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In recent decades we have gained a tremendous amount of knowledge on our Universe. How-

ever, up to now astronomical observations have been restricted to the electromagnetic spectrum.

The detection of cosmic high-energy neutrinos (& 1 TeV) will complement the information from

these observations and at the same time provide completely new insights. The low interaction

probability, which renders neutrinos perfect cosmic messengers, also poses a large challenge for

their detection. Calculations indicate that neutrino telescopes of km3-scale are necessary to detect

neutrino fluxes from Galactic or extra-Galactic objects such as supernova remnants or gamma-ray

bursts which are thought to produce neutrinos up to the PeV scale. KM3NeT, which is currently

in the design phase, targets to instrument at least one km3 of deep-sea water in the Mediterranean

Sea, its field of view complementing the IceCube neutrino telescope at the South Pole and ex-

ceeding it in sensitivity by a substantial factor. We reporton the current status of the KM3NeT

project and on possible solutions for the various technicalchallenges encountered when building

an off-shore detector in water depths of several kilometers.
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1. Introduction

The detection of high energy neutrinos from astrophysical sources would be a major break-
through in our understanding of origin and production mechanisms of cosmic rays and would open
a completely new window to our universe. However, despite intense search for these neutrinos
during recent years, no such neutrino has been identified up to now. Calculations [1, 2] indicate
that detectors with at least a km3 of instrumented volume are required for this task where detectors
of the first generation like AMANDA or ANTARES have typical volumes of 0.01 km3. At the
South Pole the IceCube detector with an instrumented volumeof 1 km3 is currently being build as
the successor to the AMANDA neutrino telescope. However, due to the large atmospheric muon
background for upward observations with neutrino telescopes, the sensitivity of the detector to
sources in the southern sky which includes most of the Galactic Plane and the Galactic Centre is
greatly reduced. These regions harbour many potential highenergy neutrino sources like supernova
remnants, pulsar wind nebulae, microquasars and other binary systems, but also unidentified sites
of high energy gamma-ray emissions. In order to be able to observe these sources, a km3-scale
neutrino telescope in the Northern Hemisphere is required.

Building on the experience gained in the pilot projects ANTARES, NEMO and NESTOR, the
three collaborations have joined forces to develop, construct and operate such a km3-scale neutrino
telescope, KM3NeT, in the Mediterranean Sea at the beginning of the next decade. KM3NeT is en-
visioned as a multidisciplinary research infrastructure with a permanent deep-sea access for marine
sciences (such as oceanology, marine biology, environmental sciences, geology and geophysics)
through anassociated science node. Evaluating the experience gained with the pilot projects it be-
came clear that a simple scale-up of these detectors to km3 size is technically not feasible and/or too
expensive. Therefore, a research and development phase wasinitiated which is conducted within
the framework of a Design Study funded by the EU in FP6. It started in February 2006 and will end
in 2009. The main goal of the Design Study is the compilation of a technical design report (TDR)
that subsequently allows for a timely construction of the detector and its concurrent operation with
IceCube. As an intermediate step, a conceptual design report [3] has been released at the beginning
of 2008 that describes options for the solution of the various technical challenges. KM3NeT is
recognised by ESFRI (European Strategy Forum on Research Infrastructures) asa research infras-
tructure of pan-European interest and is listed on the ESFRI roadmap [4] for future large scale
infrastructures. This entitled the consortium to be fundedin the framework of aPreparatory Phase
in the EU FP7 program which addresses the political, financial, governance, strategic and remain-
ing technical issues. This process will also lead to a decision concerning the choice of the site for
the construction of KM3NeT. KM3NeT is also supported by boththe astronomy and astroparticle
communities and entered the ASTRONET and ASPERA roadmaps asa high priority project.

2. Detector performance studies

The aim of the Design Study is to deliver the design specifications for a detector which yields
the best physics performance for a given budget. Therefore,a large number of basic detector
configurations have been simulated and their performance with respect to astrophysical benchmark
fluxes has been evaluated. The performance objectives are a sensitivity which is larger than that of
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IceCube by a substantial factor with an angular resolution of 0.1◦ for muons with energies above
10 TeV.

The basic building block of a detector is the optical module (OM) which contains the photo-
multiplier(s) (PMTs) for the detection of the Cherenkov light from charged particles. Up to now,
neutrino telescopes have been using a single (typically 10”) PMT mounted in a pressure resistant
glass sphere. In the course of detailed simulation studies,a large variety of possible OM config-
urations was investigated, among others a configuration that uses several small 3” PMTs. Small
PMTs have a higher quantum efficiency, a better single photonresolution and a smaller transit time
spread. Also, the usage of several PMTs in an OM can help to improve the single photon counting
capability and yields directional sensitivity which can help in suppressing the optical background
from bioluminescence. The OMs are positioned with equal spacing in a vertical structure (detec-
tion unit). Several of these units are then combined in different seafloor layouts. It turns out that
a configuration of 225 detection units arranged in a cuboid grid with an inter-line spacing of 95 m
a vertical OM distance of 16.5 m and 21 3” PMTs per OM yields a very good performance. This
detector configuration was also used to obtain a first, preliminary sensitivity of KM3NeT to point
sources. In Fig. 1 this is compared to the sensitivity of several other experiments. In this config-
uration KM3NeT would be able to search the southern sky with asensitivity more than 10 times
higher than current experiments.

3. R&D of detector components

A crucial parameter for the successful operation of the detector is the reliability of all off-
shore components. Although, in contrast to detectors frozen into the ice, it is possible to recover
and repair deep-sea parts of the detector, this requires a large amount of time and resources. Also,
due to the large number of components, even a moderate failure rate is unacceptable. Therefore,
the reliability of all deep-sea components has been one of the prime guide lines in the design of the
hardware from the begin of the Design Study.

As discussed in the previous section OMs equipped with several small PMTs show a very
good performance and several further advantages. A prototype of such an OM is currently being
built and tested at Nikhef [5]. As an individual readout is probably not feasible due to the required
bandwidth, the idea would be to reduce the signal from the individual OMs to a digital pulse with
a length equal to the time-over-threshold of the signal. Therectangular pulses of all PMTs inside
an OM are then superimposed with their proper timing and sentto shore. In this way sufficient
information can be retained afterwards.

4. Sea operations

A realistic detector configuration consists of 10 000 OMs on more than 100 detection units.
The construction should not take longer than about 3 years inorder to take data concurrently with
IceCube over a long time period. The large number of detectorunits implies that new ways of
detector deployment have to be developed. For example, in the case of ANTARES (12 lines) each
line is deployed separately which takes typically 6 hours. Afterwards, in a separate campaign the
lines are connected to a junction box with a submersible which again takes several hours. This
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Figure 1: Left: Sensitivity of a possible KM3NeT configuration (blue dashed line labelledconclusion
detector) to point-like sources as a function of declination. Also shown are the sensitivity of IceCube and
other experiments (taken from [3]). Right: Anticipated timeline for KM3NeT (taken from [3]).

scheme is clearly impractical for a telescope with over 100 detection units. A possible solution is
the deployment of “compacted” detector units similar to theNEMO scheme [6]. Here, the rolled-
up detector unit resides in a container together with the buoy and a release mechanism. After
deployment of the container on the sea floor the release mechanism is triggered by an acoustic
signal and the buoyancy of the buoy unfolds the detector unit. The deployment of several containers
already interconnected at the surface reduces the underwater operations and further speeds up the
deployment process.
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