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Using lattice QCD we study the spectrum of low-lying fermieigenmodes. According to the
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1. Introduction

Spontaneous breaking of chiral symmetry is the most fundamental prapfetfte vacuum
of Quantum Chromodynamics (QCD). Once we assume that the chiral symmstgntaneously
broken, we can derive many important relations in the phenomenologyafsirteraction, such as
the GMOR relation, Goldberger-Treiman relation, and other soft pion émegrwhich are written
in the language of chiral effective theory. The problem of how and thieyspontaneous chiral
symmetry breaking occurs remains a difficult question due to the non-patite dynamics of
QCD.

Chiral symmetry of course plays a key role in the understanding of clyinafreetry breaking.
In the flavor non-singlet sector of chiral symmetry, pion arises as the NaBabdstone boson
associated with the spontaneous symmetry breaking, while in the flavorissegter the chiral
symmetry is violated by the axial anomaly and is related to the topology of nohafbgauge
theory. There are near-zero modes of quarks associated with the gmablexcitations; their
accumulation in the vacuum leads to the symmetry breaking in the flavor ndetssegtor as
indicated by the Banks-Casher relation. Therefore, the initial setup tg gtedchiral symmetry
breaking should preserve the flavor singlet and non-singlet chinatrstries.

Lattice QCD is the most promising approach to solve the low-energy dynam@€Dbf but
there is a problem in realizing the chiral symmetry on the lattice. The convehtidiison-type
fermions violate the chiral symmetry at the action level, and the discrimination esttlie phys-
ical effect of symmetry breaking and the lattice artifact cannot be donel@aat manner. On the
other hand, the staggered fermions have a chiral symmetry but breakbe symmetry. With
these lattice fermions, the continuum limit has to be taken before analyzing theaisiag the
continuum chiral effective theory.

Among other physical quantities, we are interested in extracting the chindeosatgqq),
which is an order parameter of the chiral symmetry breaking. This is ngtleEasmuse the scalar
density operatogqg has a power divergence of the fomna,/zzl2 as the cutoff Ya goes to infinity,
hence the massless limit has to be taken to obtain physical result. (When taksghimetry
is violated from the outset as in the Wilson-type fermion, the divergenceeis stvonger 1a3.)
The condensate however vanishes in the massless limit, as far as thdisgagelume is kept
finite. Therefore, the proper order of the limits is to take the infinite volume limitdingl then the
massless limit, which is called the thermodynamical limit. Thus, the study of symmetkibge
is numerically so demanding, and some theoretical guidance is requiredttoldbe limits. In
QCD, the chiral perturbation theory (ChPT) provides such a theorétazakwork.

This work is an attempt to simulate the QCD vacuum on the lattice with exact chinahsiry.
We use the overlap fermion formulation [1, 2], that exactly preservealdrd flavor symmetries
and correctly reproduces the axial anomaly. We calculate the chirabosate in various ways,
which provide a good test of the chiral effective theory. In particui@rstudy the spectral density
of the Dirac operator and compare with ChPT at the next-to-leading okleD) of the chiral
expansion. We also discuss a few other consequences of sporgasyometry breaking and
related lattice calculations, which are made possible with exact chiral symnmeting dattice.

These works have been done by the JLQCD and TWQCD collaborationsovérview of
their recent physics results is found in [3].
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Figure 1: Theoretical expectation from [5] on the spectral functibh a- 2 fm. The left and right panels
correspond to the pion mass around 300 MeV and 100 MeV, régplyc The curves correspond to the full
NLO calculation (solid curve, red), the leading order resuthe e-expansion (dashed curve, blue), and the
result in the infinite volume (dotted curve, black) at NLO loé ttonventionap-expansion.

2. Dirac spectrum and chiral symmetry breaking

The chiral symmetry breaking is induced by an accumulation of low-lying sigées of
guark-antiquark pair, as indicated by the Banks-Casher relation [4]

lim lim p(A =0) = —, (2.1)
wherep(A) denotes the eigenvalue density of the Dirac oper@tdt,) = (1/V) Sk(0(A — Ax)).
The expectation valué --) represents an ensemble average lamabels the eigenvalues of the
Dirac operator on a given gauge field background. On the right hidedo$ (2.1),% is the chiral
condensatey = —(qq), evaluated in the massless quark limit. In the free theory, we expect a
scalingp(A) ~ A8 for a dimensional reason. The relation (2.1) implies that the spontaneak ch
symmetry breaking characterized by non-zEris related to the number of near-zero modes in a
given volume after taking the thermodynamical limit.

Based on ChPT, more detailed formsadf\ ) at finite A, V andm have been obtained. This is
achieved by evaluating the chiral condensate at imaginary valoévalence quark mass, relying
on the analytic continuation. The spectral function is thus obtained withqlicidy treating the
quark eigenstates.

In this work, we use the most recent calculation by Damgaard and Fukpyehish is based
on the conventionap-expansion of ChPT but include an integral over zero-momentum modes of
pion field, hence also consistent with thexpansion. At NLO, they provide a formula fpfA)
at finiteV and (non-degenerata). A typical example is shown in Figure 1 (left panel). The plot
shows the spectral functign(A ) at a given volume&/ = L3 x (3L) with L ~ 2 fm and pion mass
m; ~ 300 MeV. Within the leading order (LO) of theexpansion, the spectral function is given by
the dashed curve, which is equivalent to what one obtains from thd clm@om matrix theory. It
receives a finite volume correction at NLO and becomes the solid curvwgingtitom the second
peak of the oscillating curve, the spectral function is suppressed due paoif-loop effects. In the
infinite volume limit, we expect a smoother dotted curve, which contains a chgatitom.
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The right panel of Figure 1 shows the spectral function instiegime. Here the lowest-lying
eigenvalue is strongly suppressed by the fermion determinant as themaaskis close to zero.
The difference between LO and NLO in theexpansion is less significant, since the system is in
the e-regime.

Once we could calculate the spectral density on a finite volume lattice, we tractéxand
1/F2. Essentiallyz determines the height of the distribution andF2 the size of the NLO effects.
The finite volume scaling should also be tested with more than one lattice volumes.

3. Lattice analysis of the spectral density

We use the lattice data obtained in the course of dynamical overlap fermion sanslay the
JLQCD and TWQCD collaborations. The project mainly aimed at controlling lifralextrapola-
tion of physical quantities by realizing exact chiral and flavor symmetrie<itettice simulations.
The use of the continuum ChPT is justified even at finite lattice spacings iresbtdrother lattice
fermion formulations, for which some modifications of ChPT with additional patars is re-
quired. With the exact chiral symmetry, there have been several nesicgtapplications proposed
from the project [3].

We use the overlap-Dirac operatbf0) = p/a[1+ X/vXTX] with the Wilson kernelX =
aDw — p [1, 2]. This fermion formulation exactly preserves a modified version othieal sym-
metry at finite lattice spacings [6]. The axial Ward-Takahashi identitieessentially the same as
those in the continuum theory, and the index theorem is satisfied.

The large-scale simulations had been made feasible by restricting the Mdrdiovin a given
topological charge, since the overlap-Dirac operator has a discontonttye boarder of the topo-
logical charge, and the numerical costs grows am treat the change of topology. This is achieved
by introducing unphysical heavy Wilson fermions in the simulation [7]. Fixingptogy induces
a finite volume effect for any physical quantities, but corrections assipte using the general
formulae developed in [9, 10]. For the calculation of the spectral funcimsidered in this work,
the fixed topology is an advantage rather than a disadvantage, as thdd@hilae are given for
fixed topological sectors.

At an early stage of the project, we performed simulations of two-flavor QCB lattice
spacinga~ 0.12 fm on a 18 x 32 lattice. The simulation details are described in [8]. We took
six values of sea quark mass in the rangg¢6 ~ ms, with ms the physical strange quark mass, to
investigate the chiral extrapolation as discussed below. We also cartiedron in thes-regime
with the quark mass around 3 MeV, in order to study the low-lying Dirac eigervspectra, as
discussed in the next section.

We then extended the work to 2+1-flavor simulations at a lattice spacingd.11 fm on
16° x 48 and 24 x 48 lattices. We cover a similar range of (degenerate) up and down quasema
as in the two-flavor runs while taking two values of strange quark masstagarysical value. A
dedicated run in the-regime has also been performed with the up and down quark massed aroun
3 MeV while keeping the strange quark mass near the physical value lifjprary report of these
runs in found in [11].

At an early study of the eigenvalue spectrum, we use the distribution of tlestdying Dirac
eigenvalue to extrad in two-flavor QCD, by matching the distribution to the expectation from



Spontaneous chiral symmetry breaking on the lattice Shoji Hashimoto

Ng=2+1,ma=0.080,Q=0 N=2+1,ma=0.080,Q=0
0.005 ———— 0.005 —
lattice lattice ¢
m=0.015 (=2fm) —— m=0.002 (=2fm) ——
0.004 m=0.015 e-expansio€2fm) - 0.004 | m=0.002 e-expansio€2fm) -

0.003| i 0.003

0
o)

0.002 0.002 -

0.001 0.001 -

Figure 2: Lattice results for the spectral function (histogram) tbge with the LO (dashed, blue) and NLO
(solid, red) curves. The left and right panels corresponti¢gpion mass around 300 Me¥-fegime) and
100 MeV (g-regime), respectively.

the chiral random matrix theory [12, 13]. In this method the relation to ChP$tabished only
at LO of theg-expansion, so that the result may contain significant finite volume effédthvis
the NLO effect. This was signalled already by a slight inconsistency betebtained from the
lowest and from the second lowest eigenvalues.

With the new formula [5], we can now consistently incorporate the NLO ffiato the analy-
sis. We use the 2+1-flavor data of spectral function in a wider regiorecéitienvalue . Since the
formula is valid also in thg-regime, we are able to include tiperegime lattices into the analysis.

Figure 2 shows the results for the spectral function in 2+1-flavor QQRimdd on 18 x 48
lattices. The global topological chargis fixed to 0. The lattice data (histogram) are overlaid
on the expectation from the NLO formula for both theegime (left panel) and-regime (right
panel). We observe that the NLO formula nicely reproduces the shathe déttice data. The
curves are drawn by fixing the paramete¥saphdF) with the data for an integrated spectrum at
two representative values af Typically, one is taken near the top of the first peak, and the other
is taken atA ~ 0.04, where the NLO effect is significant.

We have further tested the NLO formula by extending the calculation to a lkigiee. The
finite volume scaling is tested with the data on & 248 lattice in thep-regime. We find that the
result forZ from this lattice is consistent with that on a smaller lattice after correcting the finite
volume effect for both lattices. This implies that the lattice result scales astexpwwards the
thermodynamical limit.

From this analysis, we obtalhat six values of up and down quark massgg while keeping
the strange quark mass; at its physical value. Thus, we obtain an “effective” valu&dat each
sea quark masg,(myq,ms). We extrapolate the results to the chiral limitrafy using the NLO
chiral expansion in two-flavor QCD [14]

M7 | M7 32LeM7

 32F2 F2 F2

as shown in Figure 3.
Since we have the data in tleeregime, which is very close to the chiral limit, the chiral
extrapolation is stable against the change of the fitting region. We also attemge the 2+1-
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Figure 3: Chiral extrapolation ok (m,4, ms) to the limit of vanishing up and down quark masses.

flavor formula at NLO, and find the result in the chiral limit is consistent.

After renormalizing to thViS scheme at 2 GeV using a non-perturbatively calculated renor-
malization factor [15], we obtain a preliminary reslfS(0,ms;2 GeV) = [2434)(+1) MeV]?,
where the second error represents an uncertainty due to the lattice \&faddso obtained and
Le as consistent with phenomenological analysis.

4. Other consequences of spontaneous symmetry breaking

The accumulation of the near-zero modes as seen in the spectral functiadirect mea-
sure of the spontaneous chiral symmetry breaking, as its infinite volume limésgamds to the
Banks-Casher relation. On the other hand, there are many other glyysicuities that reflect the
spontaneous breaking of chiral symmetry. In the following, we describe @f them calculated
on the same set of lattice simulations.

4.1 Topological susceptibility

Topological susceptibilityy, = (Q?)/V characterizes how much topological excitations are
occurring in the QCD vacuum. Although the definition involves the global tapo# chargeQ,
the susceptibility itself is a local quantity and could be determined even @hisnkept fixed.
Namely, x; can be extracted from topological charge density correlator as
lim (mP(x)mP(0))o = B (V. O(e M (4.1)
am Q= V<Xt v T )+ ( ), :
wheremP(x) is a flavor-singlet pseudoscalar density operator related to the topdlog&rge den-
sity through the axial anomaly relation. Wh@x0, this correlator approaches a negative constant
at large separatiox| after the excitation of thg’ meson saturates. This is intuitively understood
as follows: Since the global topological charge is fixed to zero, if we fipdsitive topological
charge excitation at a space-time point 0, then we have more chance tonfgdtave excitation at
other pointsx to keep the total to be zero.
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Figure 4: Topological susceptibility; in 2 (circles) and 2+1-flavor (triangles) QCD as a functiompfand
down quark masses.

This constant correlation is indeed observed in our work where welatédine flavor-single
pseudo-scalar correlator by maximally using the low-lying eigenmodes exealttylated and
stored on disks [16, 17]. We thus extraggtat each sea quark mass.

Sea quark mass dependencexpfs plotted in Figure 4. We observe a good agreement with
the expectation from the chiral effective theory at the leading opder,Z/(1/m,+1/my+1/m)

[18]. (msis sent to infinity for the two-flavor case.) It provides another method t@eddr Our
result is[247(3)(2) MeV]3 (up to the error due to the scale setting), which is in agreement with the
determination from the spectral function.

4.2 Vacuum polarization functions

The vacuum polarization functiom'slsgo’l) (Q?) defined through

[ d€%(013,(03}(0)10) = (guc? — dug)N" (@) ~ 6y () (4.2)

for vector 0 = V) or axial-vector § = A) current is another probe of the spontaneous symmetry
breaking. For example, the difference between vector and axial-viegtated tof,; andLo (one
of the NLO low energy constants in ChPT) as

f]?[ _ _Q|i2m0Q2 |:|—I\(/l+0) (QZ) _ n'&1+0)(Q2>:| , (43)
_ 0
Lio = = Jim 557 |MV(@) - M (@) (4.4)

which is called the Weinberg sum rules [19]. Another interesting quantity igldwromagnetic
mass difference of pion, which is expressed as [20]

ant, = 274 ["aQee? [N 0/(@) - @), (4.5)

- 4mf2

in the limit of massless pion. Since the combinat{ghv — AA) vanishes when the chiral symmetry
is not broken, these quantities signals the chiral symmetry breaking.
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Figure 5: Difference of the vacuum polarization functioﬁh%,l)(Qz) — I'If)(Qz) multiplied by Q2. Data
are shown for different quark masses; the chiral limit i»gdkotted by a solid (linear extrapolation) and a
dashed (chiral logs) curve.

For the lattice calculation of these quantities, exact chiral symmetry is esssimia we have
to extract a tiny difference between the vector and axial-vector chankédsextracted the dif-
ferencel'l\(,l)(Qz) - FI(A1>(Q2) successfully using the overlap fermion on the lattice [21] as shown
in Figure 5. The intercept and slope @F[M\"(Q?) — N%’(Q?)] atQ? = 0 correspond tdf2 and
L1o, respectively, and the integral ov€? givesAm?. The results clearly show that the sponta-
neous symmetry breaking induces these physical quantities as expegtedth®r improving the
numerical data especially in the 16@f region, we will be able to precisely extract these quantities.
Another use of the vacuum polarization function is an extraction of thegirouapling con-
stant by matching the lattice data with the OPE expression in the perturbatineer&2].

4.3 Pion mass and decay constant

ChPT is organized as an expansion in terms of smakndp?, but the region of convergence
of this chiral expansion is not known a priori. Using lattice QCD, one canthesexpansion
and identify the region of convergence. With the exact chiral symmetrytetites conceptually
cleanest, since no additional terms to describe the violation of chiral symnaettg be introduced.
(With other fermion formulations, this is not the case. The unknown corre¢dions are often
simply ignored.)

For the pion mase; and decay constari; the expansion is given as

e 1 2
ﬁ =2B(1+ Exlnx+c3x+0(x) , (4.6)
fr = f [1—xXInX+Ccax+O(x?)] , (4.7)

wherem;; and f,; denote the quantities after the corrections whil@and f are them at the lead-
ing order. The expansions (4.6) and (4.7) may be written in terms of eithen?/(47f)?,
% = 2m2/(4mf)?, or & = 2mé/(4mfy)? (we use a notation of,; = 131 MeV). They all give an
equivalent description at this order, while the convergence behavipdem@end on the expansion
parameter.

Figure 6 shows the comparison of different expansion parametersn2@&jpo-flavor QCD.
The fit curves are obtained by fitting three lightest data points with the thpsmeion parameters,
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Figure 6: Comparison of chiral expansion in terms»fk andé. The plots represemt?/my (left) and f,
(right). Fits of the three lightest data points with the NL@ORT formulae (4.6) and (4.7) are shown.

which provide equally precise description of the data in the region of theffivellook at the
heavier quark mass region, however, it is clear that onl¥ te&pansion gives a reasonable function
and others miss the data points largely. This clearly demonstrates that dotdastse quantities
the convergence of the chiral expansion is much better witl€ tparameter than with the other
conventional choices. This is understood as an effect of resummatitie chiral expansion by
the use of the “renormalized” quantitie€ and f. In fact, only with the€ -expansion we could fit
the data including the kaon mass region with the next-to-next-to-leading (Nkidt@ulae [23].

Whether or not ChPT can be used for kaon is an important question dedtipdly has a
strong impact on the light hadron phenomenology. To investigate this questoare currently
extending the analysis to 2+1-flavor QCD [24].

5. Conclusions

In this talk, | demonstrate that the scenario of the spontaneous chiral syrineaking in
the QCD vacuum is confirmed by lattice QCD simulations with exact chiral symmétryhe
calculation of the Dirac operator eigenvalue spectrum, the expectatiansGdPT is precisely
tested including the NLO effects.

With the use of exact chiral symmetry, new possibilities to extract physios fattice QCD
calculations have been opened. They include the precise calculation twipthlegical suscepti-
bility, the vacuum polarization functions, and a theoretically clean test oélofwpansion in pion
mass and decay constant. From the project, there are several othestintgcalculations of var-
ious physical quantities, such Bg [25], meson correlators in theregime [26], nucleoro-term
and strange quark content [27], and pion form factors [28].

Some of the applications discussed in this talk have been left without so mogleps since
the early days of QCD (or even before). At last, numerical simulation of éa@€D has caught
up theoretical conjectures made in 1960s and 70s, but now starting feofinstRprinciples.

| thank the members of JILQCD/TWQCD for fruitful collaborations. The autb@upported
in part by Grant-in-aid for Scientific Research (No. 21674002).
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