Exclusive pion cross section and asymmetry at HERMES

Ivana HRISTOVA* ${ }^{*}$
DESY
E-mail: ivana.hristova@desy.de

Exclusive electroproduction of π^{+}mesons was studied by scattering 27.6 GeV positrons or electrons off a gaseous hydrogen target. The spin-averaged cross section and the single-spin azimuthal asymmetry with respect to transverse target polarisation were measured as a function of the Mandelstam variable t, the Bjorken scaling variable x_{B}, and the virtuality Q^{2} of the exchanged photon. The results are compared to recent theoretical models.

European Physical Society Europhysics Conference on High Energy Physics

July 16-22, 2009
Krakow, Poland

[^0]
1. Introduction

The possibility to interpret hard exclusive processes in the framework of Generalised Parton Distributions (GPDs) [1] and to gather new information on the nucleon structure has lead to growing interest in the study of exclusive processes. In the description of exclusive production of π^{+}mesons on protons by longitudinal virtual photons at leading twist (see Fig. 11), only the two GPDs \widetilde{H} and \widetilde{E} appear. Spin-averaged and spin-dependent cross sections are sensitive to different combinations of \widetilde{H} and \widetilde{E}. Unlike the spin-averaged cross section, the azimuthal asymmetry with respect to transverse target polarisation is directly

Figure 1: Leading-order diagram for exclusive π^{+}electroproduction. proportional to the sine of the relative phase between \widetilde{H} and \widetilde{E}. Hermes has previously performed measurements of the single-spin azimuthal asymmetry in exclusive π^{+}electroproduction on longitudinally polarised protons [ौ]. Recently, results on the spin-averaged cross section [3] and the single-spin azimuthal asymmetry for the hard exclusive reaction $e p^{\dagger} \rightarrow e n \pi^{+}$on transversely polarised protons [[4] have been reported (see Sections 2 , 3 below). Recent theoretical analyses of hard exclusive pion production are presented in [5, 6, 7].

2. Cross section

The data used for this measurement were collected in 1996-2005 with the HERMES spectrometer in the HERA storage ring at DESY. The average target polarisation was zero. Events with one lepton and one pion in the momentum range between 7 GeV and 15 GeV were accepted. The following requirements were imposed: $W^{2}>10 \mathrm{GeV}^{2}, y<0.85, Q^{2}>1 \mathrm{GeV}^{2}$. The quantity $-t^{\prime}=-\left(t-t_{0}\right)$, with $-t_{0}$ the minimum value of $-t$, was used in the analysis.

The exclusive channel $e p \rightarrow e n \pi^{+}$was separated from background channels using the missing mass $\left(M_{X}\right)$ technique. The exclusive π^{+}yield was obtained by subtracting the yield difference $\left(N_{\pi^{+}}-N_{\pi^{-}}\right)$of a Pythia Monte Carlo simulation from that of the data, with both differences being independently absolutely normalized: $N_{\pi^{+}}^{\mathrm{excl}}=\left(N_{\pi^{+}}-N_{\pi^{-}}\right)^{\text {data }}-\left(N_{\pi^{+}}-N_{\pi^{-}}\right)^{\text {PYthia }}$. An upper cut on M_{X}^{2} of $1.2 \mathrm{GeV}^{2}$ was set in order to optimise the (quadratically) combined statistical and systematic uncertainty of $N_{\pi^{+}}^{\text {excl }} ; 4510$ events are obtained after background subtraction.

The differential cross section is extracted from data using the relation [β]

$$
\begin{equation*}
\frac{d \sigma^{\gamma^{*} p \rightarrow n \pi^{+}}\left(x_{\mathrm{B}}, Q^{2}, t^{\prime}\right)}{d t^{\prime}}=\frac{1}{\Gamma_{V}\left(\left\langle x_{\mathrm{B}}\right\rangle,\left\langle Q^{2}\right\rangle\right)} \frac{N_{\pi^{+}}^{\mathrm{excl}}}{\Delta x_{\mathrm{B}} \Delta Q^{2} \Delta t^{\prime} \kappa\left(x_{\mathrm{B}}, Q^{2}\right) \eta} \tag{2.1}
\end{equation*}
$$

where the virtual-photon flux factor Γ_{V}, the detection probability κ, and the radiative correction factor η are all determined for each kinematic bin with bin sizes $\Delta x_{\mathrm{B}}, \Delta Q^{2}$, and Δt^{\prime}.

Figure 2 shows the t^{\prime} dependence of the differential cross section for four Q^{2} bins. The data are compared with calculations of $\frac{d \sigma}{d t^{\prime}}$ using a GPD model: with a Regge-inspired t^{\prime} dependence for \widetilde{E} and neglecting \widetilde{H}. While the leading-order calculation underestimates the data, the calculations including power corrections agree with the data for $-t^{\prime}<0.3 \mathrm{GeV}^{2}$. The calculation of $\frac{d \sigma}{d t^{\prime}}$ using

Figure 2: Differential cross sections as a function of $-t^{\prime}$ for four Q^{2} bins [[3$]$.
a Regge model describes the data well. More recent calculations of other models that are able to describe the data are presented in [5, 6, 7].

3. Spin asymmetry

The asymmetry for the reaction $e p^{\dagger} \rightarrow e n \pi^{+}$is extracted from a subset of the data used for the cross section measurement presented above, which was taken in 2002-2005 with a transversely polarised hydrogen target. The average value of the transverse proton polarisation $\left|P_{T}\right|$ was $0.72 \pm$ 0.06 . The azimuthal angles ϕ and ϕ_{S} of the pion and of the target polarisation vector, respectively, are defined around the virtual-photon three-momentum vector relative to the lepton scattering plane in the target rest frame. After applying the same cuts as for the cross section analysis, the number of observed π^{+}events is 3425 , of which half are background events.

The single-spin asymmetry for exclusive π^{+}production with unpolarized (U) beam and target polarization transverse (T) to the lepton (ℓ) beam direction is defined as

$$
\begin{equation*}
A_{\mathrm{UT}, \ell}\left(\phi, \phi_{S}\right)=\frac{1}{\left|P_{\mathrm{T}}\right|} \frac{\mathrm{d} \boldsymbol{\sigma}^{\uparrow}\left(\phi, \phi_{S}\right)-\mathrm{d} \sigma^{\downarrow}\left(\phi, \phi_{S}\right)}{\mathrm{d} \sigma^{\uparrow}\left(\phi, \phi_{S}\right)+\mathrm{d} \sigma^{\downarrow}\left(\phi, \phi_{S}\right)}, \tag{3.1}
\end{equation*}
$$

where $\mathrm{d} \boldsymbol{\sigma}^{\dagger(\nu)}\left(\phi, \phi_{S}\right)=\mathrm{d} \sigma_{\mathrm{UU}}(\phi)+P_{\mathrm{T}} \mathrm{d} \sigma_{\mathrm{UT}, \ell}\left(\phi, \phi_{S}\right)$ is a sum of the spin-averaged and spin-dependent cross sections, with $P_{\mathrm{T}} /\left|P_{\mathrm{T}}\right|$ equal to $1(-1)$ for the $\uparrow(\downarrow)$ orientations of the transverse target polarization vector P_{T}. The asymmetry (3.1) can be Fourier-decomposed as [8]

$$
\begin{align*}
& \mathscr{A}_{\mathrm{UT}, \ell}\left(\phi, \phi_{S}\right)=A_{\mathrm{UT}, \ell}^{\sin \left(\phi-\phi_{S}\right)} \sin \left(\phi-\phi_{S}\right)+A_{\mathrm{UT}, \ell}^{\sin \left(\phi+\phi_{S}\right)} \sin \left(\phi+\phi_{S}\right)+A_{\mathrm{UT}, \ell}^{\sin \phi_{S}} \sin \phi_{S} \\
& +A_{\mathrm{UT}, \ell}^{\sin \left(2 \phi-\phi_{S}\right)} \sin \left(2 \phi-\phi_{S}\right)+A_{\mathrm{UT}, \ell}^{\sin \left(\left\langle, \phi-\phi_{S}\right)\right.} \sin \left(3 \phi-\phi_{S}\right)+A_{\mathrm{UT}, \ell}^{\sin \left(2 \phi+\phi_{S}\right)} \sin \left(2 \phi+\phi_{S}\right) . \tag{3.2}
\end{align*}
$$

The set of six Fourier amplitudes of the sine-modulation terms in (3.2) were extracted from the observed π^{+}event sample using a maximum likelihood fit.

Each extracted Fourier amplitude was corrected for background contributions in order to estimate its true value for exclusive π^{+}production, $A_{\mathrm{t}}=\frac{A_{\mathrm{r}}-b A_{\mathrm{b}}}{1-b}$. Here, A_{r} denotes the raw value obtained from the maximum likelihood fit, and b and A_{b} stand for the fractional contribution and Fourier amplitude of the background. The background fraction $b=\frac{N_{\pi^{+}}-N_{x^{+}}^{\text {excl }}}{N_{\pi^{+}}}$with $N_{\pi^{+}}$and $N_{\pi^{+}}^{\text {excl }}$ being the number of observed π^{+}events in the selected data sample and after background subtraction described above, respectively. As the background originates from resolution smearing of
events occuring at higher missing mass, A_{b} was assumed to be equal to the Fourier amplitude measured in the M_{X}^{2} region between $1.9 \mathrm{GeV}^{2}$ and $2.6 \mathrm{GeV}^{2}$ where the contribution of exclusive π^{+} events is negligible.

Figure 3 shows the extracted Fourier amplitudes as a function of $-t^{\prime}, x_{\mathrm{B}}$, and Q^{2}. The average values of the kinematic variables are $\left\langle-t^{\prime}\right\rangle=0.18 \mathrm{GeV}^{2},\left\langle x_{\mathrm{B}}\right\rangle=0.13$, and $\left\langle Q^{2}\right\rangle=2.38 \mathrm{GeV}^{2}$. The background fraction b varies between $(54 \pm 6) \%$ and $(62 \pm$ 5) \% in the various kinematic bins. The values of A_{b} are smaller than ± 0.1, except for the $\sin \phi_{S}$ modulation for which they amount on average to (0.25 ± 0.04). The leading $\sin \left(\phi-\phi_{S}\right)$ amplitude appears to change sign from negative to positive as a function of $-t^{\prime}$, but it is also consistent with zero. This result is interesting in view of the large value initially predicted for this amplitude [7] using GPD models. The measured $\sin \phi_{S}$ amplitude is surprisingly large implying a significant contribution from the transverse-tolongitudinal virtual-photon helicity transition. An attempt to evaluate the complete set of Fourier amplitudes (3.2), and in particular the value of $A_{\mathrm{UT}, \ell}^{\sin \left(\phi-\phi_{S}\right)}$, is presented in [6$]$. Comparisons of model calculations with data are also presented in [7].

I thank my colleagues, especially M. Düren, C. Hadjidakis, D. Hasch, K. Rith,

Figure 3: Amplitudes of the sine modulations of the single-spin azimuthal asymmetry [\dagger].
[1] M. Diehl, Phys. Rept. 388 (2003) 41.
[2] A. Airapetian et al., Phys. Lett. B 535 (2002) 85.
[3] A. Airapetian et al., Phys. Lett. B 659 (2008) 486.
[4] A. Airapetian et al., arXiv:0907.2596 [hep-ex].
[5] M.M. Kraskulov and U. Mosel, arXiv:0904.4442 [hep-ph].
[6] S. Goloskokov and P. Kroll, arXiv:0906.0460 [hep-ph].
[7] Ch. Bechler and D. Müller, arXiv:0906.2571 [hep-ph].
[8] M. Diehl and S. Sapeta, Eur. Phys. J. C 41 (2005) 515.

[^0]: *Speaker.
 ${ }^{\dagger}$ For the HERMES Collaboration.

