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Three instances are discussed in which results produced by chiral perturbation theory can be reli-

ably pushed to high space-like values of transferred momenta.

1. nuclear interactions: At present, expansions are available for about 20 components of both

two- and three-nucleon forces, and the vast majority of themfollows the patterns predicted by

chiral symmetry. The outstanding exception isV+
C , the isospin independent central potential.

Standard calculations show that thisO(q3) contribution is about 10 times larger than the leading

O(q2) isospin dependent termV−
C . In spite of defying counting rules, these results are quitewell

supported by phenomenology up to distances smaller than 1 fm(→ |t| ∼ 20M2
π).

2. nucleon sigma-term: The configuration space nucleon scalar form factorF̃s(r) is an impor-

tant substructure ofV+
C , and its integration over the entire volume yieldsσN, the nucleonσ -term.

Perturbative results based on diagrams involvingN and∆ intermediate states vanish at large dis-

tances, and increase monotonically as one approaches the nucleon center, where they can become

arbitrarily large. Assuming that the pion cloud of the nucleon is constructed at the expenses of

the surrounding condensate, an upper limit forF̃S(r) can be set at a critical radiusR≃ 0.6 fm

(→ |t| ∼ 40M2
π), where a phase transition takes place. This mechanism excludes the problematic

region and yields 43 MeV< σN < 49 MeV, in agreement with the empirical value 45±8 MeV.

3. space-like structure of the pion: The extension of the model forσN to the pion describes

it as a Goldstone boson at large distances, surrounded by a quark-antiquark condensate. As one

moves towards its center, the condensate is gradually destroyed and a phase transition occurs at a

distanceR≃ 0.6 fm (→ |t| ∼ 40M2
π). When only pion loops are considered, the model depends

on justMπ andFπ , and yields〈 r2 〉π
S = 0.50 fm2 andl̄4 = 3.9. The inclusion of a scalar resonance

of mass 980MeV, with two known coupling constants, improvesthese values to〈 r2 〉π
S = 0.59

fm2 andl̄4 = 4.3, well within the error bars of the precise estimates〈 r2 〉π
S = 0.61±0.04 fm2 and

l̄4 = 4.4±0.2, produced in 2001 by Colangelo, Gasser and Leutwyler. In both cases, results are

given in terms of simple analytic expressions.
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1. NUCLEAR INTERACTIONS

In the last twenty years, our understanding of nuclear interactions has improved considerably[1],
owing to the systematic use of chiral perturbation theory (ChPT)[2]. As the masses of the quarksu
andd are small, they are treated as perturbations in aSU(2)×SU(2) chiral symmetric lagrangian.
Hadronic amplitudes are then expanded in terms of a typical scale q, set by either pion four-
momenta or nucleon three-momenta, such thatq≪ 1 GeV. This procedure is rigorous and results
are written as power series in the scaleq, giving rise to the notion of chiral hierearchies. In most
cases, leading order terms come from tree diagrams and corrections require the inclusion of pion
loops.

In spite of all the progress achieved, there are still some puzzles in our picture of nuclear
interactions. At present, chiral symmetry has been appliedto about 20 components of nuclear
forces[3], and thepredictedstructure for the most important terms is shown in table 1, where
OPEandTPE stand forone-pion exchangeandtwo-pion exhange, V+

i andV−
i represent two-body

operators proportional to either the identity orτ (1) ·τ (2) in isospin space,i → [central(C), spin-
orbit(LS), spin-spin(SS), tensor(T)], whereas the notation of ref.[4] is used for three-body forces.
Actual results for central componentsV±

C defy these predictions.

leading TWO-BODY TWO-BODY THREE-BODY
contribution OPE TPE TPE

O(q0) V−
T ,V−

SS

O(q2) V−
C ;V+

T ,V+
SS

O(q3) V−
LS,V

−
T ,V−

SS;V
+

C ,V+
LS WS,WP,W′

P

The chiral two-pion exchangeNN potential was studied by our group[5, 6], by means of the
three families of diagrams displayed in fig.1. FamilyI implements the minimal realization of chiral
symmetry[7] and begins atO(q2), whereas familyII depends onππ correlations and contributes
at O(q4). Vertices in these familes involve onlygA andFπ , and all dependence on other LECs is
concentrated in familyIII , which begins atO(q3). These LECs can be extracted from subthreshold
πN amplitudes[8] and one finds that the componentsV−

C andV+
C are very strongly dominated by

families I andIII , respectively.
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Figure 1: Dynamical structure of the two-pion exchange potential.
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The central componentsV−
C [→ O(q2)] andV+

C [→ O(q3)] are shown in fig.2, and one has
|V+

C | ∼ 10|V−
C | in regions of physical interest, at odds with the predicted chiral hierarchy. The

numerical explanation for the magnitude ofV+
C is that it depends on large LECs generated by

delta intermediate states. Nevertheless, the prediction for V+
C , which is by far the most important

component of the nuclear force, is very good when compared with accurate phenomenological
Argonne[9] potentials. Moreover, this agreement holds up to distances smaller than 1 fm, which
correspond to momenta transferred|t| > 20M2

π . The empirical validity of results forV+
C is, thus,

much wider than expectations allowed by chiral perturbation theory.
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Figure 2: Isospin odd (left) and even (right) central components of the two-pion exchange potential.

2. NUCLEON SIGMA-TERM

The structure ofV+
C was discussed in refs.[6, 10], and about 70% of its strength found to come

from a term of the form

V+
C (r) ∼−(2c3/F2

π )
[

2−4c1/c3−∇2/M2
π

]

σ̃N(r) , (2.1)

whereσ̃N is the long-distance part of the scalar form factor in configuration space and theci are
usual LECs from theπN lagrangian. An important role is played byc3, which is large and domi-
nated by∆ intermediate states.

The nucleon scalar form factor is defined in terms of the symmetry breaking lagrangian as

〈 N(p′)|−Lsb|N(p) 〉 = ū(p′) u(p) σN(t) . (2.2)

and has already been expanded toO(q4)[11, 8]. The leadingO(q2) contribution comes from a
tree diagram proportional toc1, whereas corrections atO(q3) andO(q4) are due to loops involving
nucleon intermediate states and LECs. The main features of these results were incorporated into a
model for the scalar form factor in configuration space[12],in which LECs atO(q4) are replaced
by explicit ∆ intermediate states. The corresponding structure reads

σ̃N(r) =
[

−4c1 µ2 δ 3(r)
]

O(q2)
+ [ σ̃N(r) ]N

O(q3) + [ σ̃N(r) ]∆
O(q4) , (2.3)
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the superscriptsN and∆ indicating intermediate propagators in triangle diagrams. These contri-
butions are first evaluated in momentum space, by usingLsb = F2

π M2
π cosθ , whereθ is the pion

field, related to the usual unitary form byU = exp(iτ · θ ) = cosθ + iτ · θ̂ sinθ . Results are then
expressed asσN(t) = −F2

π M2
π cosθ(t).

Performing a Fourier transform and recalling that the vacuum expectation value ofLsb is
related to the light quark condensate by〈 0|−Lsb|0 〉 = 〈 0|m̂(ūu+ d̄d)|0 〉 = −F2

π M2
π , the scalar

form factor in coordinate space is written as

σ̌N(r) = 〈 0|m̂(ūu+ d̄d)|0 〉 cosθ(r) . (2.4)

The function cosθ(r) describes the disturbance produced by the nucleon over the condensate and
the non-linear nature of pion interactions gives rise to theconstraint

−1≤ σ̌N(r)/〈 0|m̂(ūu+ d̄d)|0 〉 ≤ 1 . (2.5)

Another condition over this ratio comes from the fact that the QCD ground state can take the
form of either empty space or a quark-antiquark condensate.In the present case, the boundary
conditionθ(r) → 0 for r → ∞ ensures that the condensate remains undisturbed at large distances.
As one moves towards the nucleon, cosθ decreases, indicating that it destroys the condensate.
This picture is compatible with the unitarity of the fieldU , which correlates condensate and pion
magnitudes and suggests that the pion cloud of the nucleon isconstructed at the expenses of the
surrounding condensate, by means of a chiral rotation. The model presented in ref.[12] is based
on the assumption that this process ends when all quark-antiquark pairs originally present in the
vacuum become excited, and a phase transition takes place atthe radiusR at which cosθ(R) = 0.
Formally, this corresponds to the condition

0≤ σ̌N(r)/〈 0|m̂(ūu+ d̄d)|0 〉 ≤ 1 . (2.6)

In configuration space, observables are calculated by integrating densities over the entire vol-
ume. In the case of the density̌σN, given by eq.(2.4), this would yield divergent results, since it
does not vanish in the limitr → ∞. Therefore one shifts its origin, and works with a new function,
defined as

σ̃N(r) ≡ σ̌N(r)−〈 0|m̂(ūu+ d̄d)|0 〉 = F2
π M2

π [1−cosθ(r)] , (2.7)

which describes the nucleon cloud as adeviationfrom the condensate. In practice, the function
cosθ cannot be calculated exactly and one resorts to perturbation. This naturally yields a rep-
resentation for[1− cosθ ] which vanishes at large distances and increases monotonically as one
approaches the nucleon center. At short distances, this representation becomes inadequate, since
it is unbound and diverges at the origin. In the model, this problematic region is excluded by the
phase transition, for it assumes the perturbative representation for cosθ in the rangeR≤ r < ∞ and
cosθ = 0 for R< r.

The roles played byN[→ O(q3)] and∆[→ O(q4)] intermediate states in eq.(2.3) can be in-
ferred from fig.3. The ratio[ σ̃N(r) ]N / [ σ̃N(r) ]∆, given on the left, shows that the hierarchy pre-
dicted by ChPT breaks down for distances smaller than 1.5 fm.The right figure describes the ratio
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Figure 3: Ratios[σ̃N(r)]∆/[σ̃N(r)]N (left) andσ̃N(r)/(F2
π M2

π) = (1−cosθ ) (right) as functions of the dis-
tance to the nucleon center.

σ̃N(r)/(F2
π M2

π) = (1− cosθ) inside this region, together with individualN and∆ contributions.
The phase transition is assumed to occur at the pointR∼ 0.6 fm (→ |t| ∼ 40M2

π), where the black
curve reaches the value 1.

In ref. [12], the nucleonσ -term has been evaluated by means of the expression

σN =
4
3

πR3 F2
π M2

π +4π
∫ ∞

R
dr r2 σ̃N(r) , (2.8)

which yields 43 MeV< σN < 49 MeV, depending on the value used for theπN∆ coupling constant,
in agreement with the empirical value 45±8 MeV [13]. Good results are also obtained for the∆
σ -term.

3. SPACE-LIKE STRUCTURE OF THE PION

Configuration space results forV+
C andσN indicate that, in these two instances, perturbative

calculations are reliable at high values of|t|. This has motivated an exploratory study of pion
properties in a similar framework[14], which yields good predictions for the mean square radius
(〈 r2 〉π

S = 0.59fm2) and for one of the LECs(l̄4 = 4.3), with no free parameters.
The calculation departs from standardO(q4) results produced by Gasser and Leutwyler (GL)

in 1984[15], and their notation is followed. The pion scalarform factor is given by

FS(t) = 〈 π(p′) | ūu+ d̄ d |π(p) 〉 = 2B

{

1+2µπ +
M2

π
32π2 F2

π
+

4M2
π

F2
π

l r
3

+
(2t −M2

π)

32π2 F2
π

L(Mπ , t)+
t

F2
π

[

l r
4−

1
16π2

(

ln
M2

π
µ2 +1

)]}

, (3.1)

whereµπ = (M2
π/32π2F2

π ) ln(M2
π/µ2), the LECs are related to their scale-invariant counterparts by

l r
3 = −(l̄3 + lnM2

π/µ2)/64π2 andl r
4 = (l̄4 + lnM2

π/µ2)/16π2, t = (p′− p)2, and the loop function
L is related to thēJ in GL by J̄ = L/(4π)2. In the Breit frame, the variablet = −q2 is negative and
one has

L(Mπ ,q) = σ ln
σ −1
σ +1

+2 , σ =
√

1+4M2
π/q2 . (3.2)
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The Fourier transform ofFS(t) describes the spatial structure of the pion and reads

F̃S(r) = 2B

{

Λ̃(Mπ , r)
32π2F2

π
+ZRT

}

, (3.3)

Λ̃(Mπ , r) =
∫

d3q
(2π)3 e−iq·r [(2t −M2

π)L(Mπ ,q)] (3.4)

=
M3

π
π r2

[(

12
M2

π r2 +7

)

K1(2Mπ r)+
12

Mπr
K0(2Mπ r)

]

, (3.5)

where theKi are Bessel functions and ZRT stands for zero range terms, proportional to theδ -
function and its derivatives. The leading term in the quark condensate is given by〈 0| ū u+

d̄ d|0 〉 = −2BF2
π , and one writes

F̃S(r) = −〈 0| ū u+ d̄ d|0 〉 Λ̃(Mπ , r)
32π2F4

π
+ZRT . (3.6)

At low-energies, the pion behaves as a Goldstone boson and, far away from its center, the scalar
form factor must be related to the surrounding quark-antiquark condensate bỹFS(r) → N 〈 0| ūu+

d̄ d|0 〉, whereN is a constant with dimension of mass. However, eq.(3.6) vanishes at large dis-
tances and, as in the case of eq.(2.7) for the nucleon, one hasto perform a shift in the origin,
defining a new function by

F̌S(r) ≡ F̃S(r)+ 〈 0|(ūu+ d̄d)|0 〉 = N 〈 0| ū u+ d̄ d|0 〉
[

1− Λ̃(Mπ , r)
N32π2F4

π
+ZRT

]

. (3.7)

This form is now suited for describing the behavior of the pion in the presence of the condensate. It
is the analog to eq.(2.4), with cosθ replaced by[1− Λ̃(Mπ , r)/(N32π2F4

π )+ZRT]. As in the nu-
cleon case, it represents an undisturbed condensate at large distances and decreases monotonically
as one approaches the center of the pion. For the same reasonsas discussed in the previous section,
one assumes that this term is meaningful in the interval

0≤
[

1− Λ̃(Mπ , r)
N32π2F4

π
+ZRT

]

≤ 1 , (3.8)

and that a phase transition occurs at a pointR, such that 1= Λ̃(Mπ ,R)/(N32π2F4
π ). At smaller

distances, the functioñΛ(Mπ , r) is replaced by the cut versionΘ(r −R) Λ̃(Mπ , r). Zero range terms
are then eliminated and one has

F̌S(r) = −2BF2
π

{

N−Θ(r −R)
Λ̃(Mπ , r)
32π2F4

π

}

. (3.9)

This function does not vanish at infinity and, as in the nucleon case, integration over entire space
requires shifting the origin. The scalar form factor is thenrewritten as

F̃S(r) = 2B

{

Θ(R− r)
Λ̃(Mπ ,R)

32π2F2
π

+ Θ(r −R)
Λ̃(Mπ , r)
32π2F2

π

}

, (3.10)

after using the cutting condition to eliminate the factorN.
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The scalar form factor in momentum space is given by the Fourier transform of this result and,
for t = 0, one hasFS(0) = 4π

∫

dr r2F̃S(r). At leading order, eq.(3.1) yieldsFS(0) = 2B and one
has the consistency condition

1 = 4π
∫

dr r2 F̃S(r)
2B

=
M2

π
16π2F2

π

[(

20
MπR

+
14Mπ R

3

)

K1(2MπR)+15K0(2MπR)

]

, (3.11)

which allows the cutting radius to be found. The mean square radius (MSR), given by〈 r2 〉π
S =

4π
∫

dr r4 [F̃S(r)/2B], is an observable and reads

〈 r2 〉π
S =

1
80π2F2

π

[(

119Mπ R+14M3
πR3)K1(2MπR)+

(

60+59M2
πR2) K0(2MπR)

]

. (3.12)

4. RESULTS

The cutting radiusR can be extracted from eq.(3.11), either numerically or by means of a
perturbative expansion inMπ . As both results coincide within 1%, one uses the latter. Eq.(3.11)
becomes 1= 10

{

1+M2
πR2 [(lnMπR+ γ)/2−23/30]

}

/(16π2F2
π R2) and yields

R=

√
10

4πFπ

{

1+
M2

π
32π2F2

π

[

5

(

ln
Mπ

√
10

4πFπ
+ γ

)

− 23
3

]}

, (4.1)

which corresponds toR= 0.500 fm, forMπ = 139.57MeV andFπ = 92.4MeV. The MSR reads

〈 r2 〉π
S =

1
16π2F2

π

{

119
10

−12

(

ln
Mπ

√
10

4πFπ
+ γ

)

− 30M2
π

16π2F2
π

[(

ln
Mπ

√
10

4πFπ
+ γ

)

− 61
30

]}

(4.2)

and produces〈 r2 〉π
S = 0.509 fm2, deviating about 20% from the precise estimate〈 r2 〉π

S = 0.61±
0.04 fm2[16].

In ChPT, the MSR is related the LEC̄l4. In the model, this LEC can be extracted by trans-
lating results back to momentum space. The Fourier transform of the functionL(Mπ ,q), given in
eqs.(3.3 3.5), involves ZRTs, which were discarded in configuration space. When one is interested
in returning to momentum space, it is convenient to work withan extension ofL(Mπ ,q), denoted
by Le(q), and defined by the double integral

Le(q) =
∫ µ2

M2
π

db
∫ 1

0
da

1
a(1−a)q2 +b

= L(Mπ ,q)− ln
M2

π
µ2 −L(µ ,q) , (4.3)

whereµ is a scale. The functionL(µ ,q) vanishes for large values ofµ and eq.(3.1) becomes

FS(t) = 2B

{

(2t −M2
π)

32π2 F2
π

Le(t)+ δ
}

, (4.4)

δ =

[

1+
M2

π
32π2F2

π

(

1+ ln
M2

π
µ2

)

+
4M2

π
F2

π
l r
3 +

t
F2

π

(

l r
4−

1
16π2

)]

. (4.5)

Evaluating the Fourier transform and cutting the result atr = R, one has

F̃S(R, r) = 2B

{

Λ̃e(r)
32π2F2

π
+ Θ(R− r)

Λ̃e(R)− Λ̃e(r)
32π2F2

π

}

, (4.6)
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whereΛ̃e(r) ≡ Λ̃(Mπ , r)− Λ̃(µ , r). It is important to note that terms proportional toδ gave rise to
ZRTs and were discarded in the cutting procedure.

In returning to momentum space,Λ̃e(r) becomes(2t −M2
π)Le(t) again, and anewfactorδ is

created by the Fourier transform of the term proportional toΘ(R− r) in eq.(4.6). The functions
Λ̃e(r) are expressed in terms of Bessel functionsKi and an explicit calculation produces

4π
∫ R

0
dr eiq·r r2 Λ̃e(R)− Λ̃e(r)

32π2F2
π

=

[

1− M2
π

32π2F2
π

ln
M2

π
µ2 +

t
16π2F2

π

(

31
15

−2 (lnµR+ γ)

)]

,(4.7)

for low values ofq2. Comparing eqs.(4.5) and (4.7), one finds

4l r
3 = − 1

16π2

[

1
2

+ ln
M2

π
µ2

]

→ l̄3 = 1/2 , (4.8)

l r
4 =

1
16π2

[

46
15

−2(lnMπR+ γ)+ ln
M2

π
µ2

]

→ l̄4 =
46
15

−2(lnMπR+ γ) . (4.9)

Both results contain the correct lnM2
π/µ2 structure, but that concerninḡl3 cannot be trusted, since it

is based on the approximationFS(0) = 2B used in eq.(3.11). The prediction forl̄4 is consistent with
the〈 r2 〉π

S given in eq.(3.12), since it follows the relation[15]〈 r2 〉π
S = 3

[

l̄4−13/12
]

/(8π2F2) at
leading order. Chiral perturbation theory at two loops predicts[16] l̄4 = 4.4±0.2. Using the value
R= 0.500fm produced by eq.(4.2), one findsl̄4 = 3.99.

Results for〈 r2 〉π
S and l̄4 are improved by the inclusion of scalar mesons. One follows the

work of Ecker, Gasser, Pich and De Rafael [17] and adopts their valuesMS= MS1 ≡ m= 980MeV,
cd =

√
3 c̃d = 32MeV, andcm =

√
3 c̃m = 42MeV. In the expressions that follow, terms already

displayed previously are denoted by[· · ·]. The scalar form factor in momentum space now reads

FS(t) = 2B

{

[· · ·]− 4cm

F2
π

[

cd +
cd m2+2(cm−cd)M2

π
t −m2

]}

(4.10)

and corresponds to

F̃S(r) = 2B

{

[· · ·]+ E e−mr

4π r
+ZRT

}

, E =
4cm

F2
π

[

cd m2 +2(cm−cd)M
2
π
]

. (4.11)

Cutting the integrand at the radiusR, one finds the new version of eq.(3.10), given by

F̃S(r) =

{

Θ(R− r)

[

Λ̃(Mπ ,R)

32π2F2
π

+
E e−mR

4π R

]

+ Θ(r −R)

[

Λ̃(Mπ , r)
32π2F2

π
+

E e−mr

4π r

]}

. (4.12)

Imposing the spatial integral of̃FS(r) to be equal toFS(0), the condition for determining the cutting
radius becomes

1 =
M2

π
16π2F2

π

[(

20
MπR

+
14MπR

3

)

K1(2Mπ R)+15K0(2MπR)

]

+
E
m2

[

1+mR+
m2R2

3

]

e−mR , (4.13)

8
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and yieldsR= 0.570fm(→ |t| ∼ 40M2
π). The mean square radius is now given by

〈 r2 〉π
S = [· · ·]+ E

m4

[

6+6mR+3m2R2+m3R3 +
m4R4

5

]

e−mR (4.14)

and has the value〈 r2 〉π
S = 0.591 fm2, to be compared with[16]〈 r2 〉π

S = 0.61± 0.04 fm2. The
procedure for obtaininḡl4 is the same as before, and one evaluates the integral

4π
∫

dr eiq·r r2
[

Λ̃e(R)− Λ̃e(r)
32π2F2

π
+

E
4π

(

e−mR

R
− e−mr

r

)]

=

[

1+[· · ·]+ t
E
m4

(

1+mR+
m2R2

2
+

m3R3

6
+

m4R4

30

)

e−mR
]

, (4.15)

which yields

l̄4 =
46
15

−2(lnMπR+ γ)+
64π2 cm

[

cd +2(cm−cd)M2
π/m2

]

m2

×
(

1+mR+m2R2/2+m3R3/6+m4R4/30
)

e−mR . (4.16)

Numerically, this corresponds tōl4 = 4.26, within the error bars of the precise resultl̄4 = 4.4±0.2
derived by Colangelo, Gasser and Leutwyler[16]. In the alternative notationl̄4 = lnΛ2

4/M2
π , one

findsΛ4 = 1.178GeV.
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