults for the quark mass behavior of the standard meson masses and decay constants [10, 11] and
these detailed studies of theK → π andK → |0〉 amplitudes [4] strongly suggest that ChPT does
not provide a reliable description for masses as large as that of the physical K meson.

In Fig. 3 we show an attempt to fit next leading order (NLO) ChPT to the ratio

〈π|O(27,1)|K〉/ fK fπmπmK (4.1)

in order to extract the LECα27. This figure reveals two difficulties. First, we are fitting the ratio
shown in Eq. 4.1 because we were not able to obtain a sensible fit to the simpler matrix element
in the numerator. One might argue that the NLO ChPT terms in this ratio will be reduced because
of significant cancelation between the NLO chiral logarithms which appear in the numerator and
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denominator. However, a circumstance in which we must construct artificial ratios in order to
obtain sensible fits naturally raises serious doubts about the applicability of ChPT.
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Figure 3: A NLO ChPT fit to the ratio in Eq. 4.1
compared to the lightest sea quark results. The
individual components of the fit as well as their
total are shown. The NLO analytic and logarith-
mic terms appear in the middle while the small-
est contribution, near zero, is the LO term.
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Figure 4: Results for the(8,1) operatorQ6 after
subtraction of the quadratic divergence together
with a LO chiral fit. The small deviation shown
at small quark masses is an estimate of the pos-
sible effect of a NLO chiral logarithm.

The second problem is the dominance of the next leading order (NLO) term over that of leading
order. While the leading order term may be accidentally suppressed, the failure of the fit to show
a standard hierarchy among the orders of the expansion suggests the more probable situation that
ChPT is inapplicable and the result is a fit to an essentially arbitrary function with no ordering
between the various terms. A similar situation is found for the other two∆I = 3/2,(8,8)operators.

The situation is less clear for the (8,1)∆I = 1/2 operators because the NLO ChPT contains
more low energy constants (LEC’s) making our data inadequate to carry out a complete NLO ChPT
fit. As can be seen in Fig. 4 a simple linear fit (leading order in ChPT) describes the data very well.
However, as shown by the additional up-turning curve added to the left of the data points, possible
NLO logarithmic behavior that is entirely consistent with our calculated points can change the
slope at vanishing light quark mass by a factor of two. Since it is this slope which is the LEC of
interest,α6, we must assign a 100% systematic error to our result.

In summary, while the use of the 2+1 flavor DWF configurations has removed the uncertainties
associated with the quenched approximation, the use of smaller quark masses and partial quenching
has raised new concerns about the validity of ChPT in the kinematic region needed to determine
theK → ππamplitudes. First, as discussed above, our calculation suggests that the needed LEC’s
cannot be reliably determined from our present range of masses. This problem can be addressed
by moving to lighter masses. However, there is a second, more serious difficulty. Even if these
LECs were known, we would still require a second application of ChPT to compute theK → ππ
amplitudes. This use of ChPT would involve exactly the region of large quark masses and pion
momenta where the studies above suggest the theory fails. There is no solution to this problem if
we chose to work in the physical world with 498 MeV kaons.
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4.2 Calculation with two pion final states

We conclude that it is necessary to directly compute matrix elements using states contain-
ing two pions. Evaluating matrix elements of such a 2-particle state using Euclidean space lattice
techniques is now well understood [8] but still presents serious practical challenges. The key to
computing suchπ−π matrix elements is to understand and exploit the finite volumes that neces-
sarily appear in a lattice calculation.

While the underlying weak operator connects the initial K meson to two pions in an s-wave,
the rectangular box of a lattice calculation mixes thatl = 0 state with states withl = 4,8, .... In the
reasonable approximation that theπ−π phase shifts,δl , vanish forl > 0, then the weight of the
l = 0 component of the finite volume eigenstates can be computed knowing onlyδl=0 and allowing
the physicall = 0 matrix element to be extracted from that of the finite volume state. While the
finite volumeπ−π ground state is close to threshold with nearly zero relative momentum, there are
a series of excited states with relative pion momenta which differ from the free-particle multiples
of 2π/L by calculable amounts, again determined byδ0.

For a cubic box withL = 6 fm, the pions in the first excited state have relative momentum
very close to the physical value ofp = 205 MeV. With present resources, this is an inaccessibly
large volume. However, this problem can be circumvented by three strategies. The first starts with
a K meson with non-zero momentum. Momentum conservation requires that the two pion state
carry this same momentum which typically implies that one pion must remain at rest. If the initial
kaon has a momentum of 740 MeV, then the relative momentum of the two final pions is physical.
This 740 MeV value can be easily achieved on a practical 3 fm lattice ifpK = (1,1,1)2π/L or
p =

√
32π/L. Of course, with all methods, the challenge of anL = 6 fm volume must eventually

be met as the mass of the pions used approaches its physical value. The rule-of-thumb thatLmπ ≥ 4
to avoid finite volume effects also requiresL ≥ 5.7fm whenmπ = 138 MeV.

This pK > 0 approach has been studied by T. Yamazaki [12] for the∆I = 3/2 amplitudes with
encouraging results. However, the large momentum of theK andπ is a cause for concern. Since
momentum conservation takes effect only after the average over gauge fields has been performed,
the amplitude on each configuration will be dominated by the much larger contributions fromK and
π states at rest. The large cancelation needed to give the correct averages implies a corresponding
large statistical noise. Never-the-less, this method works for both the∆I = 3/2 and∆I = 1/2 cases
and for∆I = 1/2 automatically removes the vacuum contribution which necessarily carries zero
momentum.

A second approach imposes anti-periodic boundary conditions on the pions. This is easily
done for the∆I = 3/2 amplitude with itsI = 2 final state [13] by using anti-periodic boundary
conditions for theu quark but periodic boundary conditions for thed. Isospin symmetry implies that
theA2 amplitude can be determined from a matrix element with a|π+π+〉 final state, where bothπ+

mesons obey anti-periodic boundary conditions and therefore carry the physical momentumπ/L =
205 MeV whenL = 3 fm, a practical requirement. ForI = 2, the final state must be constructed
from valence quarks and one can argue [14] that if the anti-periodic boundary conditions are applied
only to the valence quarks in the calculation, allowing standard periodic boundary condition gauge
configurations, then only errors exponentially suppressed by the lattice size are introduced.

Imposing anti-periodic boundary conditions on the pions is more difficult for theI = 0 state
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where the quark content is less controlled. An attractive method is to impose G parity boundary
conditions [15] on the quarks which guarantees anti-periodic pions:

(
u(x)
d(x)

)
→

(
Cd(x+Lêi )
−Cu(x+Lêi )

)
→

(
−u(x+2Lêi )
−d(x+2Lêi )

)
(4.2)

whereC is the standard 4×4 charge-conjugation matrix and ˆei a unit vector in a direction in which
these G parity boundary conditions are imposed.

These boundary conditions require special gauge ensembles where the gauge fields obey
charge conjugate boundary conditions and the light sea quarks also obey G parity boundary condi-
tions. In addition, special treatment is required for the strange quark which is best made part of a
fictitious iso-doublet. These sea quarks can be represented by standard, positive-definite DWF de-
terminants (no Pfaffians needed) although a square root of the strange quark determinant is required
to keep the correct number of flavors. Given the computational costs required by the disconnected
diagrams, the extra difficulty of generating these special gauge configurations may be relatively
minor, making G parity boundary conditions an attractive approach to the∆I = 1/2 amplitude.

5. Disconnected diagrams

Because theI = 0, π−π state has the flavor quantum numbers of the vacuum,I = 0, π−π
propagators andK → ππ(I = 0) amplitudes all contain diagrams in which no quark lines connect
the initial and final states. These quantities then contain a vacuum contribution which does not van-
ish as the separation between the source and the sink or weak decay operator grows. Such unphys-
ical vacuum terms either vanish because of inconsistent non-flavor quantum numbers (e.g.~p 6= 0)
or must be explicitly subtracted. Unfortunately, even when removed, the separation-independent
fluctuations of such vacuum terms can quickly overwhelm the exponentially decreasing physical
signal, presenting major problems for the lattice calculation of many interesting physical quantities.

These difficulties may be least severe for theI = 0,π−π system. As the quark masses become
more physical and the pions less massive, theπ−π signal falls less rapidly with increasing time
allowing a signal to be obtained at larger times. In Fig 5 we show preliminary results ofI = 0,π−π
scattering study being carried out by Qi Liu. For small time separations the disconnected amplitude
can be determined and appears much smaller than the connected piece. However for times of 5 or
greater, the noise in the disconnected part begins to contribute substantially to the error in the
complete amplitude, severely limiting the temporal region where a plateau in the effective mass
and the needed evidence for asymptotic behavior can be established.

While this preliminary work is only beginning to uncover the difficulties of dealing with the
disconnected contributions to theK → ππ(I = 0) amplitudes, we believe there is reason for opti-
mism. These results were obtained in a few months on 1024-node QCDOC partitions. One hundred
and thirty 163×32 lattice configurations were analyzed computing 32 sets of propagators on each,
using wall sources located on each possible time hyperplane. With larger computer resources,
working with larger lattice volumes and collecting larger statistics will be practical. While this
will not permit the analysis to be extended to significantly larger times, it will yield more accurate
results in the time range 0≤ t ≤ 6 where we hope that the introduction of more interpolating opera-
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Figure 5: The left panel shows the connected (circles) and disconnected (diamonds) contributions to the
I = 0 π−π correlator. The right-hand panel shows the resulting 2 pion effective mass. The missing points
in the left panel result from negative values for the amplitude which cannot be shown on a logarithmic plot.

tors will allow the extraction of both the ground and excited states so that physical matrix elements
can be determined without relying on a simple large-time limit to project onto the ground state.

6. Outlook

Substantial efforts over the past ten years strongly suggest that a lattice calculation of the
complexK → ππamplitudesA0 andA2, accurate to 10-20%, requires a full (unquenched) lattice
QCD calculation in which on-shell two pion states are studied. This experience suggests that issues
of divergent penguin graphs and operator renormalization and mixing can be treated with a few
percent precision using chiral fermions and non-perturbative RI/MOM techniques. Existing finite
volume methods should permit the direct evaluation of matrix elements with on-shell|ππ〉 states.
The disconnected diagrams which appear in theI = 0 amplitude pose the most serious challenge
which may be overcome with substantial statistics and a careful multi-state analysis of correlation
functions evaluated at relatively small time separations.

Based on this assessment, computing the complexK → ππamplitudes has become an impor-
tant research goal of the RBC and UKQCD collaborations. The first objective is the calculation of
the∆I = 3/2 amplitudeA2 which can be done on standard, 2+1 flavor gauge configurations using
anti-periodic valence quarks. We are presently carrying out a quenched calculation on a 3.6 fm,
243×64 volume [16]. We expect this to provide interesting results for matrix elements of the three
∆I = 3/2 operators and guidance for a follow-on calculation using the 2+1 flavor, 4.6 fm lattice
ensembles now being generated by the RBC/UKQCD and LHPC collaborations on the ALCF at
Argonne. We expect this effort to determineA2 to an accuracy of 10-20% within two years.

For the∆I = 1/2 amplitudes a meaningful quenched calculation is not possible and our initial
calculations are being performed on 2+1 flavor 163×32 lattice volumes with 430 MeV pions. A
first, completeK → ππ calculation is now underway including all connected and disconnected
diagrams. With the experience gained in this calculation, we hope to exploit the next generation of
100-teraflops sustained computers as they become available in roughly one year’s time to move to
larger volumes and lighter pion masses. This may allow calculations of both the∆I = 3/2 and 1/2
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amplitudes giving 10-20% results for both the∆I = 1/2 rule andε ′/ε in 2-3 years. While this may
easily be optimistic, it is surely an exciting and increasingly realistic goal to pursue.
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