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Hadron mass generation and the strong interaction
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Based on a Lagrangian with a coupling of two gauge bosons toJπ = 0+ (the quantum numbers of

the vacuum) with subsequent creation of elementary fermion-antifermion(qq̄) pairs, a model is

presented, in which hadrons are created, which couple directly to the absolute vacuum of fluctuat-

ing boson fields. By self-consistency requirements the confinement potential as well as densities

and masses of scalar and vector states are generated which are in good agreement with the known

meson “flavour families”ω , Φ, J/Ψ, andϒ. The sum of the corresponding fermion-fermion

potentials can be related to a vacuum potential sum rule, which supports the conjecture that the

above flavour states are the eigenstates of the system. In comparison with potential models ad-

ditional states are predicted, which can explain the large continuum of scalar mesons in the low

mass spectrum and also new states detected recently in the charm region.

To satisfy the self-consistency requirements the boson-exchange interaction has to be cut for

r → 0. Transformed toQ-space this yields a couplingαs(Q) → 0 for Q → ∞ quite similar to

that extracted from QCD. However, compared to asymptotic freedom in QCD (explained by spin

effects), this effect may be understood by a matching of the effective interaction to the two-boson

density.

Apart from mesons, stable baryons have been generated by interference of(qq̄)3 and(qq̄)5 pro-

duction. For the nucleon this leads to a density which is consistent with the electromagnetic form

factor deduced from electron scattering. To achieve self-consistency a scalar component is needed

also, which turns out to be in agreement with the scalar nucleonσ -term. Compared to mesons the

deduced ’confinement’ potential for the nucleon is more shallow but with a steeper slope at large

radii giving rise to a large stability.

Interestingly, the structure of baryon-antibaryon production in the present model shows a possible

mechanism for the striking matter-antimatter non-equilibrium in the universe and the BIG BANG

explosion.
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In the hierarchy of quantum systems hadrons represent the smallest complex substructures
known inside of atoms and nuclei. This is supported by the property of asymptotic freedom [1]
of the strong interaction. Therefore, hadrons can be related directly to the absolute vacuum of
fluctuating boson fields (with average energyĒvac = 0) if the elementary fermion masses are zero.
In the current Standard Model the masses of the elementary fermions are nonzero and are generated
by the coupling to scalar Higgs fields.

To investigate hadron mass generation without hypothetical Higgs fields a model is studied
based on a Lagrangian, in which two gauge bosons couple to a scalar field, from which elementary
fermion-antifermion (qq̄) pairs are emitted. The possibility that the coupling of twovector bosons
to Jπ = 0+ may be important for the generation of bound states has been mentioned already by
Cornwall [2], but in context to the structure of QCD. Empirically it is known that strong scalar
fields play an important role in hadron excitations [3] and scattering [4]; this is not well understood
in present hadron structure models.

Assuming a scalar coupling of two boson (g) fields of the formgg → (qq̄)n we write the
Lagrangian in the form

LSI = Ψ̄ iγµDµ Ψ−∑
n

1

µ̃(3n−2)
DµDµ(Ψ̄Ψ)n − 1

4
FµνFµν , (1)

with Ψ being the elementary fermion wave functions,Dµ the covariant derivativeDµ = ∂ µ − igsAµ ,
F µν the Abelian field strength tensorFµν = ∂ µAν − ∂ ν Aµ , andAµ the gauge fields; further̃µ
represents a mass.

The structure ofLSI implies a colour neutral coupling of the two gauge fields without colour.
Hence, the symmetry of our model is simply isospin SU(2): twoelementary fermions(q) with
different charge (0 and 1) and one vector boson. Because of the need for massless fermions (as
discussed below) also the flavour degree of freedom is missing. By the coupling of two vector
bosons toJπ = 0+ the Lagrangian has no chiral symmetry, leading naturally toa sequence of
hadronic states as observed experimentally.

The second term in eq. (1) can contribute only, if there is spacial overlap of two boson fields.
Therefore, for the study of the mass problem we can reduce ourdescription to three dimensions
and study solutions ofLSI within a time-independent Hamiltonian approach.

Due to overlap of two boson fields (given by an extended 2-boson densityρΦ(r)) the recoiling
fermion fields are also smeared out giving rise to a fermion density ρq(r), which, however, cannot
exceedρΦ(r). Assuming a “fundamental” state withJπ = 0+ this yields a constraint

Vqq(r) = N ρΦ(r) , (2)

whereVqq(r) is a scalar q-q potential given by folding the one-boson exchange interactionV1g(r)
(between fermions) over the fermion distributionρq(r). Having negative intrinsic parity the emitted
fermions have to be coupled in a relative p-state, requiringa p-wave distribution of the fermions
ρ p

q (~r) = ρq(r) Y1,m(θ ,φ). This leads to

Vqq(r) =
∫

dr′ρ p
q (~r′) Y1,m(θ ′,φ ′) V1g(r− r′) . (3)

V1g(r) can act only within the densityρΦ(r) and has therefore to be cut for large radii. Further,
eq. (2) requires, that it has to go to zero forr → 0, so we use a formV1g(r) = fas(r)(−αs/r) e−cr
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Figure 1: Upper part: Self-consistent solution for a scalar state with two-boson density and q-q potential
given by dot-dashed and solid lines, respectively. Lower part: Same as in the upper part but transformed to
Q-space (multiplied byQ2). The lower dashed line corresponds to a calculation assuming a mass of 1.4 GeV
for the elementary fermions.

with fas(r) → 0 r → 0. This function as well as the slope parameterc was determined in a self-
consistent fit of the 2-boson density. The p-wave character of ρ p

q (~r) gives rise to the constraint
< rq > =

∫
dτ rρqq̄(r) = 0 and thusρq(r) =

√
3 (1+β ·d/dr) ρΦ(r), whereβ is determined from

the condition< rqq̄ >= 0.
From the different relations betweenρΦ(r) and ρq(r) the two-boson density is completely

determined. Self-consistent solutions are obtained asuming a form

ρΦ(r) = ρo [exp{−(r/a)κ}]2 with κ ∼ 1.5 (4)

and an interaction cut-off parameterc which yields a mean square radius of the effective interaction
about 60-80 % larger than< r2

Φ >. The consistency ofρΦ(r) andVqq(r) is shown (in r- and Q-
space) in fig. 1. We observe a quantitative agreement for radii larger than 0.1 fm. The localisation
in space indicates a stationary (mesonic) system, but the emerging fermion pair can couple again
to two bosons giving also rise to stable two boson systems.

In Q-space the processgg → qq̄ is elastic and consequently the createdqq̄-pair has no mass,
yielding also in this frame a consistent description of density and potential, see lower part of fig. 2.
However, if we take a finite mass of the elementary fermions of1.4 GeV (such a mass has been
assumed in potential models [5] for systems of similar size), the dashed line in the lower part of
fig. 2 is obtained and no self-consistent solution is possible. Thus, our solutions requiremassless
fermions and consequently the deduced hadronic systems canbe related directly to the absolute
vacuum of fluctuating boson fields.

For a densityρΦ(r) with finite mean square radius as shown in fig. 1 a self-inducedbinding
potentialVΦ(r) can be obtained by solving a Schrödinger equation. This is given in the upper part
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Figure 2: Confinement potential from lattice calculations [6] in comparison with our results. The corre-
sponding potential for the nucleon is shown also.

of fig. 2, which has the same form as the known confinement potential Vcon f =−αs/r+br deduced
from potential models [5] and the lattice data of Bali et al. [6]. Further, this potential is quite similar
for other solutions of smaller or larger radius and can therefore be identified with the ’universal’
confinement potential.

To determine bound state energies of basic scalar and vectorqq̄-states, binding in the self-
induced confinement potential but also in the q-q potential has to be considered, the latter depending
strongly on the radius of the density. For smaller radii a deepening of this potential is observed,
which leads to more strongly bound states. The mass of the system is defined by the energy to
balance binding. This givesMi = −Eqq + Ei, whereEqq andEi are the binding energies inVqq(r)
and the confinement potentialVΦ(r).

Discretisation ofqq̄ states is provided by a vacuum potential sum ruleVvac(r) = ∑nV n
qq(r)

giving rise to four self-consistent solutions below 50 GeV.Corresponding vector states are in good
agreement with the masses of the strong 1−− mesons (together with their radial excitations) of the
“flavour families” ω , Φ, J/Ψ andϒ.

Importantly, the Fourier transform toQ-space of the cut-off functionfas(r) in the effective
interactionV1g(r) yieldsV1g(Q) → 0 for Q → ∞. This is similar to asymtotic freedom established
for QCD [1].

Interference of(qq̄)3 and(qq̄)5 creation can lead to stable baryon-antibaryon systems. Monte
Carlo simulations for the nucleon (in which the q-momenta are determined randomly) are given in
the upper part of of fig. 3, assuming(qq̄)q and(qq̄)2q contributions ((qq̄)q given by solid,(qq̄)2q
by dashed histogram). The sum is given by the lower solid histogram, which is consistent with a
nucleon density (solid line) yielding an electric form factor of the proton (lower part) in agreement
with experiment [7]. In this self-consistent fit a small scalar component is added (dot-dashed
histogram) which is consistent with the nucleon-σ term (not seen in electron scattering).
Interestingly, the splitting up of aqq̄-pair (of vector structure) under high pressure provides a
mechanism, which could be responsible for the transition ofantibaryons to baryons in the early
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Figure 3: Results of Monte Carlo simulations for the nucleon. The solid line, which is in agreement with
the simulation, yields a good description of the electric form factor of the proton (lower part).

universe and the BIG BANG explosion.

For qq̄ production more details are given in arXiv:0906.1742[hep-ph].
Many thanks to P. Zupranski for the Monte Carlo code and numerous discussions and B. Loiseau
for his help to formulate the Lagrangian. Further, criticalcomments to my presentation at HEP
2009 from M. Bochicchio are appreciated.
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