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field theory programs, including that of chiral perturbation theory. We propose a novel method
based on Bayesian probability theory which allows us to address several shortcomings of the stan-
dard approach to parameter extraction. Using a toy-model we argue that the Bayesian approach
is ideally suited for the application in effective field theories. We also discuss the application to
lattice QCD data.
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1. Introduction

An effective field theory (EFT) is a low-energy approximation to an underlying theory. It
allows for a model-independent description of phenomena at an energy scale m that is much lower
than an underlying scale A. The Lagrangian of the EFT is constructed by including all terms that
are consistent with the symmetries of the underlying theory. Each of the terms in the Lagrangian is
accompanied by a so-called low-energy constant (LEC) that incorporates the effects of high-energy
degrees of freedom on the low-energy dynamics. The EFT leads to a perturbative expansion for
observables at the low-energy scale if the LECs are of order ¢(1) in units of the high-energy
scale, i.e. if they are “natural” with respect to A. In principle, these LECs can be determined
from the underlying theory. In practice, however, there are only a few cases in which the LECs
can be rigorously derived from the underlying theory, and in all other instances the only model-
independent way to determine the LECs is by comparison with experimental data.

The standard approach to the extraction of LECs from data is to calculate an observable at
some given order and then perform a fit of this EFT expression using methods like least squares or
maximum likelihood. There are several issues with this approach that we are going to address:

1. Which order in the EFT expansion should be used to perform the fit?
2. How can the naturalness requirement on the LECs be incorporated?

3. What is the appropriate energy regime to perform the fit? In most cases more data is avail-
able for higher energies, but the reliability of the EFT calculation decreases as the energy is
increased.

With data sets that include a large number of very precise measurements, these issues are not of
any significance. If, however, only limited and imprecise data is available, these issues manifest
themselves as sensitivity of the extracted LECs on the way the fit is performed.

In order to avoid the above-mentioned issues we have developed an approach that is based on
Bayesian probability theory [1]. We argue that Bayesian methods (for an introduction see e.g. [2])
are ideally suited for the extraction of LECs. In the Bayesian approach prior knowledge on the
parameters can be easily included in the process of estimating these parameters. When combined
with the concept of marginalization, applied to the order of the fit function, the derived method
resolves the first two issues in the above list. We also show that this method is not sensitive to
higher-energy data within certain bounds.

2. Bayesian probability theory

Consider a general EFT for which the LECs are denoted by a = {q;|i = 1,...,M}. In the
following we will restrict the discussion to extracting a subset a,,; of these unknown parameters
from some given data D = {(dk,0x)|k = 1,...,N}, where dy is an individual measurement at xj
with associated uncertainty o;. We are therefore interested in the probability density

pr(ayes|D), 2.1
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where pr(A|B) denotes the conditional probability density of A given B. Bayes’ theorem relates
this probability density to the more familiar likelihood pr(D|a,.s),

pr(D|ayes)pr(ayes)

2.2
pr(D) 2

pr(ayes|D) =

Here, pr(a,s) is the so-called prior which incorporates any information available on the parameters
prior to analysis of the data. The denominator can be obtained from the requirement that pr(a,.s|D)
be normalized. The prior information we wish to include is the assumption of naturalness of the
parameters. However, the notion of “naturalness” is not strictly defined. Here we employ the
principle of maximum entropy to motivate a prior of the form [1]:

|\ M+ a2
pr(a|M,R) = (\/TRTR) exp <_2RZ> . (2.3)

Note that we have introduced several additional parameters: a = (2, amarg) denotes the complete
set of LECs at a given order, including the higher-order LECs a,,,,, that we do not wish to extract,
M is related to the order of the EFT calculation,! and R is a parameter that encodes the definition of
naturalness as chosen here. Thus, while we have succeeded in defining the prior, this has come at
the price of the introduction of these additional parameters. Since we are not interested in the exact
values of these parameters and, in fact, one of our aims was to avoid having to fix the value of M,
we apply marginalization to eliminate these “nuisance” parameters. The general marginalization
description is given by

pr(A|C) = / dBpr(A,B|C), (2.4)

that means unwanted parameters are integrated out. We apply marginalization to the higher-order
LECS a,,4r¢, the order of the EFT calculation and the “naturalness parameter” R. This last marginal-
ization thus takes into account the uncertainty in the definition of naturalness. The final probability
density is given by (for a derivation see Ref. [1])

pr(ares|D) :;‘ / IR / daars pr(DIa,M)pr(;rl(‘g;?)pr(M)pr(R). 2.5)

Since Bayes’ theorem was employed several times in the derivation of Eq. (2.5) we are forced to
introduce priors for M and R. We do not assume any particular knowledge of these parameters.
However, since M is a “location parameter” and R is a “scale parameter” we use different priors.
The prior for M is a constant, while pr(R) = % (see Ref. [1] for more details). The parameters and
the associated uncertainties are determined from the first and second moments of the pdf,

<ai> = /daresaipr(ares|D)> (2.6)
0p = {a;) — (). @7

a; i

n general, M, the number of LECs, is not identical to the order of the calculation.
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Figure 1: Generated artificial data. The solid line is the function g(x).

3. Application to a toy problem

In order to demonstrate the advantages of our proposed method we consider an application to
a toy problem. We generate pseudo-data using the function

g(x) = <;+tan (Zx>>2 G.1)

for x > 0. Our aim is to extract the first two coefficients ag,a; of a polynomial
P .
fx)=Y ap’ (3.2)
j=0

from the pseudo-data, where P denotes the order of the polynomial. The function g(x) might
not have any direct physical application, but it exhibits a number of features that are common in
EFT applications. g(x) is non-analytic in x € R, but for x < 1 it can be approximated to arbitrary
precision by a power series. The first few terms in this power series are given by

g(x) ~0.254 1.57x+2.47x* + 1.29x° +4.06x* + - - . (3.3)

The coefficients of at least the first ten terms are “natural”, however, their magnitude is not decreas-
ing for increasing order.

The pseudo-data we wish to analyze, covering the range 0 < x < 1 /7 are shown in Fig. 1. The
prior information available is that the data are normally distributed (which reduces the problem to
a minimum x? one in the standard approach) and that the coefficients of the polynomial are &/(1).
The results of a standard least-squares fit at various orders of the polynomial, which does not take
into account the information on the naturalness of the parameters, are shown in Tab. 1. While the
quadratic fit reproduces the underlying values of @y and a; reasonably well and with a relatively low
x2, without knowledge of the underlying values it might be difficult to decide why the quadratic fit
should be preferred. One should also note the lack of convergence, especially for a;, as one goes
to higher orders and the fast growth of the uncertainties. An experienced practitioner might be able
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P|x*/d.o.f. ag ap

1| 223 10.2034+0.014| 2.51£0.10
21 1.06 ]0.2604+0.022| 1.31+0.39
3] 1.13 ]0.235+£0.038| 2.14+1.08
41 1.13 |0.177+0.067| 4.76+2.70
5! 0.99 ]0.3274+0.133|-3.56+6.94
6 1.32  10.314+0.297|—-2.73+18.5
7 147 1.05+0.792 | —56.3£56.5

Table 1: Fit result for standard x> approach.

to discern which of the various fits to trust most, however our aim is to eliminate the need for this
post-analysis judgement.

We now apply our method based on the use of Bayes’ theorem and marginalization to the data.
The naturalness of the parameters is included in the analysis with the use of the prior of Eq. (2.3).
We marginalize over the polynomial order from P = 2 to P = 8. For the “naturalness parameter” R
we choose R = 0.1 — 10. We find

ap = 0.246 +0.021,
a; = 1.63+£0.37,

(3.4)
(3.5)

in good agreement with the underlying values. We have avoided the need to choose a specific
order for the fit; instead the uncertainties in the results for ag and a; include contributions from the
marginalization over P. And while the results are influenced by our inclusion of the “naturalness
prior”, the lack of exact knowledge of R again contributes to the final uncertainties of the parameters
via marginalization. We therefore believe that our method not only leads to improved extraction of
the parameters of interest, but also includes some of the uncertainties related to such an extraction
in a more systematic way than the standard approach.

We have performed an analogous analysis with a different data set that contains the same
number of data points, but for which 0 < x <2/m. The result for the standard Xz fit are shown
in Tab. 2. With more data points closer to the radius of convergence the problems of the standard
approach are exacerbated. While the fourth-order fit gives results not too far from the underlying
values, without knowledge of these “true” values it is not clear which result to trust. In our Bayesian
approach, again choosing P =2 —8 and R = 0.1 — 10, we find

ap = 0.241 £0.048,
a; =2.23+0.74.

(3.6)
3.7

These values are again in agreement with the underlying values, and reproduce them much better
than the standard x? results. We consider it a strength of our method that the results are not as
sensitive to high-x data, allowing for the use of larger data sets.
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Xz/d.o.f. ap ai
5.35 0.392 £0.033 | -0.387 4 0.351
1.47 0.141 £ 0.058 4.32 £0.946
1.48 0.246 + 0.106 1.79 £2.35
1.46 0.00697 £ 0.217 | 8.67 £5.94
0.46 0.995 £0.516 -24.0 £ 16.6
0.50 0.180 £ 1.41 598 £51.0

e SRV N SN RN

Table 2: Fit results for standard 2 approach with x,,, = 2 /7.

4. Application to lattice data

One possible application of the outlined method is the extraction of LECs in chiral perturbation
theory (ChPT) from lattice data. In particular, we have studied the determination of the chiral limit
value of the nucleon mass and the nucleon sigma term. There are several additional issues that
need to be addressed. In these exploratory studies we again used pseudo-data generated at a set
of pion mass values from the ChPT form of the nucleon mass. Our results suggest that for the
naturalness prior of Eq. (2.3) larger values of R are suppressed, and the main contribution to the
integral over R comes from the region R ~ 1 — 2. It should be noted that the numerical values of the
dimensionless low-energy coefficients to which the naturalness assumption applies depend on the
value of the underlying scale A. This manifests itself in a certain sensitivity of the extracted LECs
on the choice of A. In addition we also want to make use of detailed information on some of the
parameters that appear in the ChPT expression of the nucleon mass, such as the pion decay constant
and the axial coupling of the nucleon. This information allows for use of more sophisticated priors.
We are continuing our investigation of these issues [3].

5. Conclusions

Extraction of the values of parameters relevant to low-energy dynamics from pertinent data is
an important part of effective-field-theory calculations. We have presented a novel approach to this
problem that is based on Bayesian probability theory. In this approach, prior information regarding
the parameters of interest can be taken into account during the data analysis. This also allows for
a more systematic inclusion of uncertainties related to truncations in the EFT. Application to a toy
problem shows that our method results in an improved extraction of the low-energy constants of
interest. We are continuing to study the application of these ideas to lattice QCD data and chiral
perturbation theory.
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