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1. Introduction

Hadronic B meson decays are difficult to analyze because of complic@@Dd dynamics
and multiple characteristic scales they involve: Widboson massny, theb quark massn,, and
the QCD scalé\qcp. The standard procedure is first to integrate out the soglesuch that QCD
dynamics is organized into an effective weak Hamiltonign fFbr theB — Drdecays, the effective
Hamiltonian is written as

G .
e =5 VeoVia [ Ca(H)Ox() + Co)O2(0) (1.1
whereGr is the Fermi coupling constantg,V,y is the product of the Cabibbo-Kobayashi-Maskawa
matrix elementsyu is the renormalization scal€; , are the Wilson coefficients, and the four-
fermion operators are defined by

01 = (db)v_a(CU)v_a, 02 = (Eb)y_a(du)y_a. (1.2)

To deriveB — Drrdecay amplitudes, one evaluates the hadronic matrix elesti@mO; (u)|B).
Different theoretical approaches have been developedcierevaluation, which include the fac-
torization assumption, the QCD-improved factorizatidre perturbative QCD, the soft-collinear
effective theory, the light-cone QCD sum rules, and the kygiégigram parametrization. In this talk
| briefly introduce the basic ideas of these approaches [2].

2. Factorization Assumption

Intuitively, decay products from a heawyquark move fast without further interaction be-
tween them. This naive picture is supported by the colarsparency argument [3]: the Lorentz
contraction renders energetic final states emitted frorwtak vertex have small longitudinal color
dipoles, which can not be resolved by soft gluons. Theretbeehadronic matrix elemeO(u))
is factorized into a product of two matrix elements of singlerents, governed by decay constants
and form factors, without soft gluon exchanges between thgns factorization assumption (FA)
[4] was first proved in the framework of large energy effegtilieory [5], and justified in the large
N¢ limit [6], N being the number of colors. For thiee— Dt decays, the color-allowed (color-
suppressed) amplitude, involving tBe— D (B — m) transition form factor, is proportional to the
Wilson coefficienta; = C, +Cy/N; (a2 = C1 4+ Co/No).

In spite of its simplicity, the FA encounters three prindigdficulties. First, a hadronic matrix
element under the FA is independent of the renormalizatbahes:, as the vector or axial-vector
current is partially conserved. Consequently, the amgéi@y 1) (O)¢act iS Not truly physical as the
scale dependence of the Wilson coefficient does not get casagien from the matrix element.
This problem may not be serious for color-allowed modesabse the parametey is roughly
independent oft. It is then not a surprise that the simple FA gives predigionrelatively good
agreement with data of these modes. However, the paramedepends strongly on the renormal-
ization scale and on the renormalization scheme, becautse @imilar magnitude and different
sign of theCy(u) andCy(u)/N. terms (calculated in the NDR scheme andk% = 225 GeV,
the Wilson coefficients have the valuég(mg) = —0.185 andC,(mg) = 1.082 [1], mg being the
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B meson mass). This may be the reason the FA fails to accommddé# of color-suppressed
modes. It also means that is more sensitive to subleading contributions.

The second difficulty is related to the first one: nonfactabie effects have been neglected
in the FA. This neglect may be justified for color-allowed rasddue to the large and roughly
p-independent value o, but not for color-suppressed modes, suctBas J/@wK®). Thed/y
meson emitted from the weak vertex is not energetic, and dler-transparency argument does
not apply. To circumvent this difficulty, nonfactorizablentributions were parameterized into the
parameters; [7, 8],

& — Cy(y1) + Ca(p) [Nijxl(u)} ,

o = Ca(u)+ Calh) | -+ xelb)] @)
Theu dependence of the Wilson coefficients is assumed to be gxaxtipensated by that gf (1)
[9]. It is obvious that the introduction of; does not really resolve the scale problem in the FA.

Third, strong phases are essential for predicting CP asynes@ exclusiveB meson decays.
These phases, arising from the Bander-Silverman-Soni YB&8hanism [10], are ambiguous in
the FA: thec quark loop contributes an imaginary piece proportional to

/duu(l— u)8(q?u(1—u) —m), (2.2)

whereq? is the invariant mass of the gluon emitted from the penguincey is not precisely de-
fined in the FA, one can not obtain definite information of sgyphases from Eq. (2.2). Moreover,
it is legitimate to question whether the BSS mechanism isrgportant source of strong phases in
B meson decays. Viewing the above difficulties, the FA is nairaglete model, and it is necessary
to go beyond the FA by developing reliable and systematiordéiieal approaches.

3. QCD-improved Factorization

The color-transparency argument allows the addition ofl ltdumons between the energetic
mesons emitted from the weak vertex and Bhmeson transition form factors. These hard gluon
exchanges lead to higher-order corrections in the couplomstantas to the FA. By means of
Feynman diagrams, they appear as the vertex correctiohs fiir$t two rows of Fig. 1 [11]. It has
been shown that soft divergences cancel among them, whegoutednin the collinear factorization
theorem. Thes®(as) corrections weaken the dependence in Wilson coefficients, and generate
strong phases. Besides, hard gluons can also be added tahferspectator diagrams in the last
row of Fig. 1. Feynman rules of these two diagrams differ byiaus sign in the soft region re-
sulting from the involved quark and anti-quark propagaténeluding the above nonfactorizable
corrections to the FA leads to the QCD-improved factorara(iQCDF) approach [11]. The gluon
invariant massp® in the BSS mechanism can be unambiguously defined and rétapedton mo-
mentum fractions in QCDF. Hence, the theoretical diffi@dtin the FA are resolved. This is an
important step towards a rigorous framework for two-bodgirbaic B meson decays in the heavy
quark limit.
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Figure 1. O(as) corrections to the FA in the QCDF approach.
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Figure 2: Annihilation contributions.

Corrections in higher powers of/fy, to the FA can also be included into QCDF, such as
those from the annihilation topology in Fig. 2, and from tw8scontributions to the spectator
amplitudes. However, it has been found that endpoint sargids exist in these high-power con-
tributions, which arise from the divergent integj#ldx/x, x being a momentum fraction. Similar
singularities are developed, when applying the collineatdrization toB meson transition form
factors. Because of the endpoint singularities, the alatibn and twist-3 spectator contributions
must be parameterized as [11]

|nr—ﬁ (1+pAé5A> , |nT—ﬁ (1+pHé5H> , (3.1)

respectively, with the hadronic scale. A QCDF formula then contains the arbitrary parameters
paH andda . Setting these parameters to zero, one obtains predidtidhe “default” scenario,
and the variation of the arbitrary parameters gives thealaincertainties. If tuning these param-
eters to fit data, one obtains results in the scenarios “&’,,"J12].

4. Perturbative QCD

The endpoint singularities signal the breakdown of theirmedlr factorization for two-body
hadronicB meson decays. Motivated by removing these singularitiespérturbative QCD (PQCD)
approach based on the factorization theorem was developed [13, 14, 15, 16]. Aquaitansverse
momentummkT is produced by gluon radiations, before hard scatteringscc he endpoint singu-
larities from the smalk region indicate that the parton transverse momerigiis not negligible.
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M,

Figure 3: Perturbative QCD factorization.

Taking into accounkr, a particle propagator does not divergexas 0. TheB meson transition
form factors, and the spectator and annihilation contidmst are then all calculable in the frame-
work of thekr factorization. It has been shown thaBa— M1M, decay amplitude is factorized
into the convolution of the six-quark hard kernel, the jeidtion and the Sudakov factor with the
bound-state wave functions as shown in Fig. 3,

A(B — MiM;) = s @ H ®J®S® @, ® G, - (4.1)

The jet functiond comes from the threshold resummation, which exhibits seggson in the small
x region [17]. The Sudakov fact@ comes from thé resummation, which exhibits suppression
in the smallkr region [18, 19]. Therefore, these resummation effectsajuiae the removal of
the endpoint singularitiesJ (S), organizing double logarithms in the hard kernel (mesomewa
functions), is hidden iH (the three meson states) in Fig. 3. The arbitrary parameatiEiuced

in QCDF [11] are not necessary, and PQCD involves only usaleaind controllable inputs.

The theoretical difficulties in the FA are also resolved inGEbut in a different way. The FA
limit of the PQCD approach at larga,, which is not as obvious as in QCDF, has been examined
[17]. It was found that the factorizable emission amplitatéereases likey, ¥, if the B meson
decay constantg scales likefg I m, Y2 This power-law behavior is consistent with that obtained
in [11, 20]. The higher-order corrections to the FA have bieeluded in PQCD, which moderate
the dependence on the renormalization sgaleThe ratio of the spectator contribution over the
factorizable emission contribution decreases within PQCD, showing a behavior close to that
in QCDF. The gluon invariant masg in the BSS mechanism is clearly defined and related to
parton momentum fractions. The penguin annihilation atugd is almost imaginary in PQCD
[15], whose mechanism is similar to the BSS one [10]: in theitdlation topology, the loop is
formed by the internal particles in the LO hard kernel and tfinitely many Sudakov gluons
exchanged between two partons in a light meson. A sizaldagiphase is generated, when the
internal particles go on mass shell. In terms of the prifeipdue prescription for the internal
particle propagator, the strong phase is given by [15]

1 _ P
xmg — k& +ig  xmg—k2

— S (xm3 — k2). (4.2)
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Figure5: Diagrams for theB — 77 form factor in SCET.

5. Soft-Collinear Effective Theory

The soft-collinear effective theory (SCET) based on théireedr factorization is formulated
in the framework of operator product expansion (OPE) [21.2& 24]. The matching at different
scales involved irB meson decays has been carefully handled in SCET. Take th@esBn—
1t transition form factor in Fig. 4 as an example. The soft sgectin theB meson carries the
momentunt ~ O(Aqcp), because it is dominated by soft dynamics. If the spectatitrd energetic
pion carries the momentumy ~ O(my), the virtual gluon in Fig. 4 is off-shell bps =(p2—r)?=
—2pp -1 ~ O(mMyA\qcp)- Then the virtual quark in Figs. 4(a) is off-shell biywVv -+ K+ pg)? — ng ~
O(m?), wherev is theb quark velocity and ~ O(Aqcp) denotes the Fermi motion of thequark.
Hence B meson decays contain three scales betgw my, /mMpAgco, andAgcp.

The separate matching at the two scatgsand /myAqcp is briefly explained below [25].
The first step is to integrate out the lines off—shellrb§/in QCD, and the resultant effective theory
is called SCET. One then derives the zeroth-order effective curdft from theb — u weak
vertex, and the first-order effective curreltt) by shrinking the virtuab quark line in Fig. 4(a).
The next step is to integrate out the lines off-shellhy\qcp in SCET], arriving at SCET,. The
relevant diagrams to start with are displayed in Fig. 5. 18mg all the lines off-shell byn,Aqcp,
one derives the corresponding Wilson coefficients, i.e,j¢h functions, and the effective four-
fermion operators. Sandwiching these four-fermion opesaby the initialB meson state and the
final pion state leads to tH& meson and pion distribution amplitudes. TBie- 7T transition form
factor is then factorized as depicted in Fig. 6. The factdi@gn of two-body hadroni® meson
decays is constructed in a similar way, and the result isstisan in Fig. 6.

At leading power in ¥my, there is no large source of strong phases in SCET (the damivini
contribution is parametrically power-suppressed). Touaegstrong phases, it has been argued
thatcc (charming) penguins could give long-distance effectsadiley power [26]. This contribu-
tion is nonperturbative, so it must be parameterized as litray amplitudeA®. Including the
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Figure 6: Factorization of thé8 — mform factor and of th& — M;M; decay in SCET.

charming penguin, SCET has been applied as an QCD-imprarednetrization, and is deter-
mined together with other hadronic inputs from data. It $thidse mentioned that the long-distance
charming-penguin contribution is power-suppressed aitgrto QCDF, PQCD and light-cone
sum rules [27].

6. Light-Cone Sum Rules

QCD sum rules [28, 29] are based on the quark-hadron dualitich is very different from
a factorization theorem. A simple argument of the quarkrtladduality has been presented in
[30, 31]: consider evaluation of a correlation function bgans of the dispersion relation. One
can choose either a contour along the real axis, which majobe to a physical pole, or a contour
far away from the physical pole. When moving along the foromttour, one picks up nonpertur-
bative contributions to the correlation function from th@lgo When moving along the latter, the
correlation function can be evaluated in the framework oEQIPthere is no other pole inside the
combined contour of the former and the latter, the above twaices should give the same result.
This explains the idea of the quark-hadron duality.

QCD sum rules have been applied to various problems in heavgrfphysics. Take thB
meson decay constarig as an example [32, 33, 34], which is defined via the matrix el@m

(0|meqiysb|B) = fgmg, g = u,d. Start with the correlation function of two heavy-light cemts,
() =i [ d*ye™ (O[T [mediyeb(y), mebirec(0)]0) (6.1

which can be treated by OPE at the quark levet?ifs far belowng, or parameterized as a sum
over hadronic states including the ground-stmeson forg?> > mg. The quark-hadron duality
relates the expressions in these two regions. Therefortheoleft-hand (hadron) side of the sum
rule, one has

f2mg
B

where the contribution of the ground-st&emeson has been singled out, andrepresents those
from the excited resonances and from the continuum of haalstates with théd meson quantum

(6.2)
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numbers. On the right-hand (quark) side of the sum rule, @sethe expansion including the
perturbative series ing and the quark, gluon and quark-gluon condensates. Evadutite right-
hand side of the sum rule, one is able to estinfate

Light-cone sum rules (LCSR) [35] are a simplified version @)sum rules. Consider the
B — mrtransition form factors [31, 36, 37], for which the corrédat function is chosen as

| [[a*ye® (P T [ b(y). mebiedl(0)]0), 6.9

with the currentuy, b(y) representing the weak vertex. Compared to Eq. (6.1), thediate has
been specified as a pion, and the twist expansion has beardppthe local current associated
with the pion. The LCSR approach has been extended to thgsiaif two-body hadronid
meson decays in [38], and interesting observations wegaraat.

7. Quark-diagram Parametrization

The quark-diagram parametrization is a widely adoptedagmtr to two-body hadronie me-
son decays [39]. Various quark diagrams are defined in Figiti the color-allowed tree amplitude
T, the color-suppressed tree ampliti@ehe penguin amplitude, theW-exchange amplitudg,
the annihilation amplitudé\, and the penguin annihilation amplituéRd. One also defines the
electroweak penguin amplitud®, and the color-suppressed electroweak penguin ampligge
According to the above definitions, the quark-diagram patamation for theB — T decays is
given by

C Pu

V2ABY - mtif) = —T [1+—+

1%
T Té}’

P .
ABY - ) =T <1+ ?e'@> :

V2AB) - ) = T K;—P%”) é‘ﬂz—% , (7.1)
with the weak phasg,. The parametrization for other decays can be written dovarsimilar way.
Predictive power of this approach arises from flavor symynetrch as8J (3) [40] andU-spin
[41], which relate the amplitudes among relevant modesekample, the former relates the color-
allowed tree amplitudes with the light quagk= u, d, sand with the light quarkf = d, sin Fig. 7(a).
The latter relates thBY — K+~ andB2 — K~ decay amplitudes, and tiB — K*K~ and
Bg — " decay amplitudes. Hence, one can determine the quark achgsiftogether with the
weak phases sometimes) from data of some modes, and thdreaséotmake predictions for other
modes. However, it is difficult to estimate symmetry breglaffects in this approach [42].

8. Summary

We have been able to go beyond the factorization assumpgiagmcluding QCD corrections.
Different approaches have been developed: in QCDF the haglder corrections are computed in
the collinear factorization, but the high-power correstionust be parameterized due to the exis-
tence of the endpoint singularities. There are no endpaigutarities in PQCD, which is based
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Figure 7: Quark diagrams for thB — M; M, decays.

on theky factorization, and in SCET, which employs the zero-bin sadiion [43]. ThereforeB
meson transition form factors andry, power-suppressed contributions are calculable in both ap-
proaches. The difference is that SCET involves more arfgiparameters, such as the charming
penguins, which are the main source of strong phases. Thhilation contribution is the main
source of strong phases in PQCD. Since external lines asheff in the dispersion relation on the
OPE side of QCD sum rules or LCSR, a soft contribution has aitiefi different from those in
factorization theorems. Hence, the dominance of the softriboition in the former does not apply
to the latter. At last, predictive power of the factorizatiapproaches comes from universality of
nonperturbative inputs, such as meson wave functions hatiof the quark-diagram parametriza-
tion comes from flavor symmetry.

This work was supported by the National Center for Theaaéficiences and National Science
Council of R.O.C. under Grant No. NSC-95-2112-M-050-MY 3.
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