B_{s} decay and charmed hadronic B decay

Jin Li ${ }^{* i}$
University of Hawaii
E-mail: lijin@phys.hawaii.edu

We report on recent results from B_{s} and charmed B decay. The topics include $\Upsilon(5 S)$ decays to B mesons, $B_{s} \rightarrow D_{s}^{-}(K / \pi), J / \psi \eta, B_{s}$ semileptonic decay, B meson baryonic decay, doubly charmed decay through $b \rightarrow c \bar{c} s$ and singly charmed decay through ($b \rightarrow c \bar{u} d+s \bar{s}$ popping $)$.

Flavor Physics \& CP Violation 2009
May 27 - June 1, 2009
Lake Placid, NY, USA

[^0]

Figure 1: (a) The $M_{\mathrm{bc}}, \Delta E$ scatter plot for $B^{+} \rightarrow J / \psi K^{+}$. The superimposed parallelogram indicates the $\left(M_{\mathrm{bc}}+\Delta E-5.28\right)$ signal region. (b) Simulated M_{bc} distributions for $B^{0} \rightarrow D^{-} \pi^{+}$in MC. The channels $B \bar{B}, B \bar{B}^{*}+B^{*} \bar{B}, B^{*} \bar{B}^{*}$ and $B \bar{B} \pi \pi$ are shown as hatched histograms in the order of increasing hatching cell size from left to right, while the $B \bar{B} \pi, B \bar{B}^{*} \pi+B^{*} \bar{B} \pi, B^{*} \bar{B}^{*} \pi$ are represented in dotted, normal, and dashed histograms. (c) Background subtracted M_{bc} distribution for data, along with the fit histograms for 2 body channels (solid line).

1. $\Upsilon(5 S)$ and B_{s} decay

The KEKB accelerator in Japan has been running very smoothly on the $\Upsilon(5 S)$ resonance, leading to a large number of B_{s} mesons that were detected in the Belle detector. By the end of 2009 , there will be $\sim 100 \mathrm{fb}^{-1} \Upsilon(5 S)$ data collected at Belle. In this paper, we report on results from $23.6 \mathrm{fb}^{-1}$ data collected on the $\Upsilon(5 S)$ resonance using the Belle detector from 2005 and 2006, where $1.39 \mathrm{M} B_{s}^{(*)} B_{s}^{(*)}$ pairs were produced.

The total $b \bar{b}$ cross section at the $\Upsilon(5 S)$ energy has been measured to be $(0.302 \pm 0.014) \mathrm{nb}$, in which the fraction to $B_{s}^{(*)} B_{s}^{(*)}$ pair has been measured to be $f_{s}=N_{B_{s}^{(*)} B_{s}^{(*)}} / N_{b \bar{b}}=\left(19.5_{-2.3}^{+3.0}\right) \%$ [1, 2]. In the study of B_{s} decays, we generally calculate two variables: the beam-constrained mass $M_{\mathrm{bc}}=$ $\sqrt{E_{b}^{* 2}-\vec{p}_{B_{s}}^{* 2}}$ and the energy difference $\Delta E=E_{B_{s}}^{*}-E_{b}^{*}$, where $\left(E_{B_{s}}^{*}, \vec{p}_{B_{s}}^{*}\right)$ is the four-momentum of the reconstructed B_{s} candidate in the $\Upsilon(5 S)$ CM frame.

Belle has studied the $3 / 4$ body decay of $\Upsilon(5 S) \rightarrow B^{(*)} B^{(*)} \pi(\pi)$, where B means B_{u} or B_{d}. Only one B meson is reconstructed in 5 submodes $\left(B^{+} \rightarrow J / \psi K^{+}, \bar{D}^{0}\left(K^{-} \pi^{+}\right) \pi^{+}, \bar{D}^{0}\left(K^{-} 3 \pi\right) \pi^{+} ; B^{0} \rightarrow\right.$ $\left.J / \psi K^{* 0}, D^{-}\left(K^{+} \pi^{-} \pi^{-}\right) \pi^{+}\right)$. Fig. 1(a) shows the scatter plot of the $B \rightarrow J / \psi K^{+}$channel in data. By fitting the distributions of the value $M_{\mathrm{bc}}+\Delta E-5.28$ in bins of M_{bc}, the B meson signal yields are extracted as a function $M_{b c}$ (Fig. 1(c)). The MC distributions in Fig. 1(b) shows that the 2/3/4 body decay channel of $\Upsilon(5 S)$ can be distinguished in M_{bc}, which is due to different B momentum in $\Upsilon(5 S)$ rest frame in different channels. An enhancement in high M_{bc} region in background subtracted data (Fig. 1(c)) corresponding to $\Upsilon(5 S)$'s 3 or 4 body decays is seen, along with the peaks in low M_{bc} region. The branching fractions for 2 body decays $\Upsilon(5 S) \rightarrow B^{(*)} B^{(*)}$ are extracted by performing a fit in the region $5.268<M_{\mathrm{bc}}<5.348 \mathrm{GeV}$ to Fig. 1(c). The branching fraction for $3 / 4$ body decay is obtained by fitting $M_{\mathrm{bc}}+\Delta E-5.28$ in the region $5.348<M_{\mathrm{bc}}<5.44 \mathrm{GeV}$, as $\mathscr{B}\left(\Upsilon(5 S) \rightarrow B^{(*)} B^{(*)} \pi(\pi)\right)=\left(17.0_{-1.5}^{+1.6} \pm 2.7\right) \%$, which is inconsistent with theoretical calculations $(\sim 0.03 \%)$ [3].

Figure 2: Scatter plots for $B_{s} \rightarrow D_{s}^{-} \pi^{+}$(top) and $B_{s} \rightarrow D_{s}^{\mp} K^{ \pm}$(bottom). The three boxes in the top plot are the signal regions for $\Upsilon(5 S) \rightarrow B_{s}^{*} \bar{B}_{s}^{*}, B_{s}^{*} \bar{B}_{s}^{0}, B_{s}^{0} \bar{B}_{s}^{0}$, from top to bottom. The dashed box is the region where background from $B_{s} \rightarrow D_{s}^{-} \pi^{+}$sits.

Figure 3: (a, c) M_{bc} distributions for candidates in the $B_{s}^{*} B_{s}^{*} \Delta E$ signal region, (b,d) ΔE distributions for events in the $B_{s}^{*} B_{s}^{*} M_{\mathrm{bc}}$ signal region, for $B_{s} \rightarrow D_{s}^{-} \pi^{+}(\mathrm{a}, \mathrm{b})$ and $B_{s} \rightarrow D_{s}^{\mp} K^{ \pm}(\mathrm{c}, \mathrm{d})$ modes. The dotted curves in (b) and (d) represent the $B_{s} \rightarrow D_{s}^{*-} \pi^{+}$and $B_{s} \rightarrow D_{s}^{(*)-} \pi^{+}$background.

1.1 Measurement of the decays $B_{s} \rightarrow D_{s}^{-} \pi^{+}$and $B_{s} \rightarrow D_{s}^{\mp} K^{ \pm}$

The decay $B_{s} \rightarrow D_{s}^{-} \pi^{+}$proceeds through a Cabibbo-favored tree process, and has a large branching fraction which may serve as a normalization mode for B_{s} decays. The decay $B_{s} \rightarrow D_{s}^{-} K^{+}$ is Cabibbo-suppressed and is an important decay channel in measuring the weak phase gamma through time-dependent CP violation measurements.

Belle measured the branching fractions of $B_{s} \rightarrow D_{s}^{-} \pi^{+}\left(K^{+}\right)$, by fitting the 2 D distributions of ΔE and M_{bc}. Fig. 2 shows the scatter plots for $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$and $B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}$. The fit curves are shown in Fig. 3. We obtain [4] $\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}\right)=\left[3.67_{-0.33}^{+0.35}(\text { stat. })_{-0.42}^{+0.43}\right.$ (syst.) $\left.\pm 0.49\left(f_{s}\right)\right] \times 10^{-3}$, and $\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\right)=\left[2.4_{-1.0}^{+1.2}(\right.$ stat. $) \pm 0.3$ (syst.) $\left.\pm 0.3\left(f_{s}\right)\right] \times 10^{-3}$ with a significance of 3.5σ [4]. The ratio $\mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\right) / \mathscr{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}\right)=\left(6.5_{-2.9}^{+3.5}\right) \%$ is consistent with CDF result $(9.7 \pm$ $2.0) \%$ [5]. Belle also measured the B_{s}^{*} and B_{s} mass: $m_{B_{s}^{*}}=(5416.4 \pm 0.4 \pm 0.5) \mathrm{MeV} / c^{2}, m_{B_{s}}=$ $(5364.4 \pm 1.3 \pm 0.7) \mathrm{MeV} / c^{2}$ [4].

1.2 First measurement of $B_{s} \rightarrow X^{+} l^{-} v$

The total inclusive decay $B_{s} \rightarrow X^{+} l^{-} v$ is interesting because its branching fraction can be compared to the total semileptonic B^{0}, B^{+}branching fractions, where significant difference would indicate an unknown source of lepton production in B decays.

Figure 4: The electron (a) and muon (b) momentum distributions from B_{s}. They are fitted with primary (dotted) and secondary (dashed) lepton spectra.

Belle reconstructed the same-sign D_{s}^{+}meson and lepton events and obtained the distribution of the lepton momentum, by fitting the D_{s}^{+}mass spectra in each lepton momentum bin. The same-sign requirement suppresses continuum and $B \bar{B}$ backgrounds. Then, the background due to $\Upsilon(5 S) \rightarrow B \bar{B}(X)$ decay is evaluated using the momentum-corrected $\Upsilon(4 S) \rightarrow B \bar{B}$ data. The background due to continuum is evaluated using the continuum data. Other mis-ID backgrounds are evaluated using MC. After subtracting the backgrounds above, the lepton momentum distribution is further corrected for the radiative energy loss. Finally, it is efficiency-corrected and plotted in Fig. [4. It is then fitted with two components: primary lepton and secondary lepton spectrum from B_{s}. The normalizations are floated and shapes fixed from MC. But fitting the electron and muon distributions separately and simultaneously, Belle obtained $\mathscr{B}\left(B_{s}^{0} \rightarrow X^{+} e^{-} v\right)=(10.9 \pm 1.0 \pm 0.9) \%$, $\mathscr{B}\left(B_{s}^{0} \rightarrow X^{+} \mu^{-} v\right)=(9.2 \pm 1.0 \pm 0.8) \%$, and $\mathscr{B}\left(B_{s}^{0} \rightarrow X^{+} l^{-} v\right)=(10.2 \pm 0.8 \pm 0.9) \%$, which is consistent with the PDG value for $B^{0}: \mathscr{B}\left(B^{0} \rightarrow X^{+} l^{-} v\right)=(10.33 \pm 2.8) \%$.

1.3 Measurement of $B_{s} \rightarrow J / \psi \phi$ and observation of $B_{s} \rightarrow J / \psi \eta$

B_{s} decaying to CP eigenstate $J / \psi \phi$ and pure CP eigenstate $J / \psi \eta$ are studied at Belle. J / ψ is reconstructed in the $e^{+} e^{-}$and $\mu^{+} \mu^{-}$channels and the ϕ and η mesons are reconstructed in $\phi \rightarrow K^{+} K^{-}$and $\eta \rightarrow \gamma \gamma, \pi^{+} \pi^{-} \pi^{0}$ channels, respectively.

The scatter plots for $J / \psi \phi$ are shown in Fig. [5] from which we count the events in signal region and obtain the branching fractions $\mathscr{B}\left(B_{s} \rightarrow J / \psi \phi\right)=\left(1.15_{-0.30}^{+0.28}\right) \times 10^{-3}$.

The 2D distribution $\Delta E, M_{\mathrm{bc}}$ for $J / \psi \eta$ are fitted for the two η channels, and projected in Fig.6. The background shapes are all flat and the normalization for $J / \psi X$ background is fixed. We obtain $\mathscr{B}\left(B_{s} \rightarrow J / \psi \eta\right)=\left(3.44 \pm 1.07(\text { stat. })_{-0.30}^{+0.62}(\right.$ syst. $\left.)\right) \times 10^{-4}$ in $\eta \rightarrow \gamma \gamma$ channel, and $\mathscr{B}\left(B_{s} \rightarrow\right.$ $J / \psi \eta)=(4.60 \pm 2.06 \text { (stat. })_{-0.30}^{+0.89}($ syst. $\left.)\right) \times 10^{-4}$ in $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ channel, combined to $\mathscr{B}\left(B_{s} \rightarrow\right.$ $J / \psi \eta)=\left(3.69 \pm 0.95(\text { stat. })_{-0.30}^{+0.65}(\right.$ syst. $\left.)\right) \times 10^{-4}$.

Figure 5: $\quad M_{\mathrm{bc}}$ v.s. ΔE scatter plots for $B_{s} \rightarrow J / \psi \phi$. The left corresponds to $J / \psi \rightarrow \mu^{+} \mu^{-}$and the right corresponds to $J / \psi \rightarrow e^{+} e^{-}$.

Figure 6: Data projection from the $B_{s}^{*} B_{s}^{*}$ signal region onto the ΔE and M_{bc} axis for the combined $J / \psi \eta$ channels. Background is represented with the dashed curve.

Figure 7: Background free projections of $m_{\Lambda_{c} \pi}$ in regions of $\Sigma_{c}(2455)^{0}, \Sigma_{c}(2520)^{0}$ and $\Sigma_{c}(2800)^{0}$ mass.
 ical argument that B decays are favored if the baryon and antibaryon are close in phase space. In the two-body case, the baryon-antibaryon has to be back-to-back which cannot be close in phase space.

By studying the mass spectrum of $\Lambda_{c}^{+} \bar{p}$ in $B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}$decay, BaBar found a significant $\Sigma_{c}(2455)^{0}$ signal, no significant signal for $\Sigma_{c}(2520)^{0}$, and observed a state assumed to be $\Sigma_{c}(2800)^{0}$, as shown in Fig. 7. By studying the helicity angle of the Λ_{c}^{+}or \bar{p} in the $\Sigma_{c}(2455)^{0}$ signal region, as shown in Fig. 8, the $\Sigma_{c}(2455)^{0}$ is consistent with spin $J=1 / 2$ and the hypothesis $J=3 / 2$ is excluded at $>4 \sigma$ level. Also, by looking at the mass distribution of $\Lambda_{c} \bar{p}$ system, a threshold enhancement is seen in the low baryon antibaryon mass distribution shown in Fig. 8, This enhancement is consistent with what is observed in other baryonic modes such as $B \rightarrow p \bar{p} K$.

Belle recently studied the decay $\bar{B}^{0} \rightarrow \Sigma_{c}(2455)^{0} \bar{p} \pi^{+}$by selecting $\Sigma_{c}(2455)^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$candidates from the $\Lambda_{c}^{+} \bar{p} \pi^{+} \pi^{-}$final state. This decay has been previously studied by Belle [8]. By fitting the $M\left(\bar{p} \pi^{+}\right), \cos \theta_{p}$ distribution, Belle finds an enhancement near the mass $M\left(\bar{p} \pi^{+}\right)=1.5$ GeV . We parameterize this excess as a P-wave resonance N^{0}, and find a a yield of 70 ± 11 with significance 6.1σ. We measure its mass $M=1516 \pm 29 \pm 14 \mathrm{MeV} / c^{2}$ and width $\Gamma=365 \pm 97 \pm 90$

Figure 9: Fit to the $M\left(\bar{p} \pi^{+}\right)$and $\cos \theta_{p}$ distributions. The curves represent components of $\bar{B}^{0} \rightarrow \Sigma_{c}^{0} \bar{N}^{0}$ (dashed), $\bar{B}^{0} \rightarrow\left(\Sigma_{c}^{0} \pi^{+}\right)_{X} \bar{p}$ (dotted), the background (shaded) and the sum (solid).

MeV . In the fit, an additional $X_{\Sigma_{c}^{0} \pi^{+}}^{+}$resonant component is added to account for the peaking in the \bar{p} helicity angle $\cos \theta_{p}$ in $\bar{p} \pi^{+}$rest frame, as shown in Fig. 9. The branching fraction product is measured to be $\mathscr{B}\left(\bar{B}^{0} \rightarrow \Sigma_{c}(2455)^{0} \bar{N}^{0}\right) \times \mathscr{B}\left(\bar{N}^{0} \rightarrow \bar{p} \pi^{+}\right)=(0.80 \pm 0.15$ (stat.) ± 0.14 (stat.) \pm $0.21) \times 10^{-4}$, where the last error is due to the uncertainty in $\mathscr{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$.

3. Doubly charmed B decay $(b \rightarrow c \bar{c} s)$ and singly charmed B decay with $s \bar{s}$ popping

Belle has also recently investigated B decays to D_{s} or excited $c \bar{s}$ final states using 657 M $B \bar{B}$ pairs. Belle studied the double charmed decay $B \rightarrow D_{s 1}(2536)^{+} D^{(*)}$ where $D_{s 1}$ is a narrow P-wave $\left(J^{P}=1^{+}\right) c \bar{s}$ resonance. By fitting $D_{s 1}(2536)$ mass simultaneously to three $D_{s 1}$ decay channels $\left[D^{* 0}\left(D^{0} \gamma\right) K^{+}, D^{* 0}\left(D^{0} \pi^{0}\right) K^{+}, D^{*+}\left(D^{0} \pi^{+}\right) K_{S}\right]$ with no peaking background as studied from $\Delta E, M_{\mathrm{bc}}, D^{0}, D^{*}$ sidebands, the branching fractions are obtained as $\mathscr{B}\left(B^{+} \rightarrow D_{s 1}^{+} \bar{D}^{0}\right)=$ $(3.99 \pm 0.84 \pm 0.57) \times 10^{-4}, \mathscr{B}\left(B^{+} \rightarrow D_{s 1}^{+} D^{-}\right)=(2.76 \pm 0.63 \pm 0.35) \times 10^{-4}, \mathscr{B}\left(B^{+} \rightarrow D_{s 1}^{+} D^{*-}\right)=$ $(5.03 \pm 1.21 \pm 0.68) \times 10^{-4}$. Here $D_{s 1}$ is assumed to decay solely to two modes $\left(D^{* 0} K^{+}, D^{*+} K^{0}\right)$. The results are consistent with BaBar's result [10].

The decay $B^{+} \rightarrow D_{s}^{(*)-} X$ with opposite-sign B and $D_{s}^{(*)}$ can only proceed with ≥ 3 body decay and requires a $s \bar{s}$ pair popping besides the $b \rightarrow c \bar{u} d$ process. By studying $B^{+} \rightarrow D_{s}^{(*)-} K^{+} \pi^{+}$decay, one can study this production mechanism, as well as any charm resonance from $D_{s}^{(*)-} K^{+}$pair since $D_{s}^{(*)-} \pi^{+}$and $K^{+} \pi^{+}$cannot be from normal $q \bar{q}$ resonance.

Belle performed a 3D fit to $\left(M_{\mathrm{bc}}, \Delta E, m\left(D_{s}^{(*)}\right)\right)$. Projections of these fits onto the M_{bc} axis are shown in Fig. 10 from which we obtain the branching fractions [11] $\mathscr{B}\left(B^{+} \rightarrow D_{s}^{-} K^{+} \pi^{+}\right)=$ $\left(1.94_{-0.08}^{+0.09}(\text { stat. })_{-0.20}^{+0.20}(\right.$ syst. $\left.) \pm 0.17\left(\mathscr{B}_{\text {int }}\right)\right) \times 10^{-4}, \mathscr{B}\left(B^{+} \rightarrow D_{s}^{*-} K^{+} \pi^{+}\right)=\left(1.47_{-0.14}^{+0.15}(\text { stat. })_{-0.19}^{+0.19}(\right.$ syst. $) \pm$ $\left.0.13\left(\mathscr{B}_{\text {int }}\right)\right) \times 10^{-4}$, where $\mathscr{B}_{\text {int }}$ denotes the systematic error due to intermediate sub-branching ratios. These are consistent with BaBar's results [12]. Enhancements in the low mass region of $m\left(D_{s}^{(*)-}\right) K^{+}$are seen in both modes, as shown in Fig. 11. The enhancements, also seen by BaBar (Fig. 12), may due to a $D_{s}^{(*)-} K$ resonance. In addition, BaBar also studied more $D_{s}^{(*)-} h h$ modes, and obtained branching fractions $\mathscr{B}\left(B^{0} \rightarrow D_{s}^{-} K_{S}^{0} \pi^{+}\right)=(0.55 \pm 0.13 \pm 0.10) \times 10^{-4}, \mathscr{B}\left(B^{0} \rightarrow\right.$ $\left.D_{s}^{*-} K_{S}^{0} \pi^{+}\right)=(0.29 \pm 0.18 \pm 0.07) \times 10^{-4}, \mathscr{B}\left(B^{0} \rightarrow D_{s}^{-} K^{+} K^{+}\right)=(0.11 \pm 0.04 \pm 0.02) \times 10^{-4}$, $\mathscr{B}\left(B^{0} \rightarrow D_{s}^{*-} K^{+} K^{+}\right)=(0.07 \pm 0.06 \pm 0.02) \times 10^{-4}$.

Figure 10: Projections of M_{bc} in the $\left(\Delta E, M\left(D_{s}^{*-}\right)\right.$)'s signal region for $B^{+} \rightarrow D_{s}^{-} K^{+} \pi^{+}$(left) and $B^{+} \rightarrow$ $D_{s}^{*-} K^{+} \pi^{+}$(right) decays, with all sub modes added.

Figure 11: The invariant mass distributions for (a) $D_{s}^{-} K^{+}$and (b) $D_{s}^{*-} K^{+}$for $B^{+} \rightarrow D_{s}^{(*)-} K^{+} \pi^{+}$decay in the signal regions. The histograms show the background contributions from ΔE sideband.

4. Summary

In summary, recent results in B_{s} decay and charmed B meson decay are reported. BaBar studied the decay $\bar{B}^{0}\left(B^{-}\right) \rightarrow \Lambda_{c}^{+} \bar{p}\left(\pi^{-}\right)$, and observed a resonance $\Sigma_{c}(2800)^{0}$ and a threshold enhancement in $\Lambda_{c} \bar{p}$ system. Belle studied the decay $\bar{B}^{0} \rightarrow \Sigma_{c}(2455)^{0} \bar{p} \pi^{+}$and observed an enhancement in the $\bar{p} \pi^{+}$invariant mass, which is consistent with a baryonic resonance. Belle and BaBar measured the branching fractions for doubly charmed decay $B \rightarrow D_{s 1}(2536)^{+} D^{(*)}$ and $s \bar{s}$ popping processes $B^{+/ 0} \rightarrow D_{s}^{(*)-} h h$, which are consistent with each other. Belle measured the absolute branching fractions for $B_{s} \rightarrow D_{s}^{-} h$ and the inclusive B_{s} semileptonic decay, the B_{s}^{*} mass, and observed a CP

Figure 12: $D_{s}^{(*)+} K^{-}$invariant mass spectra for the $B^{-} \rightarrow D_{s}^{+} K^{-} \pi^{-}$(left) and $B^{-} \rightarrow D_{s}^{*+} K^{-} \pi^{-}$(right) decay modes using the data. The histograms show the phase space distributions.
eigenstate decay $B_{s} \rightarrow J / \psi \eta$. More B_{s} results will come with $\sim 100 \mathrm{fb}^{-1} \Upsilon(5 S)$ data from Belle before the end of year 2009.

References

[1] A. Drutskoy et al. [Belle Collaboration], Phys. Rev. Lett. 98, 052001 (2007) [arXiv:hep-ex/0608015].
[2] G. S. Huang et al. [CLEO Collaboration], Phys. Rev. D 75, 012002 (2007) [arXiv:hep-ex/0610035].
[3] Yu. A. Simonov and A. I. Veselov, JETP Lett. 88, 5 (2008) [arXiv:0805.4518 [hep-ph]].
[4] R. Louvot et al. [Belle Collaboration], Phys. Rev. Lett. 102, 021801 (2009) [arXiv:0809.2526 [hep-ex]].
[6] K. Abe et al. [Belle Collaboration], arXiv:0710.2548 [hep-ex].
[7] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 78, 112003 (2008) [arXiv:0807.4974 [hep-ex]].
[8] K. S. Park et al. [Belle Collaboration], Phys. Rev. D 75, 011101 (2007) [arXiv:hep-ex/0608025].
[9] H. O. Kim et al. [Belle collaboration], Phys. Lett. B 669, 287 (2008) [arXiv:0808.3650 [hep-ex]].
[10] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 77, 011102 (2008) [arXiv:0708.1565 [hep-ex]].
[11] J. Wiechczynski et al. [Belle Collaboration], arXiv:0903.4956 [hep-ex].
[12] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 100, 171803 (2008) [arXiv:0707.1043 [hep-ex]].

[^0]: *Speaker.
 ${ }^{\dagger}$ The FPCP09 organizer

