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We present the results of a global fit of the CKM matrix parameters to experimental data within
the Standard Model theoretical context. We follow a frequentist approach to handle statistical
uncertainties and use a conservative Rfit scheme to deal with ill-modeled theoretical systemat-
ics, mostly arising from strong interaction effects. The current experimental data are found to be
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between the branching ratio of B+ → τ+ν purely leptonic decays and sin(2β ) derived from char-
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transitions, by following a model-independent approach.
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1. Introduction

In the Standard Model (SM), the weak charged-current transitions mix quarks of different gen-
erations. The mixing amplitudes are described by the 3 by 3 unitary Cabibbo-Kobayashi-Maskawa
(CKM) matrix [1]. For three generations of quarks, the CKM matrix is completely defined by only
4 real parameters, whose choice in not unique. One of these parameters is a non-vanishing phase
which is currently the only established source of CP violation in the SM. The lepton sector could
also exhibit similar sources of CP violation. For our analysis we use a unitary-exact Wolfenstein-
like parameterisation [2, 3] of the CKM matrix by letting:

λ =
|Vud |

√

|V 2
ud|+ |V 2

us|
,Aλ 2 =

|Vcb|
√

|V 2
ud|+ |V 2

us|
, ρ̄ + iη̄ = −VudV ∗

ub

VcdV ∗
cb

, (1.1)

where (ρ̄, η̄) defines the apex of the Bd unitarity triangle (UT). Note that these 4 CKM parameters
are derived from the moduli of CKM matrix elements or from a 4 product invariant [3], hence there
are rephasing invariant. Additionally, the CKM matrix elements can be expanded in powers of the
Cabibbo angle λ = sin(θC), while preserving the matrix unitarity up to any order of the series.

The expansion parameter λ is accurately determined, at 0.3% level, from superallowed nu-
clear transitions, yielding |Vud|, and from semileptonic kaon decays, yielding |Vus|. The parameter
A, determined with an accuracy of 3%, requires the knowledge of |Vcb| measured from charmed B
semileptonic decays. The apex (ρ̄, η̄) of the UT is less accurately known. It is derived from sides
and angle measurements of the UT. One of the challenges is that the precise extraction of observ-
ables related to these electroweak parameters is complicated by the presence of strong interaction
effects.

2. The Global CKM Fit

We perform a global fit of the CKM parameters values in order to best match the observed
experimental data, ~xobs, to their SM theoretical predictions. With this aim we distinguish two
categories of uncertainties: statistical ones, which are assumed to be Gaussian distributed with
known standard deviation and correlations, and theoretical systematics, for which no statistical
distribution can be safely assumed. Hence, the latter are considered as additional fit parameters
bounded to a confidence interval. This dedicated treatment of theoretical systematics is the so
called RFit scheme [3].

2.1 General Fit Procedure

The core fit procedure and the interpretation of the fits results rely on frequentist hypothesis
testing tools. In the following we give a practical description of our fit procedure. For justifications
we refer the reader to reference [4]. We start by splitting our parameter vector ~θ in two distinct
sets. On one side are the scanned parameters of interest, for example (ρ̄, η̄). Let this component
be ~µ . The remaining parameters are considered as nuisance parameters and the corresponding
component is noted ~ν . For a given value ~µ0 of the component ~µ , which is our test null hypothesis
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expressed as the following assumption, H0 : ~µ = ~µ0, we can compute the observed value taken
by the likelihood function, L (~µ,~ν;~xobs) = p(~x =~xobs;~µ,~ν). The latter likelihood is the objective
function to optimise for our fit, such that ’best match’ should be understood as: maximising the
likelihood. Then, for the hypothesis test statistic we consider the maximum likelihood ratio, or
relative likelihood, defined as:

λ (~x;~µ) =

sup
~ν

L (~µ,~ν;~x)

sup
~µ ,~ν

L (~µ,~ν;~x) , (2.1)

which in our case is more conveniently expressed by considering the log likelihood, setting ∆χ 2 =

−2ln(λ ). Note however that despite the notation, the ∆χ 2 values are not necessarily χ2 distributed.
Technically, the ∆χ2 value obtained from equation (2.1) is the variation of the likelihood fit resid-
uals by fixing the scanned parameters or using their best match, letting them free in the fit.

In order to interpret the observed test value ∆χ2
obs, at ~x =~xobs, we quote the corresponding

statistical significance, or the critical p-value, of the data under the null hypothesis H0 :~µ =~µ0, as:

p-value(~µ0,~ν;~xobs) = P(∆χ2 ≥ ∆χ2
obs;~µ0,~ν) =

∫

Σobs

p(~x;~µ0,~ν)d~x, (2.2)

with Σobs = {~x;∆χ2(~x;~µ0) ≥ ∆χ2
obs}. It must be pointed out that generally speaking the statistical

distribution of the ∆χ2 can be non trivial and in particular it can be strongly affected by the true
value of the nuisance parameters ~ν , through the sampling of ~x. Hence, quoting a statistical sig-
nificance for the solely scanned parameter values can be ambiguous. However, under regularity
conditions defined by Wilks theorem, in the asymptotic regime ∆χ 2 is to be χ2 distributed, inde-
pendently of ~ν . The latter asymptotic regime is assumed for most results presented in this paper,
involving a large number of observables and nuisance parameters. If not, we rely on dedicated toy
Monte-Carlo studies to sample the ∆χ2 distribution more accurately.

Finally, we can repeat the fit procedure as a scan for various values of the parameter set of
interest ~µ . By construction, a confidence region of level CL for the scanned parameter is pro-
vided by the set of parameter values for which the corresponding p-value exceeds 1 − CL, as
p-value(~µ;~xobs) ≥ 1−CL. When the asymptotic regime is assumed for the ∆χ 2 distribution, the
confidence intervals we obtain consist in profile likelihood intervals, or so called MINOS inter-
vals [4].

2.2 Illustrated RFit Scheme

To illustrate the problem, let us consider a simplified example, fully solvable by analytical
means. Let us have a single observable, x, whose theoretical prediction is simply given as x = µ .
We further assume that the observation of x is smeared by a centred Gaussian distributed error of
standard deviation σ , and biased by a systematic ∆x, which is to lie within [−∆;∆]. Hence, x is
Gaussian distributed of central value µ + ∆x and standard deviation σ . Following equation (2.1),
for a given value of µ one checks that the test statistic, ∆χ 2, writes as:
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∆χ2(x; µ) =

{

(|x−µ|−∆)2

σ2 , if |x−µ| > ∆

0, elsewhere
. (2.3)

Note that the previous expression extends to a more general scheme where the χ 2 depends on
multiple observables with Gaussian distributed statistic errors. In the latter, provided the systematic
∆x is not correlated among the observables, the minimum of the χ 2 as respect to ∆x is simply
obtained by substituting the component (x − µ − ∆x)

2/σ 2 in the χ2 by ∆χ2(x; µ) as given by
equation (2.3).

Back to our simplified example, the p-value is computed from equation (2.2), recalling that x
is Gaussian distributed. It yields:

p-value(µ,∆x;xobs) =







1
2

(

erfc( |xobs−µ|−∆x√
2σ )+ erfc( |xobs−µ|+∆x√

2σ )
)

, if |xobs −µ| > ∆

1, elsewhere
. (2.4)

Note that in the limit ∆ → 0, one recovers the classical p-value for a Gaussian distributed error.
From the latter equation (2.4) it is also seen that even though the test statistic ∆χ 2 does not depend
on the nuisance parameter ∆x, its statistical distribution and so its p-value does. A conservative
method to escape the latter issue is to consider the worst case over all values of the nuisance pa-
rameter, the so called supremum p-value [5]. In the simplified example we consider the supremum
p-value is always achieved at boundaries for ∆x = ±∆.

On figure 1 we compare the result of the Rfit scheme to what one would get by assuming
that the systematic ∆x is statistically distributed, uniformly over the range [−∆;∆]. Supremum
p-value is considered. One sees that the RFit approach is always more conservative. In particular
as one is dominated by systematics, ∆/σ → ∞, see the lower right plot,the Rfit p-value becomes
rectangular, centred on the observation and of span ±∆, resulting in a flat significance over the
systematics range. But, if assuming a uniform distribution, one gets a triangular p-value, favouring
the observation over other values within the systematics range.

2.3 Observables for the Global Fit

In table 1 we summarised the various categories of observable we use as input to the global
CKM fit as well as the related experimental sources and theory ingredients. More details and
references are given in [3, 6]. Among all these observables, only two have been modified since
our last summer 2008 update: the branching ratio (BR) of the B+ → ρ+ρ0 channel updated by the
BaBar collaboration [7] and HFAG [8] average of sin(2β ) from charmonium B decays.

Because the weak effects we are interested in are entangled with strong interaction effects con-
fining the quarks, hadronic inputs are also required. These hadronic inputs severely contribute to
the fit accuracy and to CKM parameter uncertainties. In particular, they limit the precision on the
determination of the observables involving processes with loops such as, ∆md , ∆ms, |εK | and also
the tree decay B+ → τ+ν . On the contrary, hadronic contributions to the semileptonic K`3 decays
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Figure 1: Illustrated RFit scheme for various values of the ratio ∆/σ of the systematic to the statistic
error. The red curve stands for the supremum RFit p-value while the black curve is the result for a statistic
treatment of the systematic, uniformly distributed over the range ±∆. The horizontal dotted line indicates
the equivalent 1σ confidence level for a Gaussian distributed error, given as 1−CL = erfc(1/

√
2)' 0.3173.

are surprisingly under excellent control. For our fit, we mostly rely on lattice QCD (LQCD) simu-
lations to estimate these hadronic inputs. Accuracies of lattice predictions have steadily improved,
with precisions of a few percent achieved for example on the ratio of Bs to Bd decay constants,
fBs/ fBd . However, it is required to combine the results from different collaborations with various
statistic and systematic uncertainties. This game is particularly tricky since LQCD predictions are
now dominated by systematics. In the absence of a general averaging consensus, we have set up
our own averaging of these results following a reproducible Educated RFit scheme [11].

2.4 Global Fit Results

Combining the various observables summarised in table 1 our global fit best guess shows good
agreement with experimental data. The p-value for the SM hypothesis is of 45% (equivalent to 0.8σ
deviation for a Gaussian distribution). On figure 2 we show the 95% confidence areas in the (ρ̄, η̄)

plan for individual constraints, as well as for their combination. One sees that the fit is dominated
by sin(2β ), ∆md/∆ms and α observables. While only two of these observables would be enough
to determine the apex of the UT, these 3 observables over-constrain it by exhibiting an impressive
agreement. Hence, we can confidently say that the KM mechanism is at work for CP violation and
dominant in B decays.

From individual scans we find the following values for the CKM parameters, quoting 1σ
confidence intervals: λ = 0.22521±0.00082, A = 0.8116+0.0097

−0.0241, ρ̄ = 0.139+0.025
−0.027, η̄ = 0.341+0.016

−0.015.
Additional numerical results can be found in reference [6].
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Observable Category Experimental Sources Theory Methods & Inputs

|Vud | superallowed β -decays Towner & Hardy, PRC77 025501 (2008)
|Vus| K`3, FlaviaNet [9] average f Kπ

+ (0) = 0.964(5) (RBC-UKQCD)
|Vcb| B → Xc`ν (HFAG excl.+incl.) 40.59(38)(58) ·10−3, FF and/or OPE
|Vub|SL B → Xu`ν (HFAG excl.+incl.) (†) 3.87(9)(46) ·10−3, FF and/or OPE
B(B+ → τ+ν)(⇒ |Vub|) 2008 average: BaBar and Belle (†) fBs/ fBd = 1.196(8)(23), fBs = 228(3)(17)

∆md(⇒ |Vtd |) HFAG average B0
d − B̄0

d mixing (†) B̂Bs/B̂Bd = 1.05(2)(5), fBs/ fBd

∆ms(⇒ |Vts|) CDF B0
s − B̄0

s mixing (†) B̂Bs = 1.23(3)(5), fBs

|εK | K0 − K̄0 PDG 2008 average ∆S = 2 amplitudes, B̂K = 0.721(5)(40)

α/φ2 B → ππ,ρρ ,ρπ B fact. average Isospin SU(2), Gronau & London [10]
β/φ1 Charmonium B decays, HFAG sin(2βcc) = 0.671(23)

γ/φ3 B− → D(∗)K(∗)−, B fact. average GLW, ADS, GGSZ

Table 1: Various relevant observables used as input to the global CKM fit. Numerical values that have been
computed using the Educated RFit averaging scheme are tagged with a dagger as (†). The upper part of
the table corresponds to CP conserving observables while the lower part is CP violating quantities. Full
information on fit inputs can be found in reference [6].
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Figure 2: 95% CL individual and global constraints in the (ρ̄, η̄) plan from the global CKM fit. The red
hashed region of the global combination corresponds to 68% CL.
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2.5 Update of the α Angle

The angle α is extracted from B → ππ,ρρ and ρπ decays using rates and asymmetries. Be-
cause the direct transition is polluted by penguin contributions with similar CKM amplitudes, but
different weak phases, one does not measure directly the angle α , as it is the case for the angle β .
Rather one measures an effective angle αe f f . Further assuming SU(2) isospin symmetry one can
however extract α from a global fit to B → hh rates and asymmetries [3, 10]. Comparing the three
different cases (ππ , ρρ and ρπ), one finds that the smallest penguin pollution, and thus the most
stringent bound, comes from ρρ modes.

Following BaBar update of the BR of the B+ → ρ+ρ0 mode the angle α is now determined
with a good accuracy, at the level of 5% or less: α = (89.0+4.4

−4.2)
◦, reaching similar accuracy than

the angle β . Compared to Summer 08 results, α = (88.2+6.1
−4.8)

◦, the improved global accuracy
comes from a factor of 2 improvement in the extraction of α from ρρ modes. Technically, this
improvement by a factor of 2 results from two previously degenerated mirror solutions, due to
discrete ambiguities inherent to the method, that collapsed into a single one. Though it might seem
somewhat incidental it was checked from toy Monte-Carlo studies [11] that the current situation is
quite likely since penguins contributions are small.

Additionally, to study possible systematics from the SU(2) symmetry assumption, we have
also modeled isospin breaking effects [11]. It was checked that even sizable isospin breaking
contributions have only a very mild impact on the determination of the angle α at 95% CL.

3. Tensions and New Physics Studies

Looking at individual observables, the only significant deviation we do see as regard to our fit
best guess result concerns the value of the B+ → τ+ν BR. For the later we got a 2.4σ deviation of
the measurement to our fit.

Treating hadronic uncertainties within the Educated RFit scheme we dot not see a significant
difference between |Vub| determined inclusively from semi leptonic B → Xu`ν decays, |Vub|incl. =

4.38(16)(57) ·10−3, and from exclusive ones, |Vub|excl. = 3.46(11)(46) ·10−3 [3, 11]. Neither do we
see a deviation between the measurement and the indirect prediction of |εK | from CKM parameters.
Note that the latter theoretical prediction suffers from ∼ 7% uncertainties from |Vcb| which plays
in to the 4th power and 5% from hadronic uncertainties on the value of the bag parameter, B̂K .

3.1 B+ → τ+ν versus sin(2β ) Tension

The deviation of B+ → τ+ν BR can be mostly resolved if we drop sin(2β ) from the fit. The
point is that the combination of B+ → τ+ν and sin(2β ) defines two solutions for the UT apex that
are incompatible with other observables: ∆md/∆ms and α . However, when discarding either B+ →
τ+ν or sin(2β ) one can perfectly fit the remaining observables. Hence there is an inconsistency
between B+ → τ+ν (too high) and sin(2β ) (too low) experimental values or with our theoretical
interpretation of these observables, badly-estimated hadronic parameters for example.

The B+ → τ+ν experimental BR is obtained from a weighted mean of BaBar and Belle mea-
surements using two different tags [12]. For the experimental combination we have: B[B+ →
τ+ν ] = (1.73± 0.35) · 10−4, while our indirect theoretical prediction from CKM parameters is
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Figure 3: Measurements of hadronic parameters , fBd , fBd

√

B̂Bd and B̂Bd . On the left figure, colored areas
show the 95% confidence area for the corresponding parameters. The Green constrain is derived from CKM
observables, not including ∆md while the orange one is derived not using B[B+ → τ+ν ]. The yellow area
is the combined constrain and the dashed red zone is the corresponding 1σ area. The superimposed black
cross indicates our prediction from LQCD dominated by systematic uncertainties, with 1σ error bars. On the
right figure, the blue curve is the p-value function for B̂Bd , not including LQCD inputs, while the red one is
our prediction from solely LQCD data. The two predictions disagree at 2.4σ . We recall that the confidence
intervals of level CL are given by values of B̂Bd for which the p-value is greater than 1−CL. At 95% CL it
yields B̂Bd ∈ [1.01;1.36] from LQCD inputs, to be compared to B̂Bd ∈ [0.34;0.90] from CKM observables
only, not including LQCD inputs.

only (0.796+0.154
−0.093) ·10−4. The four measurements used for the experimental average are consistent

and in agreement with the hypothesis of a Gaussian distributed uncertainty, with a p-value of 11%
(1.6σ ) according to a two sided χ2 test. For sin(2β ) experimental value we recall that we use
HFAG [8] average of charmonium B decays. The corresponding set of measurements also looks
consistent.

B[B+ → τ+ν ] theoretical prediction suffers from hadronic uncertainties on the value of the
decay constant, fBd . We extract the later from our own lattice averages of fBs and fBs/ fBd , yielding
fBd = 191.1± 20.7 MeV, in perfect agreement with recent LQCD estimates [13]. Reversing the
problem, we can estimate hadronic inputs: fBd , fBd

√

B̂Bd and B̂Bd [12] from our sole CKM observ-
ables, not making use of LQCD predictions. The estimates we obtain, within the SM, are shown
on figure 3. One can see that while the LQCD prediction for the product fBd

√

B̂Bd is consistent
with our estimate, fBd or B̂Bd individually disagree at more than 2σ . Therefore, only a correlated
change of the two latter parameters, that is increasing fBd and decreasing B̂Bd , while keeping the
product fBd

√

B̂Bd mostly unchanged would allow to accomodate the current experimental value of
B[B+ → τ+ν ] into the global CKM fit.

3.2 Charged-Higgs Contributions in 2HDM(II)

Going one step farther, let us assume that both experimental measurements of B+ → τ+ν and
sin(2β ) and hadronic estimates of fBd and B̂Bd are close to their true expectation, and see how we
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could accommodate all these in a New Physics (NP) scenario. There are two possible effects of NP
models. Either the model increases the prediction for B[B+ → τ+ν ] or it decreases the prediction
for sin(2β ) from charmonium B decays.

Considering the first scenario, B+ → τ+ν transitions mediated by a charged-Higgs, H+, in-
stead of a W + boson, could significantly increase the BR within a fine-tuned scenario of the
charged-Higgs mass to the B meson mass. Charged-Higgs would arise in extensions of the SM
to Two Higgs Doublet Models (2HDM). Of particular interest are type II models which mimic the
flavour structure of the SM as well as the Supersymmetric (SUSY) Higgs sector at tree level. How-
ever, from a global analysis, also considering K and D mesons leptonic and semileptonic decays
this fine-tuned charged-Higgs scenario is disfavored at more than 95% CL [14], assuming type II
2HDM. Further considering observables the like B → Xsγ , most sensitive to charged-Higgs contri-
butions through top quark loop couplings, the 2HDM(II) scenario is constrained to a decoupling
solution, with an indirect limit on the charged-Higgs mass of mH+ ≥ 304 GeV at 95% CL [14].

3.3 New Physics in B Mixing

The expectation for sin(2β ) from charmonium B decays could be decreased by NP contri-
butions to the meson mixing. Let us consider the scenario where NP only affects the short dis-
tance part of the ∆B = 2 transitions, the like previously discussed in [11, 12, 15]. Using a model-
independent parameterisation, it is found that the tension between B[B+ → τ+ν ] and sin(2β ) can
be fully resolved if interpreting it as as additional NP phase in B mixing, of ΦNP

d = −(12+6
−9)

◦ at
95% CL. Though this is no striking evidence for an additional NP correction in the B’s sector, we
point out that whatever B[B+ → τ+ν ] is taken into account or not, sizable NP contributions to the
Bd mixing are still allowed: up to ∼−18◦ on the phase and ∼ 50% on the amplitude, at 95% CL.

Additionally, in the Bs system the measurement of the angle φs = 2βs, not included in the
standard global CKM fit, is also a source of tension. The angle φs is measured at Tevatron by CDF
and D0 [8], in Bs → J/Ψφ channel. It deviates at 2.2σ from the SM expectation. Combining the
2.4 deviation in the Bd system, arising from the B+ → τ+ν versus sin(2β ) tension, with the tension
in the Bs system, arising from φs, the SM hypothesis is disliked at 2.5σ in a generic scenario of NP
in both Bd and Bs mixing.

4. Conclusion

Following developments on both experimental (B factories, Tevatron) and theoretical (LQCD)
sides, it is seen that the SM accurately fits most of the current experimental data. This establishes
the KM mechanism as the dominant source of CP violation at the electroweak scale. The only
significant deviation that we observe consists in an ongoing tension between B[B+ → τ+ν ] and
sin(2β ) derived from charmonium B decays. The significance of this tension is 2.4σ within the
SM. It could be fully absorbed by NP contributions to the Bd mixing. Conversely, sizable NP
contributions to both Bd and Bs mixing are still allowed.

Improvements on B related LQCD predictions as well as more precise experimental measure-
ments (LHC, super B factories) are expected in the future. These data will allow to confirm or
infirm the interpretation of the combined 2.5σ tension in the B mixing as additional NP contri-
butions. Furthermore, the accurate direct measurement of the angle gamma (∼ 5◦ at LHCb with
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2 fb−1 [16], which is only one year of regular data taking, and ∼ 2◦ at superB factories with
75 ab−1 [17]) will provide an additional consistency test of the KM mechanism.
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