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1. Introduction

In order to deal with the data from the experiments at LHC for the study of elementary par-
ticles, signals and potential backgrounds for new physics have to be under control at sufficient
accuracy [1]. In particular, hard processes with high multiplicities, involving many particles or
partons, cannot be neglected. On top of that, such processeshave to be dealt with at the next-to-
leading order (NLO) level to, for example, reduce the scale dependence of observables and to have
a better description of the shape of their distributions.

At the leading order in perturbation theory, many tools are already available that are able to
simulate any scattering process involving up to several partons [2]. These tools are highly auto-
mated and they have been widely used [3]. At the next-to-leading order the situation is currently
less advanced.MCFM [4] is able to produce results at NLO accuracy for specific scattering pro-
cesses, based on analytic calculations. Regarding the calculation of one-loop amplitudes, the only
automatic tool available for some time now wasFeynCalc [5] andFormCalc [6]. These tools
rely heavily on the use of computer algebra. For processes with two particles in the final state, their
performance is very satisfactory. There exist several important calculations that make use of these
automatic packages andFeynArts [7], QGRAF [8], producing results with up to four particles in
the final state [9], but for the moment no publicly available automatic tool exists. Recently a pro-
gram calledGOLEM [10] has been presented, that is able to deal with processes up to six external
legs. It will also provide an alternative to compute automatically one-loop amplitudes [11].

The aforementioned programs express one-loop amplitudes in Feynman graphs, which again
are expressed in terms of one-loop tensor integrals. These are then calculated using universal
reduction techniques, independent of the amplitude, by expressing them in terms of scalar integrals.
In a very different line of thinking, starting from the pioneering work in [12], a new approach
has been set forward, known under the name of unitarity approach, which has been proven very
powerful in computing multi-parton amplitudes in QCD that seemed to be impossible with the
traditional Feynman graph approach. The reason is that one-loop amplitudes are calculated by
using tree-order building blocks, that are either known analytically with very compact expressions,
or can be evaluated using fast recursive equations. Nevertheless a systematic framework to develop
a generic computation of any one-loop amplitude was missing, limiting the applicability of the
method.

Using the crucial input from [13], this problem has been firstsolved in [14], introducing a
systematic framework in order to calculate all coefficientsof the scalar integrals, as well as part
of the so-called rational contribution, related to the occurrence of UV-divergences. The remaining
rational part can be reproduced by counter terms encoded in tree-like Feynman rules involving up
to four fields [15]. Therefore, this method, known as the OPP method, provides a self-contained
framework for the evaluation of the full one-loop amplitude. In [16], the OPP method was applied
within the so-called generalized unitarity approach [13, 17] in order to get also the full rational
contribution to the amplitude, paying the price to work withtree-amplitudes in higher dimensions.

The systematic extraction of all coefficients and of the rational term opened the road for the
construction of tools that are able to compute one-loop amplitudes with any number of particles.
BlackHat [18] andRocket [19] were the first tools to realize such a possibility. In thefollowing,
we report on the development of a new program.
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2. HELAC-1L

For any one-loop amplitude, a numbern of propagator denominators can be identified such
that the amplitude can be represented in the form

A = ∑
I⊂{1,...,n}

∫ µ4−dddq̄
(2π)d

N̄I(q̄)

∏i∈I D̄i(q̄)
, D̄i(q̄) = (q̄+ pi)

2−m2
i , (2.1)

where the loop momentum ¯q and the numerator polynomials̄NI(q̄) are considered to be evaluated
in d dimensions. Thepi are combinations of the external momenta, and themi are the masses of
particles running a loop. It is well-known that ford → 4, each such term can be cast into the form

∫ µ4−dddq̄
(2π)d

N̄I(q̄)

∏i∈I D̄i(q̄)
= ∑

j

d j Box j +∑
j

c j Tri j +∑
j

b j Bubj +∑
j

a j Tadj +R, (2.2)

where Box, Tri, Bub and Tad refer to the well known one-loop scalar integrals andR= R1 +R2 is
the rational term. Given the momentapi, the massesmi and a function evaluating the 4-dimensional
numeratorNI as function ofq, the programCutTools [20] identifies the scalar integrals to be
evaluated, calculates the coefficients, and determinesR1 following the OPP method. The scalar
integrals can be evaluated with the tools from [21] or with our own codeOneLOop.

For the evaluation of the numerator, the programHELAC [22] is used. It efficiently calcu-
lates tree-level amplitudes by applying recursive relations for off-shell currents [23]. The con-
venience of its applicability stems from the freedom in the choice of the initial decomposition
represented by the summation in Eq. (2.1). In this application it is a sum over all topologically
inequivalent partitions of the external parti-
cles. A few examples are depicted on the right,
each graph corresponds to an instance of the
label I in Eq. (2.1). The external particles are
labelled by powers of 2, and the blobs do not
contain propagators depending on the integra-
tion momentumq. HELAC can easily evaluate
such a term by considering one line to be cut,
and summing over all possible internal spin,
flavor and/or color states of that cut line. Each
term in this sum is an amplitude with two more
external particles, restricted such that it only
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contains Feynman graphs including all the propagators eventually forming the loop. This can easily
be accomplished by putting together the necessary off-shell currents provided byHELAC.

Regarding the color-treatment,HELAC uses the color-connection representation. External
quarks and anti-quarks are represented by a color or anti-color index, gluons are represented by
a pair of color/anti-color indices, andHELAC calculates all non-zero tree-level color-connections.
The same is done to for the amplitudes with two more particlesnecessary to calculate the one-loop
numerators. The contributions from non-planar loops are obtained by taking into account different
orderings of these extra particles among the other externalparticles.

The evaluation of the rational partR2, finally, follows the same line as the calculation of the
counter terms necessary for renormalization, and is comparably trivial.
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3. RESULTS

The current implementation allows to calculate any one-loop virtual matrix element, for all
color and helicity configurations, with any external particle and with particles in the loop that
can be either gluons (ghosts) or quarks of any flavor. Moreover the cut-constructible part can be
obtained for any internal particle. When the rational counterterms for the full Standard Model will
be implemented, then any one-loop amplitude will be obtainable. The calculation is done in a fully
automatic way, and it is purely numerical.

To illustrate the capabilities of the developed package, wepresent here results for one of the
most complicated processes,pp→ tt̄+ 2 jets, for a given phase-space point. For details of the
calculations we refer to [24].

pp→ tt̄+ 2 jets

ε−2 ε−1 ε0

uū→ tt̄gg

LO: 3.534870065372714E-06

HELAC-1L -6.127108113312741E-05-1.874963444741646E-04-3.305349683690902E-04

I(ε) -6.127108113312702E-05-1.874963445081074E-04

gg→ tt̄gg

LO: 1.599494381233976E-05

HELAC-1L -3.838786514961561E-04-9.761168899507888E-04-5.225385984750410E-04

I(ε) -3.838786514961539E-04-9.761168898436521E-04

The momenta used to obtain the above result are

px py pz E
u(g) 0 0 250 250
ū(g) 0 0 -250 250
t 12.99421901255723 -9.591511769543683 75.05543670827210 190.1845561691092
t̄ 53.73271578143694 -0.2854146459513714 17.68101382654795 182.9642163285034
g -41.57664370692741 3.895531135098977 -91.94931862397770 100.9874727883170
g -25.15029108706678 5.981395280396083 -0.7871319108423604 25.86375471407044

Further results can be found in [24]. Moreover results concerning a realistic cross section
calculation forpp→ tt̄bb̄ can be found in [25].
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