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The three-flavor chiral expansion for octet baryons has-iwewn problems with convergence.
We show that this three-flavor chiral expansion can be redzgd into a two-flavor expansion
thereby eliminating large kaon and eta loop contributidssues of the underlying formulation
are addressed by considering the effect of strangenesgicigaihresholds on hyperon masses.
While the spin-3/2 hyperon resonances are considerablg smnsitive to these thresholds com-
pared to the spin-1/2 hyperons, we demonstrate that in lastescthe essential physics can be
captured in the two-flavor effective theory by terms thataaralytic in the pion mass squared, but
non-analytic in the strange quark mass. Using the two-fldweory of hyperons, baryon masses
and axial charges are investigated. Loop contributionkéntwo-flavor theory appear to be per-
turbatively under control. A natural application for ourvé®pment is to study the pion mass
dependence of lattice QCD data on hyperon properties.
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1. Introduction and M otivation

Before the theory of QCD was established, patterns obsarvéite spectrum of low-lying
hadrons shed light on underlying symmetries. The lowdsgglynesons and baryons appear to
assemble themselves into SU(3) multiplets: an octet ofgissalar mesons, an octet of spin-1/2
baryons, and a decuplet of spin-3/2 baryons. The lightné#isecoctet of pseudoscalar mesons
suggests that they are Goldstone bosons emerging fromaspants chiral symmetry breaking:
SU(3).x SU(BR — SU(3),. Their non-vanishing masses would arise from explicitallsymme-
try breaking introduced by quark masses in the QCD Lagrandlde remaining hadrons would
naturally be grouped into multiplets of the unbroken SY(@ymmetry. This picture is rigorous in
the limit of small quark massesy, my, ms < Aqcp, for which chiral perturbation theory (ChPT)
becomes an effective description of the low-energy dynami@seudoscalar mesons and baryons.

In nature, however, things are less pristine: the size oktrange quark mass is not consid-
erably smaller than the QCD scale; and, for some quantiBeK3) appears to be badly broken.
We review the treatment of the octet baryons within SU(3) ThNe focus on the strengths and
weaknesses of such an approach, ultimately arguing in falvar separate SU(2) treatment for
nucleons and the various hyperons. Recently there has bednon strange hadrons in SU(2)
ChPT[1, 2, 3,4, 5, 6, 7, 8]. Such theories emerge naturadiyn freordering the SU(3) expansion,
as we demonstrate for the baryon masses. Particular attestpaid to the effect of strangeness
changing thresholds. We find that such virtual processebeavell described by terms analytic in
the pion mass squared, but non-analytic in the strange anass. Hyperon axial charges are also
considered in this framework. Prospects for the two-flavhPT of hyperons are summarized at
the end.

2. Baryon Masses

At the leading order (LO) in ChPT, pseudoscalar mesons (e gaon, and eta) satisfy the
SU(3) mass relation

Bovo(F) = g, —iwp — <E =0, (2.1)

originally due to Gell-Mann and Okubo. Experimentally thi® relation is fairly well satisfied.
Using the neutral meson masses, and dividing by the averags of the octet, the relation is
satisfied at the level of 18%. This small excess can be attributed to next-to-leadidgrdNLO)
contributions in the SU(3) chiral expansion; and, from theess, the value of a certain combination
of low-energy constants can be determined and is of natinel s

For the octet baryons, there is additionally a Gell-Mannw#@krelation between their masses.
In heavy baryon ChPT (HBChPT), this relation arises becalusee are four isospin symmetric
masses, but only three LO chiral symmetry breaking opesatoB{m,, B} >, < B[my,B] >, and
< BB > < my >. One consequently has the relation

MGMon/\—F%Mz—%MN—%ME:O. (2.2)

Using the neutral baryon masses divided by the weightecageeof the octet baryon mass, this
relation is satisfied to a remarkable level experimentally@0%. Furthermore, the NLO order
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Table 1: Estimates of the Gell-Mann—Okubo baryon mass relation fikir® SU(3) HBChPT.

Mamo/Mg | Source D F C
0.79% ChPT 061 Q40 12
1.12% | Lattice QCD[9,10] 072 045 16
1.29% SU(6) 34 1/2 3/2

contribution toMgumo can be determined in HBChPT in terms of reasonably well-kmawial
couplings

1
MGMO = |:T[(D2 — 3F2)Ag|\/|o(mz) — ECZAGMO <3¢‘(m¢,A, [J)):| s (23)

4

2
3NG
where.# is the non-analytic function arising from the sunset diagra

_ B ) > 5— V02—l +ie m| 1 m?
F(m, 8, 1) = (mP — &%) [\/5 —m?log <5+\/m> —5IogF] —éémzlogm,
(2.4)
andA is the average splitting between the decuplet and octebharBy SU(3) symmetry, thg-
dependence in Eq. (2.3) is only superficial. For variousrestts of the axial couplings collected in
Table 1, we arrive at the right size fbtgmo, with the difference presumably due to NNLO terms.
The baryon Gell-Mann—Okubo mass relation is remarkablyl segisfied, and remarkably
well accounted for in SU(3) HBChPT. What is even more remalkas that none of the indi-
vidual baryon masses appears to be under perturbativeotimthe three-flavor expansion. Us-
ing the ChPT estimate for the axial couplings shown in Table/d can evaluate the NLO loop
contributions to the octet baryon masses numerically. Rerdecuplet resonance contributions,
we perform a subtraction so that the chiral limit mass is moiormalized: .7 (my,A, 1) —
F(my,A, 1) — % (0,A,u). The loop contributions should be of natural size at a spate Ay.
Instead, we findMn(u = Ay)/My = —39% for the nucleondMa (1 = Ay)/Mp = —67% for
the lambdadMs (u = Ay)/Ms = —89% for the sigma, andM=(u = Ay)/M= = —98% for the
cascade. Requiring these loop contributions to be balaogéatal terms is rather precarious, and
contrary to a well behaved effective theory. The baryon emsse just one example hinting at
the ill-fated nature of SU(3) ChPT. Most baryon observabéegive large loop contributions from
kaons and etas, bringing the chiral expansion into quesfitie behavior, moreover, is worse for
hadrons with increasing strangeness, as the masses eyempli

3. Two-Flavor Chiral Expansion

3.1 Schematic Example

As the kaon and eta loops are the culprit for numericallydazgntributions to the baryon
masses in SU(3), let us first consider a schematic examplasoptoblem. The mass of the sigma
receives kaon contributions up to NLO which have the form

Mz = MV G L an? + b (3.1)
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The parameteM3’ ) is the average octet baryon mass in the SU(3) chiral limite @halytic
contributiond mg arises from the LO chiral symmetry breaking operators, evtiie non-analytic
contributiond mZ arises from the sunset diagram. We have omitted any piontarmbatributions
in this schematic example. By virtue of the Gell-Mann—Oalkenner (GMOR) relation, we can
write the kaon mass in the form

1, 1
Mg = SMa+ S, (3.2)

wherem, is the mass of the quark bassmeson. Using LO ChPT and the masses of the neutral
pion and kaons, we have, = 0.69GeV, and a natural expansion suggests itself: expand in powers
of my/mp, ~ 0.2. This is equivalent to treatingy,, My < ms ~ Agcp. Carrying out this expansion

on Eg. (3.1), we arrive at

1
Mz =MPE +am2 +a’me+b'md_+ b'my 2+ b’”m—mj‘TJr e (3.3)
Ns
The omitted terms consist of higher powersnof/m,.. From the above form, the non-analytic
strange quark mass dependence can be absorbed into trentdtev-energy constants of a two-
flavor chiral expansion of the sigma mass

Ms =M&@ 4 a4+ Bmd + ... (3.4)

Them;’;term did not arise from the kaon contributions consideresladded it for completeness.

In the two-flavor chiral expansion, large contributionsnfrkaons and etas have been summed
to all orders in the resulting low-energy constants. A vibelhaved expansion in powersrof;/my,
requires that thresholds for kaon production cannot behexhc When this condition is met, the
kaons and eta need not appear explicitly in the effectiverthend their virtual loop contributions
can be reordered as described here. Such an SU(2) formmuéatiodescribe the virtual strangeness
changing transitions provided one is suitably far from ¢h#dwesholds. We make this criterion
guantitative by considering kaon production thresholds.

3.2 Kaon Production Thresholds

The phenomenological values for SU(3) splittings of theebbaryons are given by

S = 045GeV, Sz =0.42GeV, 620 =0.36GeV, = =0.34GeV,
s = 0.26GeV,  Sn= =0.20GeV, S =018GeV, &= =0.13GeV, (3.5)

where dgg' denotes the difference in baryon mass®g, = Mg — Mg, with B a spin-1/2 baryon,
and B’ either a spin-1/2, or spin-3/2 baryon. While A§ = 1 splittings are below threshold,
oy < Mk, with mg = 0.50GeV, the spin-3/2 to spin-1/2 transitions are not consider&yfrom
threshold. At first glance, it appears that the SU(2) thedhypworly describe the non-analyticities
associated with such inelastic thresholds. This impresisidbased on the value afx /dgg ~ 1;
which, however, is not the appropriate expansion paraniet&U(2).

To deduce the expansion parameter relevant for an SU(2)ipiesie of hyperons, we return
to the schematic example, and include the SU(3) splittieg;. The mass of th& baryon, for
example, receives a loop contribution fra¢AN intermediate states of the form

5MZ Dg?(me_aNZyu)‘ (36)
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Figure 1:  Virtual threshold contribution from th&-N loop diagram for the* (left), and X (right)
baryon masses. Plotted versus the pion mass and shown iaddgsten is the non-analytic contribution
F(mk, —%r, U = Mk). Compared with this curve are three approximations thagtagdytic in the pion
mass squared. The red curve is the zeroth-order approximatihile the blue curve also includes the
first-order correction proportional toZ, and finally the black curve includes all termsnt.

When the SU(3) splitting is ignoredys — 0, we recover the kaon loop contribution originally
considered above, name# (mk,0, u) = nmﬁ. For an arbitrary baryoB’, aAS= 1 virtual process
leads to a non-analytic contribution of the for#(mk , —dgg', U ), WhereB is the intermediate state
baryon. Near thresholdgg — M — 07, this function behaves as

F (Mg, —Bpr, U = Mk) — 271 (&g — mg)¥ %+ .., (3.7

which is dictated by the available two-body phase spaceresiiold, and the requirement that the
kaon and thd3 baryon be in a relativgp-wave. Choosing the scale= mk is a convenient way to
remove contributions not associated with the long-distakaon production. The imaginary part
of dMg leads to the width foB’ — K B decay.

For the mass splittings listed in Eq. (3.5), our concern ighwlie region below threshold,
O — Mk — 07. In this limit, the SU(2) treatment must fail, and we must r@$d whether the
physical splittings put us in this region. Applying the pebative expansion about the SU(2)
chiral limit for a generic non-analytic functiof(x), we have

(28, — 2085 = (18— 288y) + BT (P —288) + 1" (P —283g) +....  (3.8)
Thus for the subthreshold case, the expansion paransgieris generically of the form

m
g = —//————. 3.9
% = 228, (3.9)
For the strangeness transitions listed in Eq. (3.5), we:hgye = 0.23, ex=- = 0.14, ezo = 0.09,
&=+ = 0.08, eny = 0.05, ea= = 0.05, eyp = 0.05, 5= = 0.04. Despite the nearness of thresholds
(compared to the kaon mass), the expansion parameters ) 8kd( all better than the generic
expansion parameter for SU(2)~ m;, /Mg = 0.5.
We can investigate the degree to which kaon thresholdstdffgeron masses by expanding

the non-analytic functiot# (mk , —dgg/, 4 = Mk ) in powers of the pion mass, as in Eq. (3.8). Again
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Table 2: Comparison of SU(3) ChPT and SU(2) ChPT for baryons. Pamemmét SU(2) are not related
between the various strangeness sectors.

| UE) D (2)s-0 U (2)s1 V(2s2 V(2)ss
Expansion| pmzmk my A pmy A p My Asp As+s p My Az p My
Multiplets 8B 10T 2N 4A 1IN 3% 3% 2= 2= 1Q
Couplings DFCH Oa0aN Oan  OAs Oss Oass Ossr Osrs O== Q==

we first evaluate the function at the scale of the kaon masslgr ¢o remove the logs which are not
associated with the threshold, i.e. the log terms have alsisgpies expansion im;/m;_, which is
unencumbered by the threshold. In Figure 1, we show the nahyic contribution to the masses
of Z* andZ baryons arising from virtugk-N fluctuations. This result is compared with successive
approximations derived by expanding about the SU(2) chirel. The plots show the non-analytic
contribution associated with the virtual kaon threshold ba captured in the two-flavor effective
theory. In SU(2), the kaon thresholds are described by artoierms analytic in the pion mass
squared, but non-analytic in the strange quark mass. Figooafirms that the expansion in terms
of gg' in EQ. (3.8) is under control for the range of values corresipny to theAS= 1 transitions:

3.3 Baryon Massesin SU(2) HBChPT

Having discussed aspects of the formulation of two-flavoPTHor hyperons, we turn our
attention to using this theory to compute hyperon propgréed assess the convergence of SU(2)
relative to SU(3). A comparison of the ingredients of SU(BY &U(2) ChPT is presented in
Table 2. The computation of baryon masses in SU(2) HBChPDées carried out [5]. In Figure 2,
we show the pion mass dependence of the NLO computation gbbanasses in SU(2). There
is marked improvement over the SU(3) chiral expansion. hiqdar the behavior of the NLO
contributions is perturbative at the chiral symmetry biegkscale for a range of pion masses.
Furthermore, the behavior of the SU(2) chiral expansionrawgs with increasing strangeness.
This feature owes itself to two facts. Firstly, the non-tiglatic expansion improves with increasing
strangeness because the relevant expansion paramgtéfs, decreases. Secondly, the pion loop
contributions are smaller with increasing strangenesstaueduced axial couplinggga = 1.25,
gss =0.78,0== = 0.24, andgan = 1.48,gas+ = 0.91,gss: = 0.76,9==- = 0.69. The only exception
is the lambda-sigma axial couplilggs = 1.47, although our normalization of this coupling is based
on SU(3).

IThese results are encouraging, however, they cannot bétidefinVe have estimated the mass of themeson
by using the GMOR relation for the neutral kaon mass. Allaywihe ns mass to vary 10% shows that one of the
transitions listed has a potentially fallible expansior.thle mass of tha)s is 10% smaller, then the expansion in
ens- is ill-fated. Beyond LO, we can defin@y, as twice the SU(2) chiral limit value of the kaon mass so that t
expansion parameters take basically the same functioral fg = (2mg —m3_)/(mé_— 2835,). We can then utilize
SU(3) ChPT to determine the sign of the NLO correction, whickhe sign of: flnz Iog% +4{2Lg(u) —Ls(u) +
2[2Lg() — La(p)] }. Using a variety of values for the LECs determined from ¢atQCD [11, 4], and NNLO ChPT
phenomenology [12], we find that the net sign is positive iewden minimizing contributions from the LEC terms).
With a positive correction tony, the expansion parametergy are all smaller than estimated, and the virttial- KN
process is likely well described in SU(2).
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Figure 2: Behavior of the NLO contributions to the baryons masses iRpHBChPT. The bands arise
from varying the renormalization scgleaboutu = Ay.

4. Baryon Axial Charges

Consideration of the baryon axial charges is analogousad#ryon masses. First let us
consider the case of SU(3) HBChPT. One can derive Gell-M@hknbo type relations for the axial
charges [13]. Considering tlid = 1, andAS= 1 axial transition matrix elements, there are a total
of 8 axial charges. At LO in the three-flavor expansion, tla@esonly two axial couplingd) andF.
Thus there are six relations between the axial charges aBLNLO, one must consider operators
with one insertion of the quark mass matrix. There are a t§t&INLO operators, and consequently
two non-trivial combinations of axial couplings that ard@pendent of local contributions

Ag = 20NN — ONA — ONs — OAs — Oss + 2052, (4.1)
AG = 20NN + 20== — 205 + ONs + OA= + O5= — ONA- (4.2)

These combinations can be computed from HBChPT at NLO, fachwie findAg = —0.0035, and
AG = —0.017. Unfortunately we cannot test these predictions agekperiment as some of these
axial charges are poorly determined, or unknown at predeaitice QCD calculations, however,
will be able to help us address whether SU(3) HBChPT is undetral for these combinations of
axial couplings.

As with the baryon masses, the loop contributions to indialdbaryon axial charges are not
small in SU(3) HBChPT. One can use SU(2) HBChPT to computexied charges of hyperons,
and this has been done for the= 1 axial charges [7]. Results of these computations are sirown
Figure 3. Here the pion mass dependence of the axial coggbrmotted. Lattice QCD data [9] has
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Figure 3: Pion mass dependence of the baryon axial charges in SU(2hRABCThe bands arise from
varying the local contribution arising at NNLO—except k5. For this case, we vary the renormalization
scaleu about/\y as no lattice data exist from which to determine the NLO tddmpper-case G's denote the
axial couplings, while lower-case g's denote their chinalil values. Lattice data and extrapolated values
are taken from [9].

been utilized to determine the values of NLO local contiimg in each strangeness sector. These
terms make contributions to the axial cha@gs of the form Aggm?/A%. We have determined
AnN(Ay) = =12, Ass(Ay) = —2.9, andA==(Ay) = —0.22, for which the naturalness of these
parameters increases with increasing strangeness. Gbyiesults are much better compared with
SU(3) ChPT. These findings are promising, however, we muegh k& mind the usual limitations
of the lattice data used as input. Additionally due to lackatfice QCD data, we are unable to
include the lambda-sigma coupling in this analysis. Furlhtice studies are needed here as the
S=1 baryon axial charges are coupled. To handle the lambdaasigass splitting in axial current
matrix elements, isospin twisted boundary conditions deali[14].

5. Summary

The convergence of baryon chiral perturbation theory in3 WX precarious. In general, ob-
servable guantities receive large contributions from kaamd etas. Such contributions undermine
a perturbative expansion. Using the matching procedunedsat the SU(3) and SU(2) theories,
we argued that SU(2) should exhibit better convergence @aa expansion im;/my,. For quan-
tities that are far from kaon production thresholds, théueirkaon and eta contributions can be
reorganized into such an SU(2) chiral expansion. This esiparcan be formulated for hyperons
without explicit kaon and eta degrees of freedom. We fourad éven for quantum fluctuations
close to kaon production thresholds, a new expansion paeasye underlies the two-flavor the-
ory. Expansions in this quantity convert non-analytic kfmesholds into a tower of analytic pion
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mass squared terms with coefficients that are non-analyticel strange quark mass. Estimates of
the egg parameters for the hyperons show that kaon productionsttblds will be reproduced in
SU(2) perturbation theor.

Using the SU(2) theory of hyperons, we explored the chirhlab®r of baryon masses and
axial charges calculated in HBChPT. These explicit contmria showed marked improvement
over SU(3). The expansion, moreover, is better behaved witeasing strangeness due to a
better non-relativistic approximation, and axial cougfinhat decrease with increasing strangeness.
Ultimately the power of SU(2) ChPT must be tested using daden flattice QCD simulations.
Future data at light pion masses will arm us with informataiout the low-energy constants in
two- and three-flavor theories. In turn, we will be able toredd the issues of convergence. Lattice
QCD, moreover, benefits directly from SU(2) ChPT. At currealues of the quark masses, what is
required is pion mass extrapolation which is efficientlydiad in the two-flavor expansion. Finally
the combination of lattice QCD in conjunction with ChPT welhable us to address when SU(3)
ChPT is a systematic tool for the lowest-lying baryons.
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