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We present our recent lattice calculation with dynamical quarks using the overlap fermion formu-
lation, which has exact chiral symmetry. It is possible to compare our data of meson mass and
decay constant with the prediction from the chiral perturbation theory. From such comparison,
we investigate the convergence property of the chiral expansion. For N f = 2, we observe that the
prediction to NLO does not converge at the scale of kaon mass. Based on this fact, we extend the
analysis to the N f = 2 + 1 case and carry out the extrapolation to the physical mass point using
the NNLO formulae.
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Convergence of chiral perturbation theory in dynamical lattice QCD with exact chiral symmetry

1. Introduction

In lattice QCD, numerical simulations are carried out with quark masses given as simulation
parameters. Since the quark mass around the physical value makes the cost of numerical simulation
highly demanding, data are usually obtained at masses significantly heavier than those in nature.
Results at the physical mass point are obtained by an extrapolation of the data points. It is therefore
crucial for the accuracy of lattice calculation to make a reliable extrapolation in the function of
quark masses or, equivalently, in the pseudo-scalar quark masses. The chiral perturbation theory
(ChPT) gives a theoretical guide for this extrapolation [1].

ChPT is an effective theory constructed from QCD based on the chiral symmetry and its spon-
taneous breaking. This theory describes the physics in the low-energy region p2 ≈ m2

π where
Nambu-Goldstone pions dominate the dynamics of the system. One of the characteristics of ChPT
is that the Lagrangian is written in terms of an expansion in p2: L = L2 +L4 + · · ·, where L2n

contains interactions among mesons of momenta O(p2n). Based on ChPT, physical quantities are
thus expanded in p2 and m2

π . For the quantities such as meson masses and decay constants, the
leading order (LO) contribution from L2 is corrected by the next-to-leading order (NLO) terms,
which consist of one-loop effects with L2 and tree-level insertions of L4. It is possible to add even
higher order corrections from multi-loop level diagrams and higher order Lagrangeans.

Often, lattice data are fitted using the NLO ChPT formula as it is the best known functional
form for the quantity of interest. But, in many cases, chiral extrapolations are carried out in the
mass region below the cut off Λχ = 2

√
2π fπ ≈ 1.2 GeV without checking the convergence of chiral

expansion at NLO. For the kaon sector, in particular, the convergence at the kaon mass mK ≈ 500
MeV is a non-trivial issue. One of the problems for the convergence test is that conventional
fermion formalisms on the lattice explicitly break chiral symmetry or flavor symmetry then allow
for inconsistency between numerical data and continuum theory.

In this article, we present our study of the convergence property of ChPT using the numeri-
cal simulation with dynamical overlap fermion [2], with which chiral symmetry as well as flavor
symmetry is exactly preserved on the lattice. We generated two sets of gauge configurations with
different number of flavors N f = 2 [3] and 2+1 [4], on which a series of phenomenological quan-
tities including the kaon B-parameter, BK [5], have been calculated. We test the convergence of
ChPT through the fit of light meson masses and decay constants, i.e. m2

π and fπ for N f = 2 and m2
π ,

m2
K , fπ and fK for N f = 2 + 1, and determine of the coupling constants of the ChPT Lagrangean,

i.e. low-energy constants (LECs). We also obtain the fundamental physical quantities such as
the chiral condensate, up and down quark masses and strange quark mass as a result of the chiral
extrapolation.

In the following section, we briefly explain how to obtain the data points on the lattices, which
is common for the calculations with different number of flavors. To discuss the issue of conver-
gence, we describe a test of ChPT performed for the N f = 2 case [6] in Section 3. Based on this
test, in Section 4, we present the chiral extrapolation of the N f = 2 + 1 data by using the NNLO
ChPT formulae.
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2. Getting data points

We refer [3, 4] for the details of the generation of the gauge configurations. For N f = 2, we
generate 10,000 HMC trajectories on a 163×32 lattice at six different sea quark masses msea while,
for N f = 2+1, we generate 2,500 trajectories on a 163×48 lattice for ten combinations of up-down
and strange sea quark masses, i.e. five mud’s times two ms’s.

For N f = 2 (2+1), we calculate 50 (80) pairs of the lowest-lying eigenmodes on each gauge
configuration and store them on the disks. These eigenmodes are used to construct the low-mode
contribution to the quark propagators. The higher-mode contribution is obtained by conventional
CG calculation with significantly smaller amount of machine time than the full CG calculation.
Those eigenmodes are also used to replace the lower-mode contribution in the meson correlation
functions by that averaged over the source location (low-mode averaging) [7, 8]. We extract meson
mass from the exponential decay of the time-separated correlation function of pseudo-scalar oper-
ator 〈P(t)P(0)〉. The decay constant, which is defined by the matrix element of the axial-current
operator Aµ , is obtained simultaneously using the PCAC relation ∂µAµ = 2mqP.

Throughout the Monte Carlo updates for both N f ’s, the global topological charge of the gauge
configurations is fixed to zero. This is necessary to avoid discontinuous change of the Dirac eigen-
value, which is numerically too-expensive. The artifact due to fixing the topology is understood
as a finite size effect [9] in addition to the conventional finite size effect. For the physical size of
our lattice L ≈ 1.7 fm, the finite size effect could be sizable. We calculate both kinds of finite size
effect from the analytic formulae based on ChPT [10, 11]. In particular, for the effect of the fixed
topology, we make use of the numerical data of the topological susceptibility determined on the
same lattice configurations [12].

In order to obtain the physical quark mass, we need to renormalize bare quark mass on the
lattice as m(ren)

q = Zmm(bare)
q . We obtain the renormalization factor Zm by calculating scalar and

pseudo-scalar vertex functions in the momentum space in the Landau gauge and applying the
RI/MOM scheme [13]. In extracting Zm from the vertex functions, we control the contamina-
tion from the spontaneous chiral symmetry breaking by using the the low-mode contribution to
the chiral condensate [14]. Using the perturbative matching factor known to 4-loop level and the
extrapolation to the chiral limit, i.e. msea = 0 for N f = 2 and mud = ms = 0 for N f = 2 + 1, we
obtain the final results of Zm in the MS scheme at 2 GeV.

In the rest of this article, it is understood that all data points are corrected by the finite size
effects and quark masses are renormalized.

3. Convergence of ChPT (N f = 2)

Determining the lattice scale by the Sommer scale with an input r0 = 0.49 fm, we obtain a−1 =
1.667(17) GeV. It imply that our data points cover the pion mass region 290 MeV <∼ mπ <∼ 750 MeV.

In the framework of SU(2) ChPT which describes the data with N f = 2, pion mass and decay
constants are expanded in terms of x = 4Bmq/(4π f )2 as

m2
π/mq = 2B(1+ 1

2 x lnx)+ c3x, (3.1)

fπ = f (1− x lnx)+ c4x (3.2)
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Figure 1: Chiral extrapolation of m2
π/mq (left) and fπ (right) using NLO ChPT formulae. The lightest three

data points are used for the fit.
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Figure 2: Results of fit parameters B (top) and f (bottom) as functions of the upper limit of the fit range. In
each panel, circle, square and diamonds are obtained with fit parameters x, x̂ and ξ . Results with χ2/dof <∼ 2
are plotted.

to NLO (i.e. one-loop level or O(x)), where B and f are the tree level LECs, and c3 and c4 are
related to the one-loop level LECs l̄3 and l̄4. At NLO, these expressions are unchanged when one
replaces the expansion parameter x by x̂ = 2m2

π/(4π f )2 or ξ = 2m2
π/(4π fπ)2, where m2

π and fπ

denote those at a finite quark mass. In other words, in a small enough pion mass region the three
expansion parameters should describe the lattice data equally well.

Three fit curves corresponding to x-fit, x̂-fit and ξ -fit for the three lightest pion mass points
(mπ <∼ 450 MeV) are shown in Figure 1 as a function of m2

π . For all fits, the horizontal axis is
appropriately rescaled to give m2

π using the obtained fit curves. From the plot we observe that the
different expansion parameters describe the three lightest points equally well; the values of χ2/dof
are 0.30, 0.33 and 0.66 for x-, x̂- and ξ -fits, respectively. In each fit, the correlation between
m2

π/mq and fπ for common sea quark mass is taken into account. Between the x- and x̂-fit, all
of the resulting fit parameters are consistent. Among them, B and f are also consistent with the
ξ -fit. This indicates that the NLO formulae successfully describes the data. In Figure 2, results of
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Figure 3: Comparison of the N f = 2 results from the NLO fit and the NNLO fit with ξ . Black pluses denote
reference points from phenomenological estimations.

B (upper panel) and f (bottom panel) from the different fits are plotted for various fitting range.
As seen in the figure, the agreement among the different expansion prescriptions is lost when we
extend the fit range to include the 4th lightest data point which corresponds to mπ ' 520 MeV. We,
therefore, conclude that for these quantities the NLO ChPT may be safely applied only below ≈
450 MeV.

Another important observation from Figure 1 is that only the ξ -fit reasonably describes the
data beyond the fitted region. With the x- and x̂-fits the curvature due to the chiral logarithm is too
strong to accommodate the heavier data points. In fact, values of the LECs with the x- and x̂-fits
are more sensitive to the fit range than the ξ -fit. This is because f , which is significantly smaller
than fπ of our data, enters in the definition of the expansion parameter. Qualitatively, by replacing
mq and f by m2

π and fπ , higher loop effects in ChPT are effectively resummed and the convergence
of the chiral expansion is improved.

We then extend the analysis to include the NNLO terms [15]:

m2
π/mq = 2B

[
1+ 1

2 ξ lnξ + 7
8(ξ lnξ )2 +

(
c4
f − 1

3(l̃ phys +16)
)

ξ 2 lnξ
]
+ c3 ξ (1− 9

2 ξ lnξ )+α ξ 2,

(3.3)

fπ = f
[
1−ξ lnξ + 5

4(ξ lnξ )2 + 1
6(l̃ phys + 53

2 )ξ 2 lnξ
]
+ c4 ξ (1−5ξ lnξ )+β ξ 2. (3.4)

Since we found that only the ξ -fit reasonably describes the data beyond mπ ' 450 MeV, we perform
the NNLO analysis using the ξ -expansion. Although we input phenomenological estimate for the
LEC l̃phys, we find our fit result is insensitive to their uncertainties. We extract the LECs of ChPT,
i.e. the decay constant in the chiral limit f , chiral condensate Σ = B f 2/2, and the NLO LECs
l̄phys
3 = −c3/B + ln(2

√
2π f /mπ+)2 and l̄phys

4 = c4/ f + ln(2
√

2π f /mπ+)2. For each quantity, a
comparison of the results between the NLO and the NNLO fits is shown in Figure 3. In each panel,
the results with 5 and 6 lightest data points are plotted for the NNLO fit. The correlated fits give
χ2/dof = 1.94 and 1.40, respectively. For the NLO fits, we plot results obtained with 4, 5 and 6
points to show the stability of the fit. The χ2/dof is less than 1.94. The results for these physical
quantities are consistent within either the NLO or the NNLO fits. On the other hand, as seen for
l̄phys
4 most prominently, there is a significant disagreement between NLO and NNLO. This is due

to the large NNLO contributions to the terms which are proportional to c3 and c4, respectively.
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Figure 4: Chiral extrapolation using the NNLO full SU(3) ChPT formulae for m2
π/mq (circles) and m2

K/msd

(squares) in the left panel and fπ (circles) and fK (squares) in the right.

We quote our results for the N f = 2 calculation from the NNLO fit with all data points: f =
111.7(3.5)(1.0)(+6.0

−0.0) MeV, ΣMS(2 GeV)= [235.7(5.0)(2.0)(+12.7
− 0.0 ) MeV]3, l̄phys

3 = 3.38(40)(24)(+31
− 0 ),

and l̄phys
4 = 4.12(35)(30)(+31

− 0 ), where m+
π = 139.6 MeV. From the value at the neutral pion mass

mπ0 = 135.0 MeV, we obtain the average up and down quark mass mud and the pion decay con-
stant as mMS

ud (2 GeV) = 4.452(81)(38)(+ 0
−227) MeV and fπ = 119.6(3.0)(1.0)(+6.4

−0.0) MeV. In these
results, the first error is statistical, where the error of the renormalization constant is included in
quadrature for Σ1/3 and mud . The second error is systematic due to the truncation of the higher
order corrections. For quantities carrying mass dimensions, the third error is from the ambiguity in
the determination of r0. We estimate these errors from the difference of the results with our input
r0 = 0.49 fm and that with 0.465 fm. The third errors for l̄phys

3 and l̄phys
4 reflect an ambiguity of

choosing the renormalization scale of ChPT (4π f or 4π fπ ).

4. Results in the N f = 2+1 simulation

4.1 Fit to NNLO SU(3) ChPT

Since we found in the two-flavor calculation that the NNLO ChPT formulae can nicely fit our
data even in the kaon mass region if one uses the ξ -expansion, we apply the same strategy for our
2+1-flavor analysis. As functions of ξπ = 2m2

π/(4π fπ)2 and ξK = 2m2
K/(4π fπ)2, predictions from

the SU(3) ChPT are expressed as

m2
π/mud = 2B0 [1+Mπ(ξπ ,ξK ;Lr

4,L
r
5,L

r
6,L

r
8)]+απ

1 ·ξ 2
π +απ

2 ·ξπξK +απ
3 ·ξ 2

K , (4.1)

m2
K/msd = 2B0

[
1+MK(ξπ ,ξK ;Lr

4,L
r
5,L

r
6,L

r
8)

]
+αK

1 ·ξπ(ξπ −ξK)+αK
2 ·ξK(ξK −ξπ), (4.2)

fπ = f0 [1+Fπ(ξπ ,ξK ;Lr
4,L

r
5)]+β π

1 ·ξ 2
π +β π

2 ·ξπξK +β π
3 ·ξ 2

K , (4.3)

fK = f0
[
1+FK(ξπ ,ξK ;Lr

4,L
r
5)

]
+β K

1 ·ξπ(ξπ −ξK)+β K
2 ·ξK(ξK −ξπ), (4.4)

where msd = 1
2(ms +mud) and απ,K

i and β π,K
i are NNLO unknown parameters. Functions Mπ , MK ,

Fπ and FK contain the NLO contributions from L4 and the NLO and NNLO loop contributions,
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Figure 5: Chiral extrapolation using the NLO reduced SU(2) ChPT formulae. The organization is same as
Figure 4.

whose expressions are too involved to present here [16]. Among relevant SU(3) LECs, Lr
1,L

r
2,L

r
3

and Lr
7 which appear only in the NNLO contributions cannot be determined precisely. We intro-

duce values Lr
1 = (0.43± 0.12) · 10−3, Lr

2 = (0.73± 0.12) · 10−3, Lr
3 = (−2.53± 0.37) · 10−3 and

Lr
7 = (−0.31±0.14) ·10−3 (defined at µ = 770 MeV) from a phenomenological estimate [17] and

determine others Lr
4,L

r
5,L

r
6 and Lr

8 by a fit. Thus, the chiral extrapolation with (4.1)–(4.4) contains
16 fit parameters in total.

We fit m2
π/mud , m2

K/msd , fπ and fK simultaneously taking the correlation within the same sea
quark mass (mud ,ms) into account. By using all data points, reasonable quality of the fit is obtained
with χ2/dof = 2.52. In this new study, we determine the lattice scale by the result of fπ extrapolated
to the physical point with the input fπ = 130.0 MeV. As a result, we obtain a−1 = 1.968(39) GeV
and the pion mass covers the range of 340 MeV < mπ < 870 MeV. Figure 4 shows all quantities in
question as a function of m2

π . Different symbols correspond to the pion data (m2
π/mud and fπ ) and

the kaon data (mK/msd and fK) while the filled (open) symbols represent a fixed lighter (heavier)
strange quark mass, which is accompanied by the solid (dashed) curves.

Extrapolating the data to the physical point (ξ (phys)
π ,ξ (phys)

K ), which is determined with mπ =
135.0 MeV, mK = 495.0 MeV and fπ = 130.0 MeV, we obtain preliminary results mMS

ud (2 GeV) =
3.64(12) MeV, mMS

s (2 GeV) = 104.5(1.8) MeV, ms/mud = 28.71(52), fK = 157.3(5.5) MeV and
fK/ fπ = 1.210(12), where the errors are statistical only.

In order to discuss the convergence property of ChPT as in the case of N f = 2, we need to
determine individual LECs with a high accuracy. However, with the data points obtained for two
different strange quark masses, we have a limited constraint about the ξK dependence hence large
errors for LECs. From the phenomenological side, it is advantageous to determine LECs along the
line of this work because the results can be used as inputs in the calculation of different quantities
including BK and Kl3 form factors. For these motivation, we are planning to extend the chiral
extrapolation with more data points with mud = ms.
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Figure 6: Comparison of physical values between results from NNLO SU(3) analysis, NLO reduced SU(2)
analysis and results obtained by UKQCD and RBC Collaborations [19].

4.2 Fit to the reduced SU(2) ChPT to NLO

As a check of the chiral extrapolation we carried out with the NNLO ChPT, we also study
different fit ansatz. It is also possible to carry out the extrapolation to the physical point ξ (phys)

π by
paying attention only to the dependence of the data on the up-down quark mass, or the pion mass.
Integrating out the strange quark as a static heavy quark, one obtain an effective theory which
respects a reduced SU(2) symmetry [18, 19, 20]. At NLO, the chiral expansion reads

m2
π/mud = 2B

(
1+ 1

2 ξπ lnξπ
)
+ c3 ξπ , (4.5)

m2
K/msd = 2B(K) + c(K)

1 ξπ , (4.6)

fπ = f (1−ξπ lnξπ)+ c4 ξπ , (4.7)

fK = f (K) (1− 3
8 ξπ lnξπ

)
+ c(K)

2 ξπ , (4.8)

where we have LECs B(K), f (K), c(K)
1 and c(K)

2 in addition to the SU(2) LECs appeared in Section 3.
In the present case, all LECs depend on strange quark mass. With the lightest three mud points,
which are in the valid region of this framework, i.e. mud � ms for each fixed value of ms, we carry
out the correlated fit for the quantities sharing the same mass point (mud ,ms). Figure 5 shows the
fit curves obtained in this way.

The fit results for each fixed ms are extrapolated to the physical strange quark mass m(phys)
s ,

which is determined by solving m2
K/ms|ξ (phys)

π
= (495.0MeV)2/ms. In Figure 6, we compare phys-

ical results for mud , ms, fK and fK/ fπ from the full NNLO SU(3) ChPT (circles), and from the
NLO reduced SU(2) ChPT (squares from our analysis and diamonds from the similar analysis
by RBC and UKQCD Collaborations [19]). The agreement among different fitting prescription is
encouraging.

5. Summary

We tested the convergence property of ChPT by comparing the analytic prediction with the
lattice data obtained in the dynamical simulation with the overlap fermions. For N f = 2, we carried
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out the chiral fit to the NLO and NNLO formulae and compare three different expansion param-
eters. We found that ChPT at NLO does not converge around the scale of kaon mass. It implies
that one must take the NNLO effects into account to deal with the pion and kaon data points in an
equal footing. In the N f = 2 + 1 simulation, we fitted the data to the ChPT prediction to NNLO
for the first time. The validity of the extrapolation to the physical mass point is checked with the
results from the fit with the reduced SU(2) ChPT. We are planning to increase the data point with
mud = ms to obtain the SU(3) LECs with high accuracy for a detailed study of the convergence
property.

Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (Nos. 07-16 and 08-05 ). This work is supported in part by the Grant-in-Aid
of the Ministry of Education (No. 20105005).
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