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Three instances are discussed in which results producekita) perturbation theory can be reli-
ably pushed to high space-like values of transferred moanent

1. nuclear interactions: At present, expansions are available for about 20 comperméitoth
two- and three-nucleon forces, and the vast majority of tfe@hows the patterns predicted by
chiral symmetry. The outstanding exceptioﬁ\/Lé , the isospin independent central potential.
Standard calculations show that ti#i$g®) contribution is about 10 times larger than the leading
0(q?) isospin dependent terky . In spite of defying counting rules, these results are qui
supported by phenomenology up to distances smaller than(1-fr] ~ 20 M2).

2. nucleon sigma-term: The configuration space nucleon scalar form faég()r) is an impor-
tant substructure of, and its integration over the entire volume yiettks, the nucleoro-term.
Perturbative results based on diagrams invol\hWhandA intermediate states vanish at large dis-
tances, and increase monotonically as one approachesdls®ncenter, where they can become
arbitrarily large. Assuming that the pion cloud of the noclés constructed at the expenses of
the surrounding condensate, an upper limitfgfr) can be set at a critical radil®g~ 0.6 fm

(— [t| ~ 40M32), where a phase transition takes place. This mechanismdesthe problematic
region and yields 43 Me¥ gy < 49 MeV, in agreement with the empirical value 4% MeV.

3. space-like structure of the pion: The extension of the model fary to the pion describes

it as a Goldstone boson at large distances, surrounded bgr&-gqatiquark condensate. As one
moves towards its center, the condensate is graduallyoyestiand a phase transition occurs at a
distanceR~ 0.6 fm (— |t| ~ 40M2). When only pion loops are considered, the model depends
on justM; andF;, and yields r2 )& =0.50 fr? andI:, = 3.9. The inclusion of a scalar resonance
of mass 980 MeV, with two known coupling constants, improtrese values tgr? )2 = 0.59
fm? andl, = 4.3, well within the error bars of the precise estimate)Z = 0.61+0.04 fn? and
lg=4.440.2, produced in 2001 by Colangelo, Gasser and Leutwyler. th bases, results are
given in terms of simple analytic expressions.
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1. NUCLEAR INTERACTIONS

In the last twenty years, our understanding of nuclearaations has improved considerably[1],
owing to the systematic use of chiral perturbation theotyRT)[2]. As the masses of the quarks
andd are small, they are treated as perturbations $é2) x SU(2) chiral symmetric lagrangian.
Hadronic amplitudes are then expanded in terms of a typicalks), set by either pion four-
momenta or nucleon three-momenta, such that 1 GeV. This procedure is rigorous and results
are written as power series in the scgleiving rise to the notion of chiral hierearchies. In most
cases, leading order terms come from tree diagrams anccton® require the inclusion of pion
loops.

In spite of all the progress achieved, there are still sonmzzlps in our picture of nuclear
interactions. At present, chiral symmetry has been appbedbout 20 components of nuclear
forces[3], and thepredictedstructure for the most important terms is shown in table leneh
OPEandT PE stand forone-pion exchangandtwo-pion exhangeV, ™ andV,~ represent two-body
operators proportional to either the identity & - 1(? in isospin spacei, — [centralC), spin-
orbit(LS), spin-spiitSS, tenso(T )], whereas the notation of ref.[4] is used for three-bodyést
Actual results for central components defy these predictions.

leading TWO-BODY TWO-BODY THREE-BODY
contribution OPE TPE TPE
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The chiral two-pion exchangd N potential was studied by our group[5, 6], by means of the
three families of diagrams displayed in fig.1. Fanilynplements the minimal realization of chiral
symmetry[7] and begins a?(q?), whereas familyl depends omrt correlations and contributes
at o(q*). Vertices in these familes involve ong andF,, and all dependence on other LECs is
concentrated in familyll , which begins at’(g®). These LECs can be extracted from subthreshold
nN amplitudes[8] and one finds that the componafitsandV: are very strongly dominated by
families| andlll , respectively.
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Figure 1: Dynamical structure of the two-pion exchange potential.
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The central componenté: [— ¢(g?)] andVd [— €(q®)] are shown in fig.2, and one has
IVZ| ~ 10|V | in regions of physical interest, at odds with the predicthitat hierarchy. The
numerical explanation for the magnitude \§f is that it depends on large LECs generated by
delta intermediate states. Nevertheless, the predictioW¥, which is by far the most important
component of the nuclear force, is very good when comparéld adcurate phenomenological
Argonne[9] potentials. Moreover, this agreement holdsaudistances smaller than 1 fm, which
correspond to momenta transferrigg> 20M2. The empirical validity of results fov is, thus,
much wider than expectations allowed by chiral perturlvaticeory.
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Figure2: Isospin odd (left) and even (right) central components efttto-pion exchange potential.

2. NUCLEON SIGMA-TERM

The structure of." was discussed in refs.[6, 10], and about 70% of its streraythd to come
from a term of the form

Ve (1) ~ — (2¢3/F2) 2—4c1/c3—52/|v|,%] u(r) 2.1)

wheredy is the long-distance part of the scalar form factor in comfigion space and thg are
usual LECs from thetN lagrangian. An important role is played by, which is large and domi-
nated byA intermediate states.

The nucleon scalar form factor is defined in terms of the symnimeaking lagrangian as

(N(p')|=ZeIN(p) ) = u(p) u(p) on(t) - (2.2)

and has already been expandedst@y*)[11, 8]. The leadingZ(g?) contribution comes from a
tree diagram proportional @, whereas corrections &t(g®) and¢'(q*) are due to loops involving
nucleon intermediate states and LECs. The main featurdgesétresults were incorporated into a
model for the scalar form factor in configuration space[12}yvhich LECs ato'(q*) are replaced
by explicit A intermediate states. The corresponding structure reads

On(r) = [~4cip?83(r) ], "

@) T 1O 5@ + [N 15 - (2.3)
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the superscript®l andA indicating intermediate propagators in triangle diagrafisese contri-
butions are first evaluated in momentum space, by usfyg= F2M2 cosB, where@ is the pion
field, related to the usual unitary form by = exp(it - 8) = cos8 +i1- 6 sin@. Results are then
expressed agy (t) = —F2M2 cosf(t).

Performing a Fourier transform and recalling that the vatwaxpectation value oy is
related to the light quark condensate (| — %[0 ) = ( Oj(Uu+dd)|0) = — F2M2, the scalar
form factor in coordinate space is written as

I (r) = (O|M(Qu+dd)[0) cos(r) . (2.4)

The function co®(r) describes the disturbance produced by the nucleon oveotigensate and
the non-linear nature of pion interactions gives rise todwstraint

—1< &n(r)/( O(Tu+dd)|0) < 1. (2.5)
Another condition over this ratio comes from the fact that @CD ground state can take the
form of either empty space or a quark-antiquark condensiatdhe present case, the boundary
condition8(r) — 0 forr — o ensures that the condensate remains undisturbed at |stgaabs.
As one moves towards the nucleon, 8odecreasesindicating that it destroys the condensate.
This picture is compatible with the unitarity of the fidld which correlates condensate and pion
magnitudes and suggests that the pion cloud of the nucleconistructed at the expenses of the
surrounding condensate, by means of a chiral rotation. Towehpresented in ref.[12] is based
on the assumption that this process ends when all quarjtenki pairs originally present in the
vacuum become excited, and a phase transition takes pléoe &tdiusk at which co®(R) = 0.
Formally, this corresponds to the condition

0 < &n(r)/( Of(Tu+dd)[0) < 1. (2.6)

In configuration space, observables are calculated byretiag densities over the entire vol-
ume. In the case of the densifiy, given by eq.(2.4), this would yield divergent results csirit
does not vanish in the limit— co. Therefore one shifts its origin, and works with a new funicti
defined as

G (r) = On(r) — ( Of(Tu+dd)|0) = F2M2 [1—cosB(r)] (2.7)
which describes the nucleon cloud adeviationfrom the condensate. In practice, the function
cosO cannot be calculated exactly and one resorts to perturbaftidis naturally yields a rep-
resentation foffl — cos@] which vanishes at large distances and increases mondtgrasaone
approaches the nucleon center. At short distances, thissemtation becomes inadequate, since
it is unbound and diverges at the origin. In the model, thisbfematic region is excluded by the
phase transition, for it assumes the perturbative reptatem for codd in the rangeR <r < « and
cosf =0forR<r.

The roles played bN[— &(g®)] andA[— &(g*)] intermediate states in eq.(2.3) can be in-
ferred from fig.3. The ratid &y (r) ]V /[ Gn(r) ]2, given on the left, shows that the hierarchy pre-
dicted by ChPT breaks down for distances smaller than 1.9 fma.right figure describes the ratio
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Figure 3: Ratios[dn(r)]?/[Gn(r)]N (left) anddn(r)/(F2M32) = (1— cosh) (right) as functions of the dis-
tance to the nucleon center.

an(r)/(FZM32) = (1—cosB) inside this region, together with individudl and A contributions.
The phase transition is assumed to occur at the [int0.6 fm (— |t| ~ 40M32), where the black
curve reaches the value 1.

In ref. [12], the nucleoro-term has been evaluated by means of the expression

4 bt -
on = 37 F,$M,2T+4n/R dr r2 Gu(r) | 2.8)

which yields 43 Me\k gy < 49 MeV, depending on the value used for ti¢A coupling constant,
in agreement with the empirical value 48 MeV [13]. Good results are also obtained for the
o-term.

3. SPACE-LIKE STRUCTURE OF THE PION

Configuration space results fog” and oy indicate that, in these two instances, perturbative
calculations are reliable at high values [tgf This has motivated an exploratory study of pion
properties in a similar framework[14], which yields gooagictions for the mean square radius
((r?)Z = 0.59fm?) and for one of the LEC, = 4.3), with no free parameters.

The calculation departs from standaftiq*) results produced by Gasser and Leutwyler (GL)
in 1984[15], and their notation is followed. The pion scdtam factor is given by

Fo(t) = (o) | Gut ddlr(p) ) = 28 {14 2 M WMy
SR PI= Hnt 32mrFz "Rz
(2t—Mp) t 1 (M2
* 322 F2 L(Mn’t)+F,% 4= 162 \ I u2+l ’ 3.1

wherepi; = (M3/32mF7) In(M3/u?), the LECs are related to their scale-invariant counteszyt
15 = —(I3+InM2/u?) /642 andl} = (I4+InM2/u?) /1612, t = (p' — p)?, and the loop function
L is related to the in GL by J = L/(4m)2. In the Breit frame, the variable= —qg? is negative and

one has
o-1 .
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The Fourier transform dfs(t) describes the spatial structure of the pion and reads

Fs(r) = 2B {%juzm} : (3.3)
~ 3
’\<Mmf>=/(§,§3 14T [(2t - MZ) LMy, )] (3.4)
3
_ % Kﬁzﬂ%—?) K1(2|\/|,Tr)+'vll—:r Ko(2Mr)| (3.5)

where theK; are Bessel functions and ZRT stands for zero range termpogional to thed-
function and its derivatives. The leading term in the quaskdensate is given by O[uu+
dd|0) = —2BF2, and one writes

(Mm )

Fs(r) = —(0|Gu+dd|0) 3or2Fd
n

+ZRT. (3.6)
At low-energies, the pion behaves as a Goldstone boson andwhy from its center, the scalar
form factor must be related to the surrounding quark-aatikeondensate biys(r) — N (0| Gu+
d_dyo ), whereN is a constant with dimension of mass. However, eq.(3.6)sves at large dis-
tances and, as in the case of eq.(2.7) for the nucleon, on&ohaexform a shift in the origin,
defining a new function by

A(Mp,1)

— ZRT| . 3.7
N32712F,‘T1+ 3.7)

Fs(r) = Fs(r) + (0/(Gu+dd)|0) = N (0| Gu+dd|0)
This form is now suited for describing the behavior of thempiothe presence of the condensate. It
is the analog to eq.(2.4), with césreplaced by1— A(Mg,r)/(N32F#) + ZRT]. As in the nu-
cleon case, it represents an undisturbed condensate adiatgnces and decreases monotonically
as one approaches the center of the pion. For the same remsdissussed in the previous section,
one assumes that this term is meaningful in the interval

A(Mg,r)

0<|1- ————=
- [ N 32r2F2

+ZRT} <1, (3.8)

and that a phase transition occurs at a peinsuch that = A(M,R)/(N32r2F2). At smaller
distances, the functiof(My,r) is replaced by the cut versi@®(r — R) A(My, ). Zero range terms
are then eliminated and one has

Fs(r) = — 2BF? {N —0O(r—R) %} . (3.9)

This function does not vanish at infinity and, as in the nutlease, integration over entire space
requires shifting the origin. The scalar form factor is thewritten as

ﬁs(r)zzs{e(R—r) %%)(r—m %} (3.10)

after using the cutting condition to eliminate the fadbr
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The scalar form factor in momentum space is given by the Eotransform of this result and,
for t = 0, one hass(0) = 41T [drr2Fg(r). At leading order, eq.(3.1) yieldss(0) = 2B and one
has the consistency condition

Fs(r) M2 20  14MqR
1=4 drr? T K1(2M7R) + 15Ko(2M;R 3.11
n/ =g = Tore2 [(MHRJF 3 > 1(2MzR) +15Ko(2MAR) | , (3.11)
which allows the cutting radius to be found. The mean squadais (MSR), given by r? )T =
A [drr[Fs(r)/2B], is an observable and reads

(r2)Z= Wlazz [(11M7R+ 14M3R%) K1 (2MR) + (60+ 59M2R?) Ko(2MR)] . (3.12)

4. RESULTS

The cutting radiusR can be extracted from eq.(3.11), either numerically or byamseof a
perturbative expansion ikl;. As both results coincide within 1%, one uses the latter.(3El)
becomes % 10 {1+ M2R?[(InM;R+y) /2—23/30]} /(16m*FZR?) and yields

V10 M2 M/10 23

R=—"2I/1 T_|5(In - = 4.1

e, | 32m2F2 ams, V) T3 (0 (4.1)

which corresponds tB = 0.500 fm, forM; = 13957 MeV andF; = 924MeV. The MSR reads
1 11 M /1 M2 M1 1

(r\f= _— 9 12(inMn O+y _ 3O0Myg 1 Mn 0+y 6 (4.2)
4ATiF,; 30

16mF2 | 10 Viyy 16m2F2
and produce$ r? )T = 0.509 fn?, deviating about 20% from the precise estimaté )T = 0.61+
0.04 fmP[16].

In ChPT, the MSR is related the LEI@. In the model, this LEC can be extracted by trans-
lating results back to momentum space. The Fourier trams@idrthe functionL(M;,q), given in
egs.(3.3 3.5), involves ZRTs, which were discarded in coméition space. When one is interested
in returning to momentum space, it is convenient to work \aithextension of (M, q), denoted
by Le(q), and defined by the double integral

L b [d L (M) —In M1 4.3
e(Q)—/M% /0 =8 @+b ( mQ)—nF— (u,0) (4.3)
wherep is a scale. The functiob(u,q) vanishes for large values pfand eq.(3.1) becomes
g [ (2t=M7)
Fs(t) =2B { 3EF2 Le(t)+0 ¢, (4.4)
M2 M2 4|v|2 (e 1
5 [rogm (1enME) M () a
Evaluating the Fourier transform and cutting the resutt-atR, one has
= Ae(r) Ae(R) = Ae(r)
Fs(R,r) = 2B R—r) —2—5——- 4,
R =28 { 5ol oR-n) ME U @6
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whereAe(r) = A(My, ) — A(u,r). Itis important to note that terms proportionald@ave rise to
ZRTs and were discarded in the cutting procedure.

In returning to momentum spacBe(r) becomeg2t — M2) L¢(t) again, and aewfactor  is
created by the Fourier transform of the term proportionab{& —r) in eq.(4.6). The functions
Ae(r) are expressed in terms of Bessel functighand an explicit calculation produces

R Ae(R) —Ae(r) M2 M2 t 31
4 drdfp2e 2 ") 1T _In—Z4_—— _ [Z=_2(InuR 4.7
7'[/0 r ' 3212F2 32m2F2 n 2 + 1672F2 \ 15 (INUR+y) || ,(4.7)

for low values ofg?. Comparing egs.(4.5) and (4.7), one finds

1 1 M?2 —
1 [46 M2 — 46
=152 {1—5—2(In MR+ y)+|nu—§} — la= 3z —2(InMrR+y) . (4.9)

Both results contain the correctMg/ 2 structure, but that concernifigcannot be trusted, since it
is based on the approximatié(0) = 2B used in eq.(3.11). The prediction flaris consistent with
the (r?)Z given in eq.(3.12), since it follows the relation[15]% )Z = 3 [, — 13/12] /(87PF?) at
leading order. Chiral perturbation theory at two loops misfil6] 1, = 4.4+ 0.2. Using the value
R = 0.500fm produced by eq.(4.2), one finds= 3.99.

Results for({ r? )¥ andl4 are improved by the inclusion of scalar mesons. One folldves t
work of Ecker, Gasser, Pich and De Rafael [17] and adoptshakiesMs = Mg, = m= 980MeV,
¢y = V3 E = 32MeV, andcy, = v/3 € = 42MeV. In the expressions that follow, terms already
displayed previously are denoted py:]. The scalar form factor in momentum space now reads

Fs(t) :23{[...]_E [Cﬁcdm%tz(_cnr;z_cd),\ﬂ%]}

and corresponds to

(4.10)

—mr 4Ch,

:F—%

Fs(r) = 2B {[---H E4 +ZRT} : E [cam?+2(cm—cq)M2] . (4.11)

Ttr

Cutting the integrand at the radi&s one finds the new version of eq.(3.10), given by

N AM;,R) Ee MR A(My, Ee ™
Fg(r):{@(R—r) [3(2712F2)+ ;R }+e(r_R) [B(ZHZFrZ)+ 4‘jﬂ ]} (4.12)

Imposing the spatial integral &&(r) to be equal td=s(0), the condition for determining the cutting
radius becomes

M2 K 20  14M;R

1= K1(2M;R) 4+ 15Kq(2M ;R
16r2F2 [\MR ™~ 3 )1( mR) + 15Ko( ﬂ)}

2
+ % {1+ mR+ ngR } e MR (4.13)
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and yieldsR = 0.570fm (— |t| ~ 40M2). The mean square radius is now given by
E R4
(PS5 =11+ [6+6mR+3mzR2+m3R3+—5 } e MR (4.14)

and has the valu¢r®)Z = 0.591 ¥, to be compared with[16] r? ) = 0.61+0.04 fn?. The
procedure for obtainingy is the same as before, and one evaluates the integral

. . A (R)_i\ (r) E /eMR gmr
gr 2 [Ne(R—Ae(r) E (e™
4”/dré ' [ 2erz Tam\ R r

E mR? PR mRY\ e
:[1+[---]+tﬁ<1+mR+ 5+ 5 + 30>e } (4.15)
which yields
_ _ 2
|4=i—2—2(|nMnR+V)+64n2Cm [0”2:2" Ca)M7/m]
x (14 mR+nPRZ/2+ m*R?/6+ m'R*/30) e ™R. (4.16)

Numerically, this corresponds tp= 4.26, within the error bars of the precise redyl= 4.4+0.2
derived by Colangelo, Gasser and Leutwyler[16]. In thera#ttve notation, = In/\ﬁ/M,zT, one
findsAs = 1.178 GeV.
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