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1. Introduction

In order to deal with the data from the experiments at LHC lar $tudy of elementary par-
ticles, signals and potential backgrounds for new physimsho be under control at sufficient
accuracy [1]. In particular, hard processes with high mlidtities, involving many particles or
partons, cannot be neglected. On top of that, such prochssesto be dealt with at the next-to-
leading order (NLO) level to, for example, reduce the scelgethdence of observables and to have
a better description of the shape of their distributions.

At the leading order in perturbation theory, many tools dreaaly available that are able to
simulate any scattering process involving up to severabpar[2]. These tools are highly auto-
mated and they have been widely used [3]. At the next-toihgadrder the situation is currently
less advancedMCFM[4] is able to produce results at NLO accuracy for specifidtedag pro-
cesses, based on analytic calculations. Regarding thelatdn of one-loop amplitudes, the only
automatic tool available for some time now wesynCal ¢ [5] andFor mCal ¢ [6]. These tools
rely heavily on the use of computer algebra. For processtbstwid particles in the final state, their
performance is very satisfactory. There exist several itapo calculations that make use of these
automatic packages afeynArt s [7], QGRAF [8], producing results with up to four particles in
the final state [9], but for the moment no publicly availablgcenatic tool exists. Recently a pro-
gram calledGOLEM[10] has been presented, that is able to deal with procegstssix external
legs. It will also provide an alternative to compute autdozdty one-loop amplitudes [11].

The aforementioned programs express one-loop amplitidEsyinman graphs, which again
are expressed in terms of one-loop tensor integrals. Thes¢han calculated using universal
reduction techniques, independent of the amplitude, byesging them in terms of scalar integrals.
In a very different line of thinking, starting from the piarng work in [12], a new approach
has been set forward, known under the name of unitarity agprowhich has been proven very
powerful in computing multi-parton amplitudes in QCD thaemed to be impossible with the
traditional Feynman graph approach. The reason is thalampeamplitudes are calculated by
using tree-order building blocks, that are either knownitally with very compact expressions,
or can be evaluated using fast recursive equations. Nelestha systematic framework to develop
a generic computation of any one-loop amplitude was misdingting the applicability of the
method.

Using the crucial input from [13], this problem has been faslved in [14], introducing a
systematic framework in order to calculate all coefficiemitshe scalar integrals, as well as part
of the so-called rational contribution, related to the agpoence of UV-divergences. The remaining
rational part can be reproduced by counter terms encodederliike Feynman rules involving up
to four fields [15]. Therefore, this method, known as the ORfhwd, provides a self-contained
framework for the evaluation of the full one-loop amplitudie [16], the OPP method was applied
within the so-called generalized unitarity approach [13,ih order to get also the full rational
contribution to the amplitude, paying the price to work withe-amplitudes in higher dimensions.

The systematic extraction of all coefficients and of theoral term opened the road for the
construction of tools that are able to compute one-loop angas with any number of particles.
Bl ackHat [18] andRocket [19] were the first tools to realize such a possibility. Infibiéowing,
we report on the development of a new program.
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2. The program

For any one-loop amplitude, a numbeof propagator denominators can be indentified such
that the amplitude can be represented in the form

IJ4 dddq NI (q) _ _ )
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/ et Topig 0 D@= @Rt @)
where the loop momentunpand the numerator polynomialé; (q) are considered to be evaluated
in d dimensions. They; are combinations of the external momenta, andnthare the masses of

particles running a loop. It is well-known that fdr— 4, each such term can be cast into the form
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where Box, Tri, Bub and Tad refer to the well known one-looglacintegrals an®R = R, + Ry is
the rational term. Given the momena the massesy and a function evaluating the 4-dimensional
numeratorlN, as function ofq, the programCut Tool s [20] identifies the scalar integrals to be
evaluated, calculates the coefficients, and deternitidwllowing the OPP method. The scalar
integrals can be evaluated with the tools from [21] or witlh own codeOnelLCop.

For the evaluation of the numerator, the progralEL AC [22] is used. It efficiently calcu-
lates tree-level amplitudes by applying recursive refetifor off-shell currents [23]. The con-
venience of its applicability stems from the freedom in thwice of the initial decomposition
represented by the summation in Eq. (2.1). In this appboati is a sum over all topologically

Ic{l

= Zdj Box; + ch Trij + ij Bub; + Zaj Tad; +R, (2.2)
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inequivalent partitions of the external parti- 4 8
cles. A few examples are depicted on the right, \Q d \<j

each graph corresponds to an instance of the AN
labell in Eq. (2.1). The external particles are> QE 7@ Qj}

labelled by powers of 2, and the blobs do not N

contain propagators depending on the integra- p Q\ Q‘f‘ *CQ\

tion momentuny. HELAC can easily evaluate 1 1
such a term by considering one line to be cut#
and summing over all possible internal spin, \Q &
flavor and/or color states of that cut line. Each
c 00, Ot d
term in this sum is an amplitude with two more fc 32 f 32

external particles, restricted such that it only*
contains Feynman graphs including all the propagatorsteatiy forming the loop. This can easily
be accomplished by putting together the necessary off-sheknts provided byHELAC.

Regarding the color-treatmertfELAC uses the color-connection representation. External
guarks and anti-quarks are represented by a color or alati-talex, gluons are represented by
a pair of color/anti-color indices, artdELAC calculates all non-zero tree-level color-connections.
The same is done to for the amplitudes with two more partivdeessary to calculate the one-loop
numerators. The contributions from non-planar loops atainbd by taking into account different
orderings of these extra particles among the other extparstles.

The evaluation of the rational paR, finally, follows the same line as the calculation of the
counter terms necessary for renormalization, and is cosbpatrivial.
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