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Motivated by the precision of the data for the “golden mode” B→ J/ψKs the theoretical predic-
tion of the golden modes Bd → J/ψKs and Bs → J/ψφ is re-investigated. The major question
with respect to theoretical uncertainties is, how to reliably estimate the effect of doubly Cabibbo
suppressed penguin contributions. Perturbative approaches are considered as well as methods
based on flavour symmetries. The overall situation is not conclusive; penguin contributions large
enough to shift β by a few degrees cannot be excluded.
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1. Introduction

It has been pointed out already quite some time ago that a measurement of the time dependent
CP asymmetry in the decay B→ J/ψKs will allow a precise determination of the CKM angle β [1].
The theoretical uncertainty of this method is due to penguin contributions which induce amplitudes
with a different weak phase. These will modify the naive relation between β and the measured
time dependent CP asymmetry and, in addition, can induce direct CP violation. However, in the
so called “golden modes” these penguin contributions appear only strongly CKM suppressed, and
hence only small corrections to the naive formulae are expected.

Explicitly, the typical amplitude for a non-leptonic two-body decay can be written as

A(B0→ f ) = A
[
1+ r f eiδ f eiθ f

]
(1.1)

where usually A is the tree amplitude and r f denotes the modulus of the penguin-over-tree ratio,
which has a strong phase θ f . The weak phase δ f is in the cases at hand the CKM angle γ , while
the modulus of the CKM factors is absorbed into r f .

The key observable is the time dependent CP asymmetry, which is given by

ACP(t; f )≡
Γ(Bq(t)→ f )−Γ(B̄q(t)→ f )
Γ(Bq(t)→ f )+Γ(B̄q(t)→ f )

=
A f

D cos(∆Mqt)+A f
M sin(∆Mqt)

cosh(∆Γqt/2)−A f
∆Γ

sinh(∆Γqt/2)
(1.2)

where q = d,s and Mq and ∆Γq denotes the mass and width differences in the Bd-B̄d system.
We my express the observables A f

D and AM in terms of the parameters of the amplitude given
in (1.1)

A f
D =−2r f sinθ f sinδ f (1.3)

A f
M =

[
sinφs +2r f cosθ f sin(φs +δ f )+ r2

f sin(φs +2δ f )
]

(1.4)

where φs is the mixing phase stemming from the ∆B = 2 interaction. We omit the expression for
A f

∆Γ
, since we shall not discuss effects originating from finite lifetime differences.
The reason why the decay B→ J/ψKs is called “gold plated” is that the ratio r f in this case is

suppressed by small CKM angles

r f ∝ ε =
∣∣∣∣VubV ∗us

VcbV ∗cs

∣∣∣∣∼ 5% , (1.5)

where the constant of proportionality is a ratio of the hadronic matrix elements of penguin and tree
operators, which in general is believed to be less than unity. Hence to a very good approximation
we get

A f
D = 0 and A f

M = sinφs = sin2β (1.6)

As far as data is concerned, the time-dependent CP asymmetry in B→ J/ψKs is the flagship
measurement of the B factories. The current precision is already at a level, where small effects
become important. In particular, if there is a non-standard contribution in the ∆B = 2 interaction,
we would have an additional piece due to “new physics” in the mixing phase

φd = 2β +φ
NP
d . (1.7)
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Figure 1: Illustration of the current tension in the CKM triangle

However, to become sensitive to a small φ NP
d a good control over the standard model contribution

to the CP asymmetries coming from r f is mandatory.
The current data has an indication for a tension in the unitarity-triangle fit. Extracting a value

for β from |Vub/Vcb|= 0.0958+0.003
−0,005±0.007 and γ = (65±10)◦ alone, one obtains a “true” value

(sin2β )true = 0.76+0.02
−0.04

+0.04
−0.05 (1.8)

which may be compared with the measurement of the CP asymmetry in B→ J/ψKs. One obtains

(φd)J/ψK0−2βtrue =−(8.7+2.6
−3.6±3.8)◦ (1.9)

indicating a tension between these two quantities, which is illustrated in fig. 1. A similar tension
can be constructed from the ratio of the oscillation frequencies ∆Md/∆Ms and the parameter ε

from Kaon CP violation, which makes the input of the somewhat controversial (due to the tension
between its exclusive and inclusive value) parameter Vub obsolete [2, 3].

Assuming that this becomes evidence in the near future, it is necessary to re-investigate the
standard-model contributions to r f in order to obtain the correct interpretation of this tension,
namely either in terms of sizable penguin contributions or in term of new physics. In the next
section we investigate the different theoretical approaches to a calculation (or better to an estimate)
for r f .

2. Theoretical Approaches

We shall first look at the purely theoretical approaches which try to estimate the hadronic
matrix elements by more or less QCD based models. The partonic calculation is based on the QCD
diagrams which are evaluated in perturbation theory. However, the scales are quite low, rendering
perturbation theory unreliable. Alternatively, one may try to relate the hadronic matrix elements to
other observables, which, however, requires some additional assumptions.

The second way to estimate r f is to make use of flavour symmetries and data of similar decay
modes. The drawback here is that the flavour symmetry relations needed are affected by flavour
symmetry breaking and hence again sizable uncertainties remain.
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Figure 2: Diagrams for the contribution to the ∆B = 2 interaction from internal up and charm quarks

2.1 Partonic Calculation

The suggestion to estimate r f is in fact quite old; it has been proposed originally by Bander,
Silverman and Soni [4] and has been applied more recently to B→ J/ψKs in [5].

Aside from the corrections to r f one has also a contribution to the ∆B = 2 interaction coming
from internal up and charm quarks shown in fig. 2. Due to the GIM mechanism these contributions
are suppressed by a factor m2

c/M2
W , but contain large logarithm ln

(
m2

c/M2
W
)
. The total contribution

from this source can be calculated reliably and turns out to be very small

∆φd ≈−2
m2

c

m2
t

ln
(

m2
c

M2
W

)
≈−4×10−4 . (2.1)

A more severe problem is the estimate of the penguin contribution r f . According to [4] we
calculate the diagrams shown in fig. 3 which yields a contribution to the “effective interaction” of
the form

H Peng.
eff (b→ cc̄s) = −GF√

2

{
α

3π
(sb)V−A (cc)V ·

[
1+O

(
M2

ψ

M2
Z

)]
(2.2)

+
αs(k2)

3π
(sT ab)V−A (cT ac)V

}
·
(

5
3
− ln

(
k2

µ2

)
+ iπ

)
The matrix elements that appear in this expression can be estimated from the rate for B→ J/ψKs;
in particular, the color-octet matrix element can be obtained from the non-factorizable contribution
to this decay.

The problem with expression (2.2) is that two parameters appear which have to be fixed. On
one hand there is the scale k2 of αs the natural value of which is k2 = M2

J/ψ
on the other hand

Figure 3: Diagrams for the perturbative estimate of r f .
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there is a dependence on the renormalization point µ , which we set to µ = mb. These choices are
ambiguous, reflecting the fact that there are substantial uncertainties in this approach.

Inserting the numbers and taking into account the date from the rate of B→ J/ψKs, the authors
of [5] obtain

S(J/ψ KS) = (sin2β )0− (2.16±2.23)×10−4 (2.3)

C(J/ψ KS) = (5.0±3.8)×10−4 (2.4)

where the uncertainties are only the ones due to the extraction of the matrix elements from the rate
of B→ J/ψKs.

Although this estimate suffers from substantial uncertainties, the conclusion form this calcula-
tion is that the standard contribution to r f in case of B→ J/ψKs is too small to matter at the current
level of precision. However, in many other circumstances (such as e.g. perturbative calculations of
form factors) it is observed that the perturbative approach tends to underestimate the true effects,
sometimes even dramatically.

2.2 Hadronic Calculation

A different ansatz to estimate r f has been proposed by Gronau and Rosner [6]. Here the
backscattering of the quarks ūu→ c̄c is estimated by inserting hadronic intermediate states. De-
noting the T -matrix for he weak interactions with T and the strong scattering with S0, one obtains
to leading order in the weak interactions

T = S0T S0 (2.5)

This yields for the ūu→ c̄c backscattering

〈J/ψK0|T u|B〉= ∑
f
〈J/ψK0|S0| f 〉〈 f |T u|B〉 (2.6)

by inserting a complete set of states. Here T u is the b→ sūu penguin contribution, and we now
need an estimate of 〈 f |T u|B〉 for f = K∗π,K∗∗π, ....

This estimate is obtained by applying the same reasoning to the T c piece of T , which corre-
sponds to the tree contribution b→ sc̄c.

〈 f |T c|B〉= ∑
k
〈 f |S0|k〉〈k|T c|B〉 (2.7)

where we inserted again a complete set of states.
If we saturate the sum by a single state, one may set up the inequality

|〈 f |T |B〉| ≥ |〈 f |S0|D∗Ds〉| |〈D∗Ds|T |B〉| (2.8)

which leads to [6]

ξ f ≡
|〈J/ψK0|S0| f 〉〈 f |T u|B〉|
|〈J/ψK0|T |B〉|

≤ 1
3
|〈 f |T u|B〉|
|〈 f |T c|B〉|

(
|〈 f |T |B〉|

〈J/ψK0|T |B〉|

)2

(2.9)
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which is the contribution to the penguin-over-tree ratio from the intermediate state f This relation
may thus serve to bound the ūu→ c̄c backscattering contributions from each individual intermedi-
ate state f .

The right-hand side of this inequality can be estimated by using data on charmless two-body
decays into a pseudoscalar and a vector meson. The authors of [6] estimate the contributions of
the channels K∗π , ρK, ωK and Kη to be less than ξ f ≤ 8× 10−4 · · ·8× 10−5, depending on the
channel. Since the individual contributions are all of order 10−3 or less, the authors of [6] end up
with the conclusion that the full re-scattering, obtained from summing over all intermediate states,
is less than 10−2.

However, it is known e.g. from D-D̄ mixing and from re-scattering estimates that a sum over
a finite number of intermediate states does not represent the full answer very well. In particular, in
cases where a sizable energy release is present, a partonic calculation based on the assumption of
duality seems to work better. In the case at hand, the estimates are based on the two-body modes
for which measurements exist, and it is no clear, which fraction of the total charmless rate mediated
by T u is going into these particular decays.

3. Approaches based on Data

As an alternative, one may try to obtain information on the penguin contributions by relating
the matrix elements appearing in B→ J/ψKs to the matrix elements of other decays, which are e.g
related by flavour symmetries. This idea has been exploited extensively, for an application to the
golden modes see e.g. [7].

Here we shall discuss the results of a recent fit from [8]. Here the golden mode B→ J/ψK
is compared to the situation in the decay B→ J/ψπ . For the charged modes, these tow decays
are U-spin partners, while this is not the case for the neutral B mesons, see e.g.. [9]. Nevertheless
we shall use the size of the r f ratio obtained from Bd → J/ψπ0 as an estimate of the size of the
corresponding ratio in Bd → J/ψKs.

We shall express our results in terms of the shift ∆φd of the observed mixing angle induced by
the penguin contribution. We obtain [8]

tan∆φd =
2r f cosθ sinγ + r2

f sin2γ

1+2r f cosθ cosγ + r2
f cos2γ

(3.1)

where γ is the weak (CKM) phase and θ is the strong phase.
We may determine a value for r f from the data of Bd → J/ψπ0, where the CKM suppression

of the penguin contributions is much less severe than in the golden mode. The time-dependent CP
asymmetry ACP(t;J/ψπ0) was recently measured by the BaBar (SLAC) [10] and Belle (KEK) [11]
collaborations, yielding the following averages [12]:

C(J/ψπ
0) = −0.10±0.13, (3.2)

S(J/ψπ
0) = −0.93±0.15 . (3.3)

Note that the error of S(J/ψπ0) is that of the HFAG, which is not inflated due to the inconsistency
of the data.
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Figure 4: Left: The 1σ ranges in the θ ′–a′ plane with current data (a′ = rπ ). Right: ∆φd for the constraints
shown in the left plot.

In addition to the CP asymmetries we will also use the data on the CP averaged branching
ratios. We introduce

H ≡ 2
ε

[
BR(Bd → J/ψπ0)
BR(Bd → J/ψK0)

]∣∣∣∣AA ′

∣∣∣∣2 ΦJ/ψK0

ΦJ/ψπ0
=

1−2rπ cosθ ′ cosγ + r2
π

1+2rK cosθ cosγ + r2
K

(3.4)

where ε = λ 2/(1−λ 2) = 0.053 is a CKM factor and Φ f are phases space factors. The ratio of the
amplitudes |A /A ′| takes into account flavour-symmetry breaking corrections. Furthermore, have
expressed H in terms of the weak phase γ , the strong phase θ ′ and the ratio rπ for the penguin in
Bd → J/ψπ0 and the strong phase θ and the ratio rK for the penguin in Bd → J/ψKs.

As discussed above, we shall make the assumption that the hadronic matrix elements and the
strong phases are roughly the same in the to decays Bd→ J/ψKs and Bd→ J/ψπ0. To this end we
shall assume

θ = θ
′ rK = εrπ (3.5)

and leave generous margin for a possible violation of these relations.
In the flavour symmetry limit, we would also have |A /A ′| = 1. However, we shall include

some of the breaking effects by assuming that the breaking behaves like the form factor ratio of the
B→ π and B→ K form factors, the values of which are taken from a QCD sum rule calculation.
Clearly this is debatable assumption, since non-factorizable contributions are known to be dominant
in Bd → J/ψKs.

Fig. 4 shows the resulting fit. In the left plot we show the constraints coming from the data on
the decay B→ J/ψπ0. From this we conclude that the preferred values, indicated by the yellow
region, of rπ ∈ [0.15,0.67] and θ ′ ∈ [174,213]◦ at the one sigma level. Making use of relation (3.5),
we end up with the right plot, which gives the shift ∆φd and the value of the strong phase θ . We see
that a negative value of ∆φd emerges; the global fit to all observables yields ∆φd ∈ [−3.9,−0.8]◦,
mainly due to the constraints from H and C(J/ψπ0).

The impact of violations of (3.5) is rather mild. Varying rK = ξ rπ and with ξ ∈ [0.5,1.5] and
leaving θ and θ ′ completely uncorrelated in the region θ ,θ ′ ∈ [90,270]◦ the fit still prefers negative
values of ∆φd ; the global fit yields ∆φd ∈ [−6.7,0.0]◦.
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It is remarkable that the data seem to prefer sizable penguin contributions. The ratio r f which
are obtained by this fits is of the order of r f ∼ 0.1...0.7 which is considerably larger than what is
obtained by the purely theoretical approaches discussed above.

4. Conclusion

The situation which emerges from these investigations remains inconclusive. While the the-
oretical approaches tend to yield small r f ratios, the data seem to prefer larger values. Evidently,
the partonic calculation will result in an r f value of the order of 1/(16π2), since the penguins are
induced through a loop diagram.

Likewise, saturating the ūu→ c̄c scattering with hadronic intermediate states, the contributions
of each individual state is much smaller that what is obtained from the fit to the data. However, this
smallness could be compensated by a large number of possible intermediate states.

4.1 Discussion of Bd → J/ψKs

The relatively large shift ∆φd that is obtained from the fit to the data could as well originate
from a “new physics” contribution. This has been investigated also in [8]. However, it is interesting
to note that this shift softens the tensions observed in the standard-model fit of the unitarity triangle.
In particular, the tension with the (inclusive) value of Vub becomes milder once a negative shift in
φd is taken into account. Furthermore, also the tensions in the other fits such as the ones considered
in [2, 3] are softened.

In summary, even if the central values for CKM parameters remain as they are and the un-
certainties get smaller, the situation can still be explained by the standard model; however, the
penguin-over-tree ratios are larger than the current theoretical prejudices indicate.

4.2 Outlook: What to expect for Bs→ J/ψφ?

Once sizable r f ratios are assumed, this will also have an impact on the interpretation of the
data of Bs→ J/ψφ . As it has been discussed in [13], one may also use data to constrain the r f ratio
in Bs→ J/ψφ using the control channel Bs→ J/ψK∗. Since there is no data yet on this channel,
nothing detailed can be said.

However, if ratios of the order r f ∼ 0.1...0.7 turn out to be typical numbers, it will have a
sizable impact on the CP asymmetries in Bs → J/ψφ . In the standard model, the Bs-B̄s mixing
phase is small, φs = −2λ 2η ∼ −1.5◦, and hence only a small mixing-induced CP asymmetry is
expected.

However, if r f ∼ 0.1...0.7, the penguin contributions could even dominate the mixing induced
CP asymmetry, since the shift ∆φs can be larger than the value oft the mixing phase. In particular,
the sign would be negative, thereby increasing the absolute value of φs. From this we would
conclude that a measurement of a time-dependent CP asymmetry, which would correspond to a
value of 5◦ for φs, could still have a standard-model explanation. However, if the central value of
the current measurements of φs [12]

φs =
(
−43+15

−22

)◦ ∨ (−136+22
−15

)◦
. (4.1)

stabilizes unchanged, this will be a clear indication of a new effect.

8



P
o
S
(
F
P
C
P
2
0
0
9
)
0
0
5

The Golden Modes: Bd → J/ψKs and Bs→ J/ψφ Thomas Mannel

References

[1] I. I. Y. Bigi and A. I. Sanda, Nucl. Phys. B 193, 85 (1981).

[2] E. Lunghi and A. Soni, Phys. Lett. B 666, 162 (2008) [arXiv:0803.4340 [hep-ph]].

[3] A. J. Buras and D. Guadagnoli, arXiv:0901.2056 [hep-ph].

[4] M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43, 242 (1979).

[5] H. Boos, T. Mannel and J. Reuter, Phys. Rev. D 70, 036006 (2004) [arXiv:hep-ph/0403085].

[6] M. Gronau and J. L. Rosner, Phys. Lett. B 672, 349 (2009) [arXiv:0812.4796 [hep-ph]].

[7] M. Ciuchini, M. Pierini and L. Silvestrini, Phys. Rev. Lett. 95, 221804 (2005)
[arXiv:hep-ph/0507290].

[8] S. Faller, M. Jung, R. Fleischer and T. Mannel, Phys. Rev. D 79, 014030 (2009) [arXiv:0809.0842
[hep-ph]].

[9] M. Jung and T. Mannel, arXiv:0907.0117 [hep-ph].

[10] B. Aubert et al. [BaBar Collaboration], arXiv:0804.0896 [hep-ex].

[11] S. E. Lee et al. [Belle Collaboration], Phys. Rev. D 77, 071101 (2008).

[12] E. Barberio et al. [Heavy Flavour Averaging Group], arXiv:0808.1297 [hep-ex]; for the most recent
updates, see http://www.slac.stanford.edu/xorg/hfag.

[13] S. Faller, R. Fleischer and T. Mannel, Phys. Rev. D 79, 014005 (2009) [arXiv:0810.4248 [hep-ph]].
for the most recent updates, see http://www.slac.stanford.edu/xorg/hfag.

9


