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Based on a Lagrangian with a coupling of two gauge bosod8 to0™ (the quantum numbers of
the vacuum) with subsequent creation of elementary ferraittifermion(qq) pairs, a model is
presented, in which hadrons are created, which coupletljiteche absolute vacuum of fluctuat-
ing boson fields. By self-consistency requirements the nenfent potential as well as densities
and masses of scalar and vector states are generated waiohgaod agreement with the known
meson “flavour families’w, ®, J/W, andY. The sum of the corresponding fermion-fermion
potentials can be related to a vacuum potential sum rule;iwiipports the conjecture that the
above flavour states are the eigenstates of the system. Ipacmon with potential models ad-
ditional states are predicted, which can explain the laoggicuum of scalar mesons in the low
mass spectrum and also new states detected recently inaha cegion.

To satisfy the self-consistency requirements the bosahange interaction has to be cut for
r — 0. Transformed tdQ-space this yields a couplings(Q) — 0 for Q — o quite similar to
that extracted from QCD. However, compared to asymptotiedom in QCD (explained by spin
effects), this effect may be understood by a matching of tleetve interaction to the two-boson
density.

Apart from mesons, stable baryons have been generatederfeirence ofqq)® and(qq)® pro-
duction. For the nucleon this leads to a density which is isterst with the electromagnetic form
factor deduced from electron scattering. To achieve smifistency a scalar componentis needed
also, which turns out to be in agreement with the scalar wnaketerm. Compared to mesons the
deduced 'confinement’ potential for the nucleon is morelstabut with a steeper slope at large
radii giving rise to a large stability.

Interestingly, the structure of baryon-antibaryon prdarcin the present model shows a possible
mechanism for the striking matter-antimatter non-eqtiiliim in the universe and the BIG BANG
explosion.
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In the hierarchy of quantum systems hadrons represent thdlesincomplex substructures
known inside of atoms and nuclei. This is supported by th@enty of asymptotic freedom [1]
of the strong interaction. Therefore, hadrons can be kldieectly to the absolute vacuum of
fluctuating boson fields (with average enegy. = 0) if the elementary fermion masses are zero.
In the current Standard Model the masses of the elementamydies are nonzero and are generated
by the coupling to scalar Higgs fields.

To investigate hadron mass generation without hypotHeltiagggs fields a model is studied
based on a Lagrangian, in which two gauge bosons couple ta $ield, from which elementary
fermion-antifermion ¢q) pairs are emitted. The possibility that the coupling of tweator bosons
to J™ = 0" may be important for the generation of bound states has bestianed already by
Cornwall [2], but in context to the structure of QCD. Empally it is known that strong scalar
fields play an important role in hadron excitations [3] anat&ring [4]; this is not well understood
in present hadron structure models.

Assuming a scalar coupling of two bosog) fields of the formgg — (qq)" we write the
Lagrangian in the form

1 - 1

with W being the elementary fermion wave functioBg! the covariant derivativ®* = g# —igsA*,
FHV the Abelian field strength tensé&*’ = gHAY — dVAH, and A¥ the gauge fields; furthefi
represents a mass.

The structure of¢g implies a colour neutral coupling of the two gauge fields withcolour.
Hence, the symmetry of our model is simply isospin SU(2): ®lementary fermiongq) with
different charge (0 and 1) and one vector boson. Becausesafdhd for massless fermions (as
discussed below) also the flavour degree of freedom is ngissBy the coupling of two vector
bosons toJ™ = 0" the Lagrangian has no chiral symmetry, leading naturalla tsequence of
hadronic states as observed experimentally.

The second term in eq. (1) can contribute only, if there isisp@verlap of two boson fields.
Therefore, for the study of the mass problem we can reduc&esgription to three dimensions
and study solutions of/g within a time-independent Hamiltonian approach.

Due to overlap of two boson fields (given by an extended 2-4bdemsityps(r)) the recoiling
fermion fields are also smeared out giving rise to a fermiarsitigpq(r), which, however, cannot
exceedon(r). Assuming a “fundamental” state wifff = O* this yields a constraint

Vaq(r) =N po(r) , ()

whereVy(r) is a scalar g-g potential given by folding the one-boson arge interactioVy(r)
(between fermions) over the fermion distributiog(r). Having negative intrinsic parity the emitted
fermions have to be coupled in a relative p-state, requigiqpgwave distribution of the fermions

P{(T) = pqy(r) Yom(6, ). This leads to
Vaa(r) = [ A p8(F) Yam(6',¢) Vaglr 1) 3)

Vi4(r) can act only within the densitpe(r) and has therefore to be cut for large radii. Further,
eq. (2) requires, that it has to go to zero for> 0, SO we use a formiig(r) = fas(r)(—as/r) e
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Figure 1: Upper part: Self-consistent solution for a scalar staté wito-boson density and g-q potential
given by dot-dashed and solid lines, respectively. Lowet. (game as in the upper part but transformed to
Q-space (multiplied byp?). The lower dashed line corresponds to a calculation asguainass of 1.4 GeV
for the elementary fermions.

with fas(r) — Or — 0. This function as well as the slope parametevas determined in a self-
consistent fit of the 2-boson density. The p-wave characftq:ré’&) gives rise to the constraint
<rq>= [dTrpgg(r) =0 and thugpgy(r) = v/3 (14 B-d/dr) po(r), wherep is determined from
the condition< rqg >=0.

From the different relations betweguy(r) and py(r) the two-boson density is completely
determined. Self-consistent solutions are obtained asgimform

Po(r) = po [xp{—(r/a)}]? with k ~ 15 4

and an interaction cut-off parametewhich yields a mean square radius of the effective intevacti
about 60-80 % larger thas r >. The consistency obe(r) andVeg(r) is shown (in r- and Q-
space) in fig. 1. We observe a quantitative agreement forleader than 0.1 fm. The localisation
in space indicates a stationary (mesonic) system, but tleegémg fermion pair can couple again
to two bosons giving also rise to stable two boson systems.

In Q-space the procesgg — qg is elastic and consequently the creatggbair has no mass,
yielding also in this frame a consistent description of dgrend potential, see lower part of fig. 2.
However, if we take a finite mass of the elementary fermion%.4fGeV (such a mass has been
assumed in potential models [5] for systems of similar sit& dashed line in the lower part of
fig. 2 is obtained and no self-consistent solution is possibhus, our solutions requiraassess
fermions and consequently the deduced hadronic systembeceglated directly to the absolute
vacuum of fluctuating boson fields.

For a densityps(r) with finite mean square radius as shown in fig. 1 a self-induzeding
potentialVy(r) can be obtained by solving a Schrédinger equation. This/engin the upper part



Hadron mass generation Hans-Peter Morsch

Confinement potential

" gg—mesons

V (GeV)
N
I
T

nucleon

L
15 2 25 3 35
radius (fm)

Figure 2: Confinement potential from lattice calculations [6] in campon with our results. The corre-
sponding potential for the nucleon is shown also.

of fig. 2, which has the same form as the known confinement pat&g,,+ = —as/r + br deduced
from potential models [5] and the lattice data of Bali et @]. Further, this potential is quite similar
for other solutions of smaller or larger radius and can tloeeebe identified with the 'universal’
confinement potential.

To determine bound state energies of basic scalar and vggistates, binding in the self-
induced confinement potential but also in the g-q potengalth be considered, the latter depending
strongly on the radius of the density. For smaller radii apgeéng of this potential is observed,
which leads to more strongly bound states. The mass of tltersyis defined by the energy to
balance binding. This givell; = —Eqq + Ei, whereEq andE; are the binding energies Wyq(r)
and the confinement potentiéh(r).

Discretisation ofqq states is provided by a vacuum potential sum Mjg(r) = ¥ ,Vg(r)
giving rise to four self-consistent solutions below 50 GEdrresponding vector states are in good
agreement with the masses of the strong inesons (together with their radial excitations) of the
“flavour families” w, @, J/¥ andY.

Importantly, the Fourier transform tQ-space of the cut-off functiorfzs(r) in the effective
interactionVig(r) yieldsVig(Q) — 0 for Q — oo. This is similar to asymtotic freedom established
for QCD [1].

Interference ofqq)3 and(qq)® creation can lead to stable baryon-antibaryon systemstévion
Carlo simulations for the nucleon (in which the g-momentadetermined randomly) are given in
the upper part of of fig. 3, assumirig)q and(qa)2q contributions (gq)q given by solid,(9q)?q
by dashed histogram). The sum is given by the lower solidbisim, which is consistent with a
nucleon density (solid line) yielding an electric form faicof the proton (lower part) in agreement
with experiment [7]. In this self-consistent fit a small ssatomponent is added (dot-dashed
histogram) which is consistent with the nuclearterm (not seen in electron scattering).

Interestingly, the splitting up of gg-pair (of vector structure) under high pressure provides a
mechanism, which could be responsible for the transitiomntibaryons to baryons in the early
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Figure 3: Results of Monte Carlo simulations for the nucleon. Thedshitie, which is in agreement with
the simulation, yields a good description of the electrizrfdactor of the proton (lower part).

universe and the BIG BANG explosion.

For qq production more details are given in arXiv:0906.1742[ipdp-

Many thanks to P. Zupranski for the Monte Carlo code and naowediscussions and B. Loiseau
for his help to formulate the Lagrangian. Further, criticainments to my presentation at HEP
2009 from M. Bochicchio are appreciated.
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