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1. Introduction

A prominent feature of pion-nucleomil) scattering is the delta resonané¢1232), a peak
in the elastic cross section at the center-of-mass (CM) enmexgy my + 0 ~ 1230 MeV, where
0 ~ 290 MeV is the nucleon-delta mass splitting [1]. A resonance can be stug@hbidering the
unitarity and analyticity of th& matrix; however, the accuracy is hard to improve systematically
with these general principles alone. Our goal here is to investigatecattering from threshold up
to the delta resonance in an effective field theory (EFT) (for more desasRef. [2]).

Following several seminal papers [3], EFTs have been developed @dalimdependent ap-
proximations to low-energy strong interactions, which can be systematicallpuegby a series
in powers ofQ/Mqcp, WhereQ refers generically to small external momenta agtp ~ 1 GeV
is the characteristic QCD scale. For reviews, see, for example, Refs]. [€hiral perturbation
theory (ChPT) specializes in processes involving at most one nucl@o€RPT with only pion
and nucleon fields has been extensively applied to near-threghbgtattering [6], resulting in a
perturbative expansion in powers@f d andm;/d, which converges slowly as;;/d ~ 1/2. The
convergence can be improved with an explicit delta field. The explicit deltéliacattering within
standard ChPT has been explored [7] and demonstrated in a fully consigteulation [8].

Nevertheless, the perturbative nature of standard ChPT makes it impassitlescribe the
delta resonance, a non-perturbative phenomenon. A non-perugrbraitment of the delta within
ChPT was considered in Ref. [9]; however, a systematic resummationtkdisbuntil the seminal
work of Ref. [10], where it was justified by a power counting based oeetlseparate scales; <
0 < Mqgcp, and this idea has been applied to various electromagnetic reactions in thedieltg
but for N scattering few results have been published [11].

We employ a power counting developed for generic narrow resontigie which there are
only two scalesMp ~ 6 ~ mzandMp; ~ Mgcp. Thus the EFT expansion of theN scattering am-
plitude pursued here is in powers@f Mp; andMjo /Mni. The kinematic region under consideration
spans over both threshold and the resonance.

2. Effective Lagrangian

To establish the notation, we review how the effective Lagrangian is emett (for more
details of building chiral Lagrangian, ses., Refs. [4, 5, 14, 15]). The effective Lagrangian
should inherit the symmetries of QCD: Lorentz invariance, (approximate¥lawor chiral sym-
metry (U (2). x U (2)R), parity, time-reversal invariance, and baryon-number conservation

In the kinematic region where the EFT holds, external momenta are much smaltethi
nucleon massQ < my, and thus Lorentz invariance can be fulfilled perturbatively in powers of
Q/my. One can start with a relativistic Lagrangian using the Rarita-Schwinddrffiethe delta,
and then reduce from it its nonrelativistic version [10, 16]. This waweéwer, extra effort needs to
be taken in order to control the spurious spin-1/2 sectors of the RatitatSger field. We employ
another approach that starts with heavy-baryon fisldsr the nucleon and for the delta, which
are, respectively, two- and four-component spinors in spin andirseg@aces. Eventually, the
effective Lagrangian only has the baryon degrees of freedomepatsent forward propagation.
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The crucial ingredient in this approach is to develop an order-byrdralentz transformation, by
which one can constrain the coefficients of the rotation-invariant opsrgits, 17].

Due to the presence of the delta fiéldone needs & 4 matricesSin spin space to make a
three-vectoMNA bilinear, andQ;; a three-tensor. Similar transition matricds,and=5,, can be
defined in isospace.

The chiral-invariant operators are isoscalars that are made of pi@mni@ot-derivativeD, =
D-19,m/2f; with D = 1+ m?/4f2, N, A, and their covariant derivatives, for exampig,A =
(04 +t()-Ey) Awith By =im/ T x Dy

We use the so-called chiral index[3] to organize the operators of the effective Lagrangian
v=d+m+ns+ f/2—2, whered, m, ns, and f are the numbers of derivatives, powersnu,
powers ofd, and fermion fields, respectively. In constructing the Lagrangian, seeintegration
by parts and field redefinitions to remove time derivatives on baryon fielcispexor the kinetic
terms. The Lagrangian terms with the two lowest indices are given by [15]

20 = 2f2D2——mzn2+NT|@0N+gANTraN D

D
AT (1% — 8) A+ 4ghATt D >A-.f)+hA(NTT§A+H.c.)--f)+-~ (2.1)
and
1 h - =
1 _ tg2N L AT2A) — M (iNTTE. Dot ...
2= N(N.@N+A9A) mN(lN TS 9A+H.c.) Do+---, (2.2)

while the next-higher index yields

2@ = —erﬁATQZAJr :‘% [(N'TS722-N'TS. 574) +H.c| D
8m’2“ [ (8nN'TS: A+ 3N'TS i+ 26 N'T Qi) +H.c.| - 71Dy
+dy (NTT§A+H.C) 7D+ dy m2<1—ifz> (NTT§A+H.C.).-5+--- (2.3)

Here,ga (gﬁ) is thev = 0 axial-vector coupling of the nucleon (delta) alng (dy o) is (are) the
v =0 (v = 2) nNA coupling(s).

3. Power counting

When the CM (heavy-baryon) energiesire much below the delta peak, the power counting is
standard [3, 4, 5] with the simple generalization thatounts a€). The contribution of a diagram
with A nucleons (heré = 1), L loops, andV; vertices with chiral indew; is proportional toQ?,
with

P=2-A+2L+3H V. (3.1)
|

However, in the small region spanning the delta peak whose size is of thedearder (LO)
delta self-energy|E — 8| ~ Z(AO> = ﬁ(Qg/MéCD), a resummation is needed in oAereducible
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Figure 1: Contributions toriN scattering up to orde®®: (A) Q1 pole diagram; (BRP pole diagrams; (C)
Q! pole diagrams; (D)&(ER! tree diagrams, of which (E) apply to both regioﬁé@ is then-th order delta
self—energyy,(T”) the NA vertex function, anti,(\,n) (Z&")) the nucleon (delta) field renormalization constant.

diagrams because one insertionzé?) and the bare delta propagator contribufg4): Z(AO)/(E -
0) = 0(1). The resummation thus amounts to a dressed propagator

V() = [E - 5+zg°>(5)] , (3.2)

which scales aMéCD/Qe’. This is an enhancement of two powers over the generic situation. As a
consequence, in oni-rreducible diagrams the standard ChPT power counting (3.1) still applies;
dressed delta propagators only need to be included indareetucible diagrams. We thus arrive
at a new power counting for onereducible diagrams within a narrow window around the delta
peak,
p:2—A—2nA+2L+ZVivi, (3.3)
I

wheren, is the number of dressed delta propagators. This is the non-electromaggrsian ofp
derived in a slightly different power counting in Ref. [10]. Diagrams u@taare listed in FIG. 1.
It seems that the two different power-counting schemes, which are apj@im two different
regions, would lead to an EFT amplitude in the form of a piecewise function ierieegy. Even
worse, separating these two regions is somewhat arbitrary. A piecefwisis Ectually unnecessary
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if we enforce the pole diagrams even in the off-the-pole region, which us/algnt to shifting

a subset of higher diagrams into lower orders,, a rearrangement of diagrams. This sort of
rearrangement still retains the essence of the original power countioggas one does not claim
a higher accuracy by doing so.

4. niN-scattering T matrix

The partial-wavel matrix is related to the phase shifts, in the channel with total angular
momentumj, orbital angular momentuin and isospir, by

Tiit(E) = —i {exp[2i6(E)] -1} . (4.1)

In the following we will use a more conventional notation for a specific pawale: I »j. For
example P13 refers to thd =1 (P wave),t = 1/2, andj = 3/2.

Here the exact relation betwedhand the CM momenturk, E = (mg, + k?)Y/2 + (m2 +
mg)Y/2 —my, is assumed, meaning that certain trivial, kinemajioy terms are resummed —
what we refer to as semi-resummation. A strict heavy-baryon expanaiobe readily obtained
afterwards.

At LO (Q1) there is only a pole diagram, FIG. 1(A), which contributes only toRfevave,

TLO = _E_5ﬁoi)£<5c)3(5)/2 [1+ﬁ <M§CD>] : (4.2)

where
314+0/my+ (82— /2m,2\,

YO8) = R (52 n2)E (14 6/myt (87 2/ (amy)?)

24mf3 (1+8/my)°
4.3)
The NLO @Q°) amplitude has the same form as LO,
0) 1) 2
TALO _ V( (8)+y(9) 1408 ‘ (4.4)
CE—0+i (VO (3) + vV (d)] /2 MQCD
However,ytY (&) vanishes in the CM frame when we do not expand kinematic relations in powers

of 5/mN
Summing up the pole (FIG. 1(C)) and tree (FIG. 1(E)) diagrams, onéefifiicis the NNLO
amplitude in theP33 channel,

NNLO r(E> H LO Q
T = s e T TRE) 4 Te(E )+ﬁ<p33 MSCD>’ (4.5)
where
(G 1 M (MR +K2)™? [ha(14 59
Te(E) = 6nf2< 36E 5> and F(E)= g oamz K (40
with

=

K [(4nfn)2

me,
(Anf)2 | ba ( o +d kz>+Re€4(mn/k5)] , (4.7)
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Figure 2: P33 phase shifts (in degrees) as a functiomgfy (in MeV), the CM energy including the nucleon

mass. The EFT strict heavy-baryon expansion at LO (NNLOgsesented by the red dashed (black solid)

line. The NLO curve coincides with LO. The light-blue bandlmes the estimated systematic error of the

NNLO curve. The green dots are the results of the GW phagesstalysis [13]. Points marked by a red
star (black square) are inputs for LO (NNLO).

where

G(x) =

WIN

_1 81 A2 . 1
(1+x2)2 {—n(gﬁ—mgﬁ >x3+2m (g,§+72hf\>

V1+x2—1
V1+x24+1

andks satisfiesd = (M + k2)¥/2 4 (m2 +k2)1/2 — my. Other channels are easy to calculate from
the oneA-irreducible tree diagrams in FIG. 1(E). For the remairfagzave channels,

1 k3 92 2 h? Q
TNNLO _ TNNLO _ ZpNNLO _ _ SA_Z__A 1+0 : 4.9
Pis Pa1 4P 12nfZ\ E 9E+9 " Maco “9

1 81
+ [g,i— 7—2h§\ (13+15¢%) + 1699\2] In ( (4.8)

5. P-wave phase shifts

A number of low-energy constants (LECs) can be determined from otbeegses, such as
pion decay and neutron decay. We adopt the following valogs:= 139 MeV,my = 939 MeV,
ga = 1.26, andf;=92.4 MeV. Our strategy of fitting is to determine the free parametgns,, and
» from thePs3 phase shifts around the delta peak and then predict the phase shifteatimugies
in all P waves. Shown in FIGs. 2 and 3 are the EFT curves (strict heavyehaypansion used)
fitted to the partial-wave analysis (PSA) by the George Washington (GWipdi8]. The PSA
points used to determine the free parameters are explicitly marked. Basedpmwiér counting we
use, systematic errors of the EFT curves can be estimated, shown ir2Fd@d.3 as light-colored
bands.

The LECs extracted from th;3 fit are given in TABLE 1. One can estimate the errors in the
NNLO values as the variation in each LEC within which the NNBg§ curve in FIG. 2 roughly
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Figure 3: Predicted phase shifts (in degrees) in Big, P31, andPy; channels as functions &fcy (in
MeV), the CM energy including the nucleon mass. LO and NLOiskain these channels; NNLO EFT
results in the strict heavy-baryon expansion are given bybtack solid lines. The light-blue bands outline
the estimated systematic errors of the NNLO curves. Thengdegs are the results of the GW phase-shift
analysis [13].

Table 1. Low-energy constants extracted at LO, NLO, and NNLO fronfitiseusing the strict heavy-baryon
expansion.

3 (MeV) ha >
LO NLO NNLO | LO NLO NNLO | NNLO
1203 293 321 (198 421 285]| 0.046 |

stays within the error band. This way we fiddMeV, ha, and s to be within~ +4, +£0.30, and
+0.030, respectively, of the NNLO values in TABLE 1.

6. Summary

We have extended standard ChPT to deal with the non-perturbative esdtaance in an EFT
framework. The delta is treated as a nonrelativistic particle from the beginrather than being
represented by the Rarita-Schwinger field.

Like other EFTs that deal with non-perturbative phenomena, oursresthe non-perturbative
structure in LO. Subsequently, the power counting leads to a systematigjgagive improvement
beyond LO. We applied this power counting to low-energy¥ scattering, where we built the am-
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plitudes up to NNLO. We fitted ouP-wave amplitudes to the phase shifts given by Ref. [13]. With
just three free parameters, we obtained a good fit ilPthehannel.

The EFT approach presented here also provides the basis for a moejgbratnt, unified
description, from threshold to past the delta resonance without disciptimiureactions involving
other probes and targets, including nuclei.
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