

PS

Exclusive pion cross section and asymmetry at HERMES

Ivana HRISTOVA*[†] DESY E-mail: ivana.hristova@desy.de

Exclusive electroproduction of π^+ mesons was studied by scattering 27.6 GeV positrons or electrons off a gaseous hydrogen target. The spin-averaged cross section and the single-spin azimuthal asymmetry with respect to transverse target polarisation were measured as a function of the Mandelstam variable *t*, the Bjorken scaling variable *x*_B, and the virtuality Q^2 of the exchanged photon. The results are compared to recent theoretical models.

European Physical Society Europhysics Conference on High Energy Physics July 16-22, 2009 Krakow, Poland

^{*}Speaker.

[†]For the HERMES Collaboration.

Ivana HRISTOVA

1. Introduction

The possibility to interpret hard exclusive processes in the framework of Generalised Parton Distributions (GPDs) [1] and to gather new information on the nucleon structure has lead to growing interest in the study of exclusive processes. In the description of exclusive production of π^+ mesons on protons by longitudinal virtual photons at leading twist (see Fig. 1), only the two GPDs \tilde{H} and \tilde{E} appear. Spin-averaged and spin-dependent cross sections are sensitive to different combinations of \tilde{H} and \tilde{E} . Unlike the spin-averaged cross section, the azimuthal asymmetry with respect to transverse target polarisation is directly proportional to the sine of the relative phase between \tilde{H}

Figure 1: Leading-order diagram for exclusive π^+ electroproduction.

and \tilde{E} . HERMES has previously performed measurements of the single-spin azimuthal asymmetry in exclusive π^+ electroproduction on longitudinally polarised protons [2]. Recently, results on the spin-averaged cross section [3] and the single-spin azimuthal asymmetry for the hard exclusive reaction $ep^{\uparrow} \rightarrow en\pi^+$ on transversely polarised protons [4] have been reported (see Sections 2, 3 below). Recent theoretical analyses of hard exclusive pion production are presented in [5, 6, 7].

2. Cross section

The data used for this measurement were collected in 1996-2005 with the HERMES spectrometer in the HERA storage ring at DESY. The average target polarisation was zero. Events with one lepton and one pion in the momentum range between 7 GeV and 15 GeV were accepted. The following requirements were imposed: $W^2 > 10 \text{ GeV}^2$, y < 0.85, $Q^2 > 1 \text{ GeV}^2$. The quantity $-t' = -(t - t_0)$, with $-t_0$ the minimum value of -t, was used in the analysis.

The exclusive channel $ep \rightarrow en\pi^+$ was separated from background channels using the missing mass (M_X) technique. The exclusive π^+ yield was obtained by subtracting the yield difference $(N_{\pi^+} - N_{\pi^-})$ of a PYTHIA Monte Carlo simulation from that of the data, with both differences being independently absolutely normalized: $N_{\pi^+}^{\text{excl}} = (N_{\pi^+} - N_{\pi^-})^{\text{data}} - (N_{\pi^+} - N_{\pi^-})^{\text{PYTHIA}}$. An upper cut on M_X^2 of 1.2 GeV² was set in order to optimise the (quadratically) combined statistical and systematic uncertainty of $N_{\pi^+}^{\text{excl}}$; 4510 events are obtained after background subtraction.

The differential cross section is extracted from data using the relation [3]

$$\frac{d\sigma^{\gamma^* p \to n\pi^+}(x_{\rm B}, Q^2, t')}{dt'} = \frac{1}{\Gamma_V(\langle x_{\rm B} \rangle, \langle Q^2 \rangle)} \frac{N_{\pi^+}^{\rm excl}}{\Delta x_{\rm B} \Delta Q^2 \Delta t' \kappa(x_{\rm B}, Q^2) \eta},$$
(2.1)

where the virtual-photon flux factor Γ_V , the detection probability κ , and the radiative correction factor η are all determined for each kinematic bin with bin sizes Δx_B , ΔQ^2 , and $\Delta t'$.

Figure 2 shows the t' dependence of the differential cross section for four Q^2 bins. The data are compared with calculations of $\frac{d\sigma}{dt'}$ using a GPD model: with a Regge-inspired t' dependence for \tilde{E} and neglecting \tilde{H} . While the leading-order calculation underestimates the data, the calculations including power corrections agree with the data for $-t' < 0.3 \text{ GeV}^2$. The calculation of $\frac{d\sigma}{dt'}$ using

Figure 2: Differential cross sections as a function of -t' for four Q^2 bins [3].

a Regge model describes the data well. More recent calculations of other models that are able to describe the data are presented in [5, 6, 7].

3. Spin asymmetry

The asymmetry for the reaction $ep^{\uparrow} \rightarrow en\pi^{+}$ is extracted from a subset of the data used for the cross section measurement presented above, which was taken in 2002-2005 with a transversely polarised hydrogen target. The average value of the transverse proton polarisation $|P_T|$ was $0.72 \pm$ 0.06. The azimuthal angles ϕ and ϕ_S of the pion and of the target polarisation vector, respectively, are defined around the virtual-photon three-momentum vector relative to the lepton scattering plane in the target rest frame. After applying the same cuts as for the cross section analysis, the number of observed π^+ events is 3425, of which half are background events.

The single-spin asymmetry for exclusive π^+ production with unpolarized (U) beam and target polarization transverse (T) to the lepton (ℓ) beam direction is defined as

$$A_{\mathrm{UT},\ell}(\phi,\phi_S) = \frac{1}{|P_{\mathrm{T}}|} \frac{\mathrm{d}\sigma^{\uparrow}(\phi,\phi_S) - \mathrm{d}\sigma^{\downarrow}(\phi,\phi_S)}{\mathrm{d}\sigma^{\uparrow}(\phi,\phi_S) + \mathrm{d}\sigma^{\downarrow}(\phi,\phi_S)},\tag{3.1}$$

where $d\sigma^{\uparrow(\downarrow)}(\phi, \phi_S) = d\sigma_{UU}(\phi) + P_T d\sigma_{UT,\ell}(\phi, \phi_S)$ is a sum of the spin-averaged and spin-dependent cross sections, with $P_T/|P_T|$ equal to 1 (-1) for the $\uparrow(\downarrow)$ orientations of the transverse target polarization vector P_T . The asymmetry (3.1) can be Fourier-decomposed as [8]

$$\mathcal{A}_{\mathrm{UT},\ell}(\phi,\phi_S) = A_{\mathrm{UT},\ell}^{\sin(\phi-\phi_S)} \sin(\phi-\phi_S) + A_{\mathrm{UT},\ell}^{\sin(\phi+\phi_S)} \sin(\phi+\phi_S) + A_{\mathrm{UT},\ell}^{\sin\phi_S} \sin\phi_S + A_{\mathrm{UT},\ell}^{\sin(2\phi-\phi_S)} \sin(2\phi-\phi_S) + A_{\mathrm{UT},\ell}^{\sin(3\phi-\phi_S)} \sin(3\phi-\phi_S) + A_{\mathrm{UT},\ell}^{\sin(2\phi+\phi_S)} \sin(2\phi+\phi_S).$$
(3.2)

The set of six Fourier amplitudes of the sine-modulation terms in (3.2) were extracted from the observed π^+ event sample using a maximum likelihood fit.

Each extracted Fourier amplitude was corrected for background contributions in order to estimate its true value for exclusive π^+ production, $A_t = \frac{A_r - bA_b}{1-b}$. Here, A_r denotes the raw value obtained from the maximum likelihood fit, and *b* and A_b stand for the fractional contribution and Fourier amplitude of the background. The background fraction $b = \frac{N_{\pi^+} - N_{\pi^+}^{\text{excl}}}{N_{\pi^+}}$ with N_{π^+} and $N_{\pi^+}^{\text{excl}}$ being the number of observed π^+ events in the selected data sample and after background subtraction described above, respectively. As the background originates from resolution smearing of

events occuring at higher missing mass, A_b was assumed to be equal to the Fourier amplitude measured in the M_X^2 region between 1.9 GeV² and 2.6 GeV² where the contribution of exclusive π^+ events is negligible.

Figure 3 shows the extracted Fourier amplitudes as a function of -t', $x_{\rm B}$, and Q^2 . The average values of the kinematic variables are $\langle -t' \rangle = 0.18 \,\text{GeV}^2$, $\langle x_{\text{B}} \rangle = 0.13$, and $\langle O^2 \rangle = 2.38 \,\text{GeV}^2$. The background fraction b varies between $(54 \pm 6)\%$ and $(62 \pm$ 5)% in the various kinematic bins. The values of A_b are smaller than ± 0.1 , except for the $\sin \phi_S$ modulation for which they amount on average to (0.25 ± 0.04) . The leading $\sin(\phi - \phi_S)$ amplitude appears to change sign from negative to positive as a function of -t', but it is also consistent with zero. This result is interesting in view of the large value initially predicted for this amplitude [7] using GPD models. The measured $\sin \phi_S$ amplitude is surprisingly large implying a significant contribution from the transverse-tolongitudinal virtual-photon helicity transition. An attempt to evaluate the complete set of Fourier amplitudes (3.2), and in particular the value of $A_{\text{UT},\ell}^{\sin(\phi-\phi_S)}$, is presented in [6]. Comparisons of model calculations with data are also presented in [7].

I thank my colleagues, especially M. Düren, C. Hadjidakis, D. Hasch, K. Rith,

Figure 3: Amplitudes of the sine modulations of the single-spin azimuthal asymmetry [4].

G. Schnell, and W.-D. Nowak, and the EPS2009 committee, for their help and support.

References

- [1] M. Diehl, Phys. Rept. 388 (2003) 41.
- [2] A. Airapetian et al., Phys. Lett. B 535 (2002) 85.
- [3] A. Airapetian et al., Phys. Lett. B 659 (2008) 486.
- [4] A. Airapetian et al., arXiv:0907.2596 [hep-ex].
- [5] M.M. Kraskulov and U. Mosel, arXiv:0904.4442 [hep-ph].
- [6] S. Goloskokov and P. Kroll, arXiv:0906.0460 [hep-ph].
- [7] Ch. Bechler and D. Müller, arXiv:0906.2571 [hep-ph].
- [8] M. Diehl and S. Sapeta, Eur. Phys. J. C 41 (2005) 515.