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1. Introduction

With the constant improvement of phenomenological applications of lattice QCD also the
computation of the pion vector form factor and in particularthe pion’s charge radius is now avail-
able from a number of groups [1, 2, 3, 4, 5, 6] with unprecedented quality. Dynamical sea quarks
(Nf = 2 andNf = 2+ 1) are standard by now and results are available for a range ofpion masses
down to about 250MeV. Systematic errors like cut-off effects and finite volume effects are under
good control. In this talk we presented the computation of the two quantities by the RBC+UKQCD
collaboration. The special feature of this computation is that by using suitable boundary conditions
for the finite volume valence quark fields [7, 8, 9, 10, 11, 12, 13, 14, 15] it is possible to compute
the pion form factor at arbitrarily small momentum transfers. This provides for the first time a
fine grained momentum resolution forQ2 → 0 and hence a clean and parametrization-independent
definition of the pion’s charge radius. We investigate the quality of various ansaetze for theQ2-
dependence of the form factor and we use NLO chiral perturbation theory to extrapolate the charge
radius at one of our simulation points,mπ = 330MeV, to the physical pion mass.

2. Computational strategy

The pion form factorf ππ(q2) defined through the QCD transition matrix element

〈π(p′)|Vµ |π(p)〉 = f ππ(q2)(q2)(p+ p′)µ , (2.1)

whereVµ is the electromagnetic current, can be extracted from suitable Euclidean 2pt- and 3pt-
correlation functions computed on the lattice (cf. [4]); the pions charge radius is defined as

〈r2
π〉V = 6

d
dq2 f ππ(q2)|q2=0 . (2.2)

In a finite volume of spatial extentL with periodic boundary conditions for the quark fields the
allowed quark 3-momenta are~p~n =~n2π/L, where~n is a vector of integers and correspondingly the
finite volume pion energies areEπ(~p~n) =

√

m2
π +(~p~n)2. Given the dependence of the momentum

transferq = −Q in (2.1) on the pion’s momenta,

q2 = (p− p′)2 =
(

Eπ(~p~n)−Eπ(~p′~n)
)2

−
(

~p~n−~p′
~n′

)2
, (2.3)

one finds, that the lowest accesible value isQ2
min = −2mπ(mπ−

√

m2
π +(2π/L)2. Naively, for typical simulation parameters like the ones used for the study pre-

sented here,Q2
min ≈ 0.15GeV2 which is in a range where chiral perturbation theory may cease to

provide a reliable description of QCD.
In order to computef ππ(q2) also in the range 0< Q2 < Q2

min we use partially twisted boundary
conditions [9], combining gauge field configurations generated with sea quarks obeying periodic
boundary conditions with valence quarks with twisted boundary conditions [7, 8, 9, 10, 11, 12, 13,
14, 15], i.e. the valence quarks satisfyq(xk +L) = eiθkq(xk),(k = 1,2,3), whereθk is the twisting
angle in thek̂-direction. We have demonstrated in section 2.3 of ref. [4] that it is possible to
introduce twisted boundary conditions independently for the three valence quarks and antiquarks,
i.e.~θ1 for q1,~θ2 for q2 and~θ3 for q3 in figure 1. In our study it will be sufficient to set~θ3 = 0 so that
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q1 q2

q3

Vµ

π(p) π(p′)

Figure 1: Sketch of the valence quark flow in the electromagnetic form factor of the pion. There is a similar
contribution in which the current is on the antiquark line and the spectator is a quark.

A B

a/fm ≈ 0.1 ≈ 0.1
(L/a)3×T/a×Ls 163×32×8 243×64×16
amsea

s 0.04 0.04
amsea

q 0.02/0.01 0.005
mπ/MeV 590/480 330

Table 1: Parameters for the two studies withNf = 2+1 Domain Wall fermions.

the spectator quark or antiquark satisfies periodic boundary conditions. By varying~θ1 and~θ2 we
are able to tune the momentum of the charged pion continuously. With this technique the dispersion

relation for a meson with twisting angle~θ takes the form [8, 12],Eπ(~p) =

√

m2
π +

(

~p~n +
~θ
L

)2
. For

the matrix element in (2.1) with the initial and the final meson carrying momenta~p= ~p~n+~θ/L and
~p′ = ~p~n′ +~θ ′/L respectively, the momentum transfer between the initial and the final state meson
is

q2 = (p− p′)2 =
(

Eπ(~p~n)−Eπ(~p′~n)
)2

−
(

(~p~n +~θ/L)− (~p′
~n′ +

~θ ′/L)
)2

. (2.4)

The finite-volume corrections with partially twisted boundary conditions decrease exponentially
with L similarly to those with periodic boundary conditions [9, 16].

3. Results

We carried out two simulations: Study A was exploratory withrelatively heavy pions and in
small volume. Study B was done with a lighter pion mass and in alarger volume where finite
volume effects are expected to be small. We summarize the simulation parameters in table 1. The
result of study A is illustrated in the plots in figure 2: The left hand side plot shows the pion form
factor for the two simulated pion masses together with the results for pole-fits:

f ππ(q2) =
1

1−q2/M2
pole

. (3.1)

The vertical lines correspond to the values ofQ2
min for the two sea quark masses, respectively.

The data points left of the vertical line could only be obtained using partially twisted boundary
conditions. The right hand side plot shows the results for the charge radius (same color coding) as
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Figure 2: Results of the exploratory study A. L.h.s. plot: Results foraml = 0.02 andaml = 0.01 (black,
blue), respectively; r.h.s. plot: results for the charge radious for various fit-ansätze and various fit ranges.
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Figure 3: Study B: L.h.s.: Form factor as a function of the momentum transfer. R.h.s.: Comparison of
experimental results (magenta diamonds) for the form factor f ππ(q2), lattice results atmπ = 330MeV (grey
triangles and dash-dotted grey line) and the extrapolationof the lattice results to the physical point (blue solid
line) using NLOSU(2) chiral perturbation theory. In addition we also represent the PDG world average for
the charg radious in terms of the black dashed line.

obtained for various fit ansätze: linear inq2, 2nd order polynomial inq2, pole dominance fit like in
eqn. (3.1). The values on thex-axis indicate up to which value ofQ2 data points have been included
into the fit. All three fits turn out to be rather stable for a range of small momentum transfers; the
stability of the pole dominance fit extends over the largest range of momentum transfers. The
plots in figure 3 show the results of study B. On the l.h.s., again the vertical line indicates the
value ofQ2

min. The blue data points (circles) have been obtained by Fourier transformation and all
black points (triangles) have been obtained using partially twisted boundary conditions. Note the
agreement between the two results atQ2

max which have been obtained with the two different ways
of inducing momenta.

The presented data for the form factor and the charge radius is for unphysically heavy pions.
Since we think that the pion masses in study A are too large to be described correctly by chiral
perturbation theory we here present our attempt to extrapolate the results for the charge radius in
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collaboration technique 〈r2
π〉χ [fm2]

PDG 0.452(11)

QCDSF/UKQCD [2] Nf = 2 Clover 0.441(19)
JLQCD [1] Nf = 2 Clover 0.396(10)
JLQCD [3] Nf = 2 Overlap 0.409(44)
ETM [6] Nf = 2 twisted mass 0.456(38)
RBC+UKQCD [5] Nf = 2+1 Domain Wall 0.418(31)

0.4 0.45

Table 2: Summary of current lattice results for the pion’s charge radius in comparison to the PDG-average.

study B to the physical point using NLOSU(2) chiral perturbation theory, [17],

〈r2
π〉SU(2),NLO = −

12l r
6

f 2 −
1

8π2 f 2

(

log
m2

π
µ2 +1

)

, (3.2)

where f is the decay constant in the chiral limit,l r
6 is the only other low energy constant at this order

andµ is the renormalization scale. We note that the results of study B alone do not allow to assess
whether the mass dependence of the lattice data is properly described by NLO chiral perturbation
theory. We also carried out a fit using SU(3) chiral perturbation theory [18] and results can be
found in [5]. Based on the experience of ref. [19], for our best estimate we take the result from
the fit to the SU(2) expression at NLO including the three data points atQ2 = 0.013, 0.022 and
0.035GeV,

〈r2
π〉|mπ =330MeV = 0.354(31)fm2 → l r

6(mρ) = −0.0093(9) ,〈r2
π〉 = 0.418(31)fm2 . (3.3)

These results are summarized in the r.h.s. plot in figure 3: Inaddition to our lattice results and
NLO ChiPT fit in grey, the result for the chiral extrapolation(light blue solid line) is compared to
the experimental data (magenta) [20] and the PDG’s pole dominance fit. Our chirally extrapolated
form factor drops less rapidly withQ2 than the PDG-fit but as the plot on the r.h.s. of table 2 shows,
our resulting value for the charge radius is compatible withthe PDG-average. The same plot shows
other lattice results and the PDG-average.

For study B we used propagators generated from a single time-slice stochastic source. We
compared the cost, obtaining similar errors for the pion mass, the normalization constant of the
vector current,ZV , and the pion’s electromagnetic form factor atQ2

min, finding a gain of approx-
imately a factor of 12 in favour of the noise source propagators. A gain was also found in the
study presented by the ETMC collaboration in [6] and in the recent publication by the UKQCD
collaboration [21].

4. Summary and Outlook

In this paper we have successfully used partially twisted boundary conditions to compute the
electromagnetic form factor of a pion forQ2 → 0. We use our results to compute the low energy
constantl r

6 of NLO SU(2) and then to determine the physical form factor and charge radius. The
results which we obtain are in good agreement with the experimentally determined form factor
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which gives us further confidence in the use of chiral perturbation theory in the mass range below
330MeV.

We are currently analyzing a set of configurations with the same action on a 323 lattice with
a finer lattice spacing and will repeat the present calculation with this ensemble. Although the
mass and momentum transfers are sufficiently small to expectthat NLO SU(2) ChPT is a good
approximation, it would be nice to be able to check this explicitly by computing f ππ(q2) for a
range of pion masses. We are planning to carry out such an analysis in the future.
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