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The measurement of very-high-energy cosmic-ray electronsis intrinsically difficult due to the

very steep electron spectrum with low fluxes and an enormous background of hadronic cosmic

rays. The large collection areas needed for such a measurement can be provided by ground-based

imaging atmospheric Cherenkov telescopes. The High EnergyStereoscopic System (H.E.S.S.)

has performed the first ground-based cosmic-ray electron measurement and thereby extended the

measured range of the spectrum to several TeV. Here the H.E.S.S. measurement is presented,

as well as an extension of the H.E.S.S. spectrum towards lower energies. At these energies,

H.E.S.S. can probe recent ATIC measurements, which have been interpreted in terms of dark

matter scenarios.
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1. Introduction

Electrons are a small and yet highly interesting component of cosmic rays. Due to their low
masses they suffer strong energy losses from inverse Compton scattering and synchrotron radiation.
These mechanisms restrict the lifetime of a TeV electron according to

t ≈ 5×105
(

E
1TeV

)−1
(

(

B
5µG

)2

+1.6

(

w

1eVcm−3

)

)−1

years, (1.1)

wherew is the photon energy density in the interstellar medium andB is the mean interstellar mag-
netic field. This limits the number of possible sources of TeVelectrons since only nearby and recent
sources contribute to the very-high-energy electron spectrum [1, 2, 3]. This sensitivity to acceler-
ators in our local neighborhood is a unique feature of the cosmic-ray electron spectrum. Further-
more, the cosmic-ray electron spectrum may contain features of dark matter annihilation. Recently,
the ATIC collaboration reported the measurement of an excess in the electron spectrum [4]. Com-
bined with the excess in the positron fraction measured by PAMELA [5], the peak feature of the
ATIC measurement has been interpreted in terms of a dark matter signal or a contribution of a
nearby pulsar (e.g. [6] and references given there). Another consequence of the strong energy
losses of cosmic-ray electrons is their steep spectrum, which follows a power-lawdN/dE = kE−Γ

with a spectral index ofΓ ≈ 3.3 compared to an index of 2.7 of the spectrum of hadronic cosmic
rays. Therefore, with increasing energy, the electron fraction in cosmic rays gets lower and lower,
yielding≈ 0.1% at TeV energies. The steep spectrum and low fluxes of cosmic-ray electrons make
measurements of cosmic-ray electrons increasingly difficult at higher energies. The spectrum of
cosmic-ray electrons in the GeV range has been measured by balloon or satellite experiments as
AMS [7], HEAT [8, 9], BETS [10], PPB-BETS [11], Emulsion Chambers [3], ATIC [4]. However,
these measurements are always limited by the physical size of the detector volume and often by
limited observation time.
The High Energy Stereoscopic System (H.E.S.S.) [12] has performed the first ground-based mea-
surement of cosmic-ray electrons [13, 14]. The indirect detection of cosmic-ray electrons yields
five orders of magnitude larger effective collection areas and is therefore ideally suited for the
measurement of the upper end of the cosmic-ray electron spectrum. H.E.S.S. is a system of four
imaging atmospheric Cherenkov telescopes situated in the Khomas highland in Namibia. The four
telescopes are identical and form a square with 120 m edges. H.E.S.S. is an experiment designed
for the measurement of> 100 GeVγ rays. When energeticγ rays (as well as electrons and hadronic
cosmic rays) hit the Earth’s atmosphere they interact with the air molecules and produce a cascade
of secondary particles. These secondaries emit Cherenkov radiation, which can be detected from
ground. For this purpose, each of the four Cherenkov telescopes is equipped with a 107 m2 mirror,
which reflects the Cherenkov light of the air shower into a fine-grained camera of 960 pixels, which
records the image.
Because the H.E.S.S. measurement does not discriminate between electrons and positrons,elec-
trons is used generically in the following to refer to both particle and anti-particle. The H.E.S.S.
electron analysis presented here is based on the selection of electron-likeevents in regions far from
γ-ray sources and subtraction of the remaining hadronic cosmic-ray background using air-shower
simulations. The simulations are produced with the CORSIKAprogram [15].
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Most critical for the ground-based electron measurement isthe background determination, which
suffers from the lack of information of air showers comparedto a well-defined detector volume of
a balloon or satellite experiment.

2. Background Determination

Sinceγ rays can hardly be distinguished from electrons based on image information of the
Cherenkov light, they are avoided in the data selection by making use of their anisotropic nature.
In order to avoid aγ-ray contamination in the data set, data from the direction of any known source
of γ-rays is excluded. Therefore, only observations targetingextragalactic fields with a pointing po-
sition of at least 7◦ above the Galactic plane are used for the analysis to avoid diffuseγ-ray emission
from the Galactic plane. In the extragalactic data set, any knownγ-ray source (e.g. active galactic
nuclei) are amply excluded within a 0.4◦ radius. The background ofγ rays still left in the evaluated
data set is the diffuse extragalacticγ ray background. It has been measured by EGRET [18] up to
30 GeV. As the extragalacticγ-ray background is strongly affected by pair creation processes on
cosmic radiation fields, the prediction of the TeV flux is subject to large uncertainties. Following
[19] its contribution to the cosmic-ray electron flux measured by H.E.S.S. can be estimated to be
less than 6%, assuming a blazar spectrum of an unbroken power-law up to 3 TeV with a Gaussian
spectral index distribution centered atα = −2.1 with σα = 0.35. The hadronic background can
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Figure 1: The measured distribution of the parameterζ , compared with distributions for simulated protons
and electrons, for showers with reconstructed energy between 1 and 4 TeV. The best fit model combination
of electrons and protons is shown as a shaded band. The protonsimulations use the SIBYLL hadronic
interaction model.

be estimated from the shape of the air shower images in the camera. Hadronic cosmic rays, which
interact strongly and electromagnetically in the atmosphere, produce on average broader and irreg-
ular showers compared to purely electromagnetically interacting electrons (andγ-rays). In order
to combine any possible image parameters that can contribute to the electron-hadron separation in
an optimal way, a machine-learning algorithm is used. TheRandom Forestalgorithm [17] is based
on decision trees and is trained with electron simulations and H.E.S.S. data from empty fields. It
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determines theelectron likenessζ of an event: Aζ value of zero corresponds to a background
event, while a value of one is assigned if the shower is almostcertainly an electron. A cut of
ζ > 0.6 already drastically reduces the hadronic background. Theremaining background is esti-
mated by applying a fit in theζ distribution. This procedure is visualized in Fig. 1. The H.E.S.S.
data are fitted by a model combination of simulated electronsand simulated protons. Thereby, the
background estimation makes use of the different shapes of the ζ distributions of electrons and
background events. While electrons (as shown for electron simulations in Fig. 1) exhibit a peak
towardsζ = 1, theζ distribution of the background is basically flat forζ > 0.6. The fit is a two
component fit with the free parameters being the number of electrons and the number of protons
in the data set. The reason for using simulated protons only for the background component (which
also consists of heavier nuclei) is that heavier nuclei havea more background-like appearance and
are therefore sufficiently suppressed by theζ > 0.6 cut. This behavior has been tested by simula-
tions. The fitting is applied in independent energy bands andthe number of electrons is evaluated.
Coupled with the effective collection area for this energy band, the differential flux is calculated.

3. Results and discussion

Fig. 2 shows the cosmic-ray electron spectrum determined from H.E.S.S. data together with a
compilation of earlier measurements. Shown are two analyses, one optimized for high energies (in
blue) and one optimized for low energies (in red). The two analyses differ in the choice of event
selection cuts and the data set. For the high-energy analysis, a cut on the image amplitude in each
of the four cameras of 200 photo electrons and an impact distance of the shower to the center of the
array of less than 200 m was chosen. The data used were acquired using the complete 4-telescope
array during 2004 to 2007 amounting to 239 hours of live-time. The effective collection area using
the above described event selection cuts is energy dependent and reaches≈5×104 m2 at 1 TeV. The
total effective exposure of this data set at 1 TeV is therefore ≈8.5×107 m2 sr s. For an extension
of the spectrum towards lower energies, the analysis has been modified to improve the sensitivity
at low energies. In the event selection cuts, the minimum image amplitude has been reduced from
200 to 80 photo electrons to allow for lower energy events. Inorder to guarantee good shower
reconstruction, only events with a reconstructed distancefrom the projected core position on the
ground to the array center of less than 100 m are included. Additionally, only data taken between
2004 and 2005 are used. The reason is that the H.E.S.S. mirrorreflectivity degrades over time and a
reduced light yield corresponds to an increased energy threshold. The new data and event selection
reduces the event statistics but enables to lower the analysis threshold to 340 GeV. The effective
collection area at 340 GeV is≈ 4×104 m2. With a live-time of 77 hours of good quality data, a
total effective exposure of≈ 2.2 × 107 m2 sr s is achieved at 340 GeV. Owing to the steepness of
the electron spectrum, the measurement at lower energies isfacilitated by the comparatively higher
fluxes.
In the region of overlap, the two analyses demonstrate a goodagreement. The spectra are parame-
terized by a power-law in case of the high-energy spectrum and a broken power-law in case of the
low-energy spectrum. The high-energy spectrum has a spectral index of 3.9±0.1stat±0.3syst. The
broken power-law starts of with an index of 3.0± 0.1stat± 0.3syst and steepens at 0.9± 0.1 TeV
to 4.1± 0.3stat± 0.3syst. Systematic errors on the reconstructed spectra arise fromuncertainties
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Figure 2: The energy spectrum E3 dN/dE of cosmic-ray electrons as measured by H.E.S.S. in comparison
with previous measurements. The H.E.S.S. data are shown as solid points. The shaded bands indicate the
approximate systematic error arising from uncertainties in the modeling of hadronic interactions and in the
atmospheric model. The double arrow indicates the effect ofan energy scale shift of 15%, the approximate
systematic uncertainty on the H.E.S.S. points. Previous data are reproduced from: AMS [7], HEAT [8],
HEAT 94-95 [9], BETS [10], PPB-BETS [11], Kobayashi [3], ATIC [4] and FERMI [20]. The dark grey
shaded band indicates the FERMI systematic error.

in the simulation of hadronic interactions and the atmospheric model, as well as in the absolute
energy scale. The energy scale uncertainty is≈15% and is illustrated by a double arrow in Fig. 2.
The uncertainty arising from the subtraction of the hadronic background has been estimated by
comparison of the spectra obtained with protons simulations of two different hadronic interaction
models, namely SIBYLL [21] and QGSJET-II [22]. The effect ofatmospheric variations is esti-
mated by a comparison of the spectra obtained by two independent data sets. The effect of latter
two uncertainties on the flux normalization are visualized by shaded bands in Fig. 2. The bands
are centered around the power-law fits to the data. The systematic error on the spectral indices is
∆Γ(syst.) . 0.3.
The H.E.S.S. measurement reveals a significant steepening of the electron spectrum at higher en-
ergies. No indication of an excess and sharp cutoff in the electron spectrum as reported by ATIC is
observed. Since H.E.S.S. measures the electron spectrum only above 340 GeV, one cannot test the
rising section of the ATIC-reported excess. Although different in shape, an overall consistency of
the ATIC spectrum with the H.E.S.S. result can be obtained within the uncertainty of the H.E.S.S.
energy scale of about 15%. The deviation between the ATIC andthe H.E.S.S data is minimal at
the 20% confidence level (assuming Gaussian errors for the systematic uncertainty dominating the
H.E.S.S. measurement) when applying an upward shift of 10% in energy to the H.E.S.S. data. The
shift is well within the uncertainty of the H.E.S.S. energy scale. At lower energies, FERMI [20]
has recently measured the cosmic-ray electron spectrum between 20 GeV and 1 TeV with unprece-
dented accuracy. The H.E.S.S. and FERMI measurements demonstrate an excellent agreement
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within the uncertainties of the two instruments. The cosmic-ray electron spectrum as measured
by H.E.S.S. and FERMI shows no indication of a Kaluza-Klein dark matter annihilation feature as
used to explain the ATIC excess [4]. It is compatible with less pronounced dark matter scenarios
as well as conventional electron populations of astrophysical origin within the uncertainties related
to the injection spectra and propagation effects.
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