

$b \rightarrow s$ Hadronic Decays at Belle

Sunghyon Kyeong*†

Institute of Physics and Applied Physics, Yonsei University, Seoul, Korea E-mail: starinphysics@gmail.com

We report measurements of charmless hadronic B^0 decays into the $\pi^+\pi^-K^+\pi^-$ final state from Belle. This study includes the first observation of $B^0\to\rho^0K^+\pi^-$, which is measured to have the branching fraction $\mathcal{B}[B^0\to\rho^0K^+\pi^-;\ M_{K\pi}\in(0.75,1.20)\ \text{GeV}/c^2]=[2.8\pm0.5(\text{stat})\pm0.5(\text{syst})]\times10^{-6}$ and the first evidence of the decays $B^0\to f_0(980)K^+\pi^-$ and $B^0\to\pi^+\pi^-K^{*0}$ with significances of 3.5σ and 4.5σ , respectively. For the two-body decays $B^0\to\rho^0K^{*0}$ and $B^0\to f_0(980)K^{*0}$, the significances are 2.7σ and 2.5σ , respectively, and the upper limits on the branching fractions are 3.4×10^{-6} and 2.2×10^{-6} at 90% confidence level. These measurements are obtained from a data sample of 657 million $B\bar{B}$ pair events collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider.

International Europhysics Conference on High Energy Physics July 16th - 22nd 2009 Kraków, Poland

^{*}Speaker.

[†]on behalf of the Belle Collaboration

1. Introduction

In the Standard Model (SM), charmless hadronic B decays occur mainly via two processes (i) $b \to s$ penguin and (ii) $b \to u$ tree decay. These charmless hadronic B decays therefore give us plenty of information. Search for new physics effect, for example, can be done by studying loop processes because $b \to s$ quark transitions are very sensitive to physics beyond SM. In addition, measuring the branching fraction (\mathcal{B}) and angular correlations could advance the phonomenological test and/or development of the theoretical models.

In particular, the measurements of the longitudinal polarization fraction (f_L) in rare B decays to vector-vector (VV) state, such as $B \to \phi K^*$ [1-3], have revealed an unexpectedly large fraction of transverse polarization. This implies that non-factorizable contributions to the decays amplitude play a significant role. Therefore, further information about these effects can be obtained with \mathcal{B} and f_L in the decay $B^0 \to \rho^0 K^{*0}$, this occurring mostly via the $b \to s$ penguin process [1-5].

The results are based on a sample of 657 million $B\bar{B}$ pair events, collected with the Belle [6] detector at the KEKB [7] asymmetric-energy e^+e^- collider (3.5 on 8 GeV) operating at the $\Upsilon(4S)$.

2. Measurements of $B^0 \rightarrow \rho^0 K^{*0}$ and $B^0 \rightarrow \pi^+ \pi^- K^+ \pi^-$

We reconstruct the signal B candidates using the kinematic variables such as the beam-energy constrained mass, $M_{\rm bc} \equiv \sqrt{E_{\rm beam}^2 - p_B^2}$; the energy difference, $\Delta E \equiv E_B - E_{\rm beam}$; the invariant masses of $\pi\pi$ and $K\pi$ ($M_{\pi\pi}$ and $M_{K\pi}$), where $E_{\rm beam}$ is the beam energy and E_B and P_B are the reconstructed energy and momentum, respectively, of B candidates in the center-of-mass frame.

The dominant background arises from the continuum process. The continuum suppression is achieved by applying a requirement on a likelihood ratio, based on a GEANT-based [8] Monte Carlo (MC) simulation and sideband data, together with the B flavour tagging information [9]. Background contribution from $b \to c$ events is investigated using a large MC sample. We veto the decays $B \to D^{*\pm}X$, $B \to D^{\pm}X$ and $B \to D^0X$ by applying the invariant mass cuts.

After the optimization of selection cuts, events that remain in the fitting regions of the observables $M_{\rm bc}$, ΔE , $M_{\pi\pi}$ and $M_{K\pi}$ are used for the yield extraction. This process is done by performing the four-dimensional unbinned maximum likelihood fit (4D fit).

Figure 1: Projection of the 4D fit results onto (a) $M_{\rm bc}$, (b) ΔE , (c) $M_{\pi\pi}$, (d) $M_{K\pi}$, with the other variables required to satisfy (except for the variable plotted) $M_{\rm bc} \in (5.27, 5.29)~{\rm GeV}/c^2$, $\Delta E \in (-0.045, 0.045)~{\rm GeV}$, $M_{\pi\pi} \in (0.62, 1.04)~{\rm GeV}/c^2$ and $M_{K\pi} \in (0.84, 0.94)~{\rm GeV}/c^2$. The curves are for the $\rho^0 K^+\pi^-$ (solid-shaded), the sum of $\rho^0 K^{*0}$ and $f_0(980)K^{*0}$ (dashed), $f_2(1270)K^{*0}$ and the sum of feed-down modes (dot-dashed), the sum of the backgrounds (dotted), and the total (solid).

Table 1: The signal yield Y and its statistical uncertainty, corrected MC efficiency ε (assuming $f_L = 0.5$ for $B^0 \to \rho^0 K^{*0}$), significance $\mathscr S$ including the systematic uncertainties, measured branching fraction $\mathscr S$ and the upper limit (UL) at the 90% confidence level $\mathscr B_{\text{UL}}$. For non-resonant decay components, ε , $\mathscr B$ and $\mathscr B_{\text{UL}}$ are obtained for $M_{K\pi} \in (0.75, 1.20) \text{ GeV}/c^2$ and $M_{\pi\pi} \in (0.55, 1.20) \text{ GeV}/c^2$ assuming phase space distributions. For the branching fraction, the first (second) uncertainty is statistical (systematic).

Mode	Y (events)	ε (%)	$\mathscr{S}\left(\sigma\right)$	$\mathscr{B}(10^{-6})$	$\mathscr{B}_{\rm UL} (10^{-6})$
$B^0 \rightarrow \rho^0 K^{*0}$	$77.6^{+28.6}_{-27.9}$	5.73	2.7	$2.1^{+0.8}_{-0.7}{}^{+0.9}_{-0.5}$	< 3.4
$B^0 \to f_0(980) K^{*0}$	$51.2^{+20.4}_{-19.3}$	5.56	2.5	$1.4^{+0.6}_{-0.5}{}^{+0.6}_{-0.4}$	< 2.2
$B^0 ightarrow ho^0 K^+ \pi^-$	$207.8^{+39.8}_{-39.2}$	11.15	5.0	$2.8 \pm 0.5 \pm 0.5$	-
$B^0 \to f_0(980) K^+ \pi^-$	$106.9^{+31.6}_{-29.9}$	11.43	3.5	$1.4 \pm 0.4^{+0.3}_{-0.4}$	< 2.1
$B^0 o \pi^+\pi^- K^{*0}$	$200.7^{+46.7}_{-44.9}$	6.74	4.5	$4.5^{+1.1+0.9}_{-1.0-1.6}$	-
$B^0 ightarrow \pi^+\pi^-K^+\pi^-$	$-5.4^{+54.9}_{-44.9}$	6.84	0.0	$-0.1^{+1.2}_{-1.1}{}^{+1.4}_{-0.8}$	< 2.1

The fit projections are shown in Figure 1, and the results are summarized in Table 1. The fit yields the first observation for $B^0 \to \rho^0 K^+ \pi^-$ with a significance of 5.0σ (including systematic uncertainty). We also find evidence for $B^0 \to f_0(980)K^+\pi^-$ with a significance of 3.5σ , and evidence for $B^0 \to \pi^+\pi^-K^{*0}$ with a significance of 4.5σ . For $B^0 \to \rho^0 K^{*0}$ and $B^0 \to f_0(980)K^{*0}$, we observe excesses of events with significances of 2.7σ and 2.5σ , respectively. Our results for these two-body decays are approximately 2σ and 1σ lower, respectively, than in the previous measurement [4]. We have also searched for the fully non-resonant four-body decays $B^0 \to \pi^+\pi^-K^+\pi^-$ and calculated a 90% confidence level upper limit on its partial branching fraction. Our results [10] for the non-resonant modes are the first and can advance our understanding of the polarization puzzle in ρK^* decays.

References

- [1] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 98, 051801 (2007),
- [2] K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 94, 221804 (2005).
- [3] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 231804 (2004).
- [4] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 97, 201801 (2006).
- [5] J. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 95, 141801 (2005).
- [6] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002).
- [7] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers in this volume.
- [8] R. Brun et al., GEANT 3.21, CERN Report No. DD/EE/8401 (1987).
- [9] H. Kakuno et al., Nucl. Instr. and Meth. A 533, 516 (2004).
- [10] S.-H. Kyeong et al. (Belle collaboration), Phys. Rev. D 80, 051103(R) (2009).