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Figure 1: Partially quenched study of the chiral behaviour of the pseudoscalar decay constant fPS [2].

1. Introduction

It is a pleasure to have been invited to present lattice results on kaon physics at a conference on
chiral dynamics. In recent years the interactions between the Lattice QCD and Chiral Perturbation
Theory (ChPT) communities have grown very significantly, and this collaboration is very important
for the development of our understanding of non-perturbative QCD effects in flavour physics and
hadronic structure. On the one hand, lattice simulations are performed at values of the up and down
quark masses which are larger than the physical ones and ChPT is used to guide the extrapolation
of the results to the physical point. On the other hand the ability to vary the masses of the quarks
in lattice simulations allows us to compute the low-energy constants of ChPT with unprecedented
precision. It is to be expected that this symbiotic relation will strengthen as the precision of both
the lattice and ChPT calculations improves further.

The aims of this talk are i) to review recent results for important physical quantities including
fK/ fπ , the form factors of semileptonic K → π decays and the BK parameter of K0-K̄0 mixing;
ii) to present a discussion of some of the theoretical conclusions, including the need to develop
SU(2) ChPT for kaon physics and iii) to discuss future prospects including applications to K→ ππ
decays. I start however, with some brief comments about the chiral behaviour of fπ . Many of the
ideas presented below have been developed together with my colleagues from the RBC-UKQCD
collaboration, and where appropriate I will illustrate the discussion with our results.

2. Comments on Chiral Behaviour

The ability to vary the masses of the quarks in lattice simulations allows us to study the chi-
ral behaviour of physical quantities in considerable detail. Different collaborations use different
approaches to including the NNLO (two-loop) and higher corrections, either fully or partially, cou-
pling this with discussions of the lattice artefacts and finite volume corrections. There are a num-
ber of talks from different collaborations at this conference discussing their procedures in some
detail [1] and illustrating the dynamic activity in this field.

In this section I will focus on one important question, whether SU(3) and/or SU(2) ChPT ad-
equately describe the lattice data. With my colleagues from the RBC-UKQCD collaboration, we
argue that it is SU(2) ChPT which should be used, and I now summarise the argument. Fig. 1
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shows the behaviour of pseudoscalar decay constant as a function of the mass of the meson.
The right-hand upper (black) point marked with a cross corresponds to a unitary meson with
mPS ' 420MeV. The remaining upper (black) points have the same sea-quark mass but a vari-
ety of valence-quark masses. Similarly in the lower (red) band the point marked with a cross is
unitary with mPS ' 330MeV and the remaining points correspond to the same sea-quark mass but
with different valence quark masses, keeping the meson mass below 420 MeV. The data are fit to
NLO Partially Quenched ChPT (PQChPT) and the dashed (green) curve represents the resulting
unitary SU(2) behaviour, which, as expected, passes through the two unitary points. The same pro-
cedure is repeated with SU(3) PQChPT and the dot-dash (blue) curve represents the corresponding
unitary behaviour with ms = mud . The important point is that the resulting value for f0 (the decay
constant in the SU(3) chiral limit) is far below the data points (60-70%), so that the validity of the
expansion is questionable. It is for this reason that we advocate the use of SU(2) ChPT to study the
chiral behaviour of lattice results (a further example of such a feature is shown in fig.5 discussed in
sec.5). Perhaps extending the SU(3) analysis beyond NLO may lead to an apparently more conver-
gent series, and such studies are being performed but require more data at light masses and reliable
techniques to separate chiral behaviour from small lattice subtleties. We therefore strongly prefer
to present our results based on SU(2) ChPT and this is an area of active debate with the community.

2.1 Kaon Chiral Perturbation Theory

In order to apply SU(2) ChPT to kaons, the formalism must be extended. Roessl has introduced
the corresponding Lagrangian for the interactions of kaons and pions so that he could study Kπ
scattering near threshold [3]. There are many similarities with heavy meson ChPT [4, 5], but an
important difference is that in the heavy quark limit mB∗ = mB, so that a B-meson can emit a soft
pion (with coupling gBB∗π ) and turn into the vector meson B∗. The propagation of B∗ mesons must
therefore be included in diagrams. This is not the case for kaons.

The NLO expressions for m2
K , fK and BK in SU(2) ChPT (and partially quenched SU(2) ChPT)

can be found in ref.[2] and in section 3.2.1 I review the applications to K`3 decays. The applications
of SU(2) ChPT to K→ ππ decays is discussed in the talk by Hans Bijnens based on ref. [6].

3. The Determination of Vus

I start with a brief analysis within the standard model which I learned from my colleagues in
the Flavianet Lattice Averaging Group (FLAG) [7]. This provides a very useful benchmark for the
lattice results presented below. Consider the two very precise experimental results [8]:

1. From the ratio of the measured rates for leptonic decays of kaons and pions we have:
∣

∣

∣

∣

Vus fK

Vud fπ

∣

∣

∣

∣

= 0.27599(59) , (3.1)

where fK ( fπ ) is the decay constant of the K (π) and contains the QCD effects in the decay.
Thus a precise computation of fK/ fπ will give an accurate result for |Vus/Vud |.

2. From the measurement of the differential decay rate for semileptonic K → π decays (K`3
decays) we obtain

|Vus f+(0)|= 0.21661(47) , (3.2)
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Figure 2: A (preliminary) compendium of recent lattice results for fK/ fπ from FLAG [7]. See [7] for
publication details of the individual contributions.

where f+(0) is one of the form factors for K−→ π−`ν decays at zero momentum transfer.
Thus a precise computation of f+(0) will yield the value of |Vus|.

In addition, within the standard model we have the unitarity relation

|Vud |2 + |Vus|2 = 1 , (3.3)

where |Vub|2 has been omitted since it is much smaller than the uncertainties on the left-hand side.
Eqs. (3.1) – (3.3) can be viewed as 3 equations for the 4 unknowns fK/ fπ , f+(0), Vud and Vus.

We therefore only require one additional piece of information to determine these four quantities.
One might take, for example, the recent determination of Vud based on 20 different superallowed
nuclear β -decays [9]

|Vud |= 0.97425(22) . (3.4)

If we accept this value of Vud , then we are able to determine the remaining 3 unknowns:

|Vus|= 0.22544(95), f+(0) = 0.9608(46),
fK

fπ
= 1.1927(59) . (3.5)

Of course, when exploring the limits of validity of the standard model we should not assume
the unitarity relation (3.3). I now describe lattice calculations of fK/ fπ and f+(0).

3.1 Vus from K`2 Decays

The difference of fK/ fπ from 1 is an SU(3) breaking effects, and it is important to note that
we calculate this difference rather than the ratio itself; in the SU(3) limit we would find precisely
1. The calculation relies on a good control of the chiral extrapolation. Recent results with two or
three flavours of sea quarks are collected in fig.2. The results with small quoted errors include

fK

fπ
= 1.197(3)

(

+6
−13

)

MILC(09) [10] and fK

fπ
= 1.189(2)(7)HPQCD/UKQCD(08) [11] . (3.6)

The preliminary FLAG summary value based on these results with N f = 2+1 sea-quark flavours is
fK/ fπ = 1.190(2)(10) [7]. This result is in remarkable agreement with that in eq.(3.5) which was
obtained assuming the standard model and the value of Vud in (3.4).
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amud mπ q2
max (GeV2) f0(q2

max)

0.03 670 MeV 0.00235(4) 1.00029(6)
0.02 555 MeV 0.01152(20) 1.00192(34)
0.01 415 MeV 0.03524(62) 1.00887(89)

0.005 330 MeV 0.06070(107) 1.02143(132)

Table 1: The values of the form factor f0(q2
max) at the four quark masses corresponding to the four pion

masses given in the second column [13].

3.2 Vus from K`3 Decays

In order to determine Vus from K`3 decays we need a precise determination of the form fac-
tor f0(0) = f+(0) (see eq.(3.2)). The SU(3) chiral expansion for this form factor takes the form
f+(0) = 1+ f2 + f4 + · · · , where fn = O(mn

π,K,η ). f2 = – 0.023 contains no low energy constants and
is well determined. f4 and higher order coefficients require additional theoretical or model input
and a benchmark value is that obtained by Leutwyler and Roos in 1984, f+(0) = 0.961±0.008 [12].
We see therefore that in order to be useful in extracting Vus, we need to be able to compute
f+(0) = f0(0) to better than about 1% precision. The apparently challenging target is possible
because again it is the SU(3) breaking effects which we actually compute; the form factor is pre-
cisely 1 in the SU(3) limit and it is the difference from 1 which we calculate.

We start with the calculation of the form-factor f0(q2
max), where q2

max = (mK−mπ)2 and cor-
responds to the kaon and pion at rest in the same frame [14]. By calculating the ratio

〈π|s̄γ4u|K〉〈K|ūγ4s|π〉
〈π|ūγ4u|π〉〈K|s̄γ4s|K〉 =

[

f0(q2
max)

]2 (mK + mπ)2

4mKmπ
, (3.7)

we can obtain f0(q2
max) with excellent precision. This is illustrated by the RBC-UKQCD re-

sults [13] for f0(q2
max) in table 1.

Having obtained f0(q2
max) at the quark masses used in the simulation, we need to interpolate

to q2 = 0 and extrapolate to the physical masses. Conventionally the q2 interpolation is done by
calculating the form factors with one of the mesons at non-zero momenta and the results presented
below are obtained in this way. It is also possible to evaluate the form factors directly at q2 = 0 by
using partially twisted boundary conditions [15, 16].

The chiral extrapolation is more problematical and we would welcome all the guidance which
the chiral dynamics community is able to provide. The SU(3) ChPT prediction at NLO is f0(0) =

1 + f2 which both the RBC-UKQCD [13] and ETMC [17] collaborations find to lie considerably
above their lattice results. It is not possible to exploit the two-loop results from ref. [18], since the
results are expressed as a series with the physical pion decay constant in the expansion parameter
and coefficients given in terms of integrals to be evaluated numerically. The NLO SU(2) ChPT
result for f0(0) was derived in [19] and is reproduced in eq.(3.11) below, but in order to use it we
would like results at more values of the light-quark mass to confirm that the chiral regime is indeed
reached. The final results from the two collaborations are

f0(0) = 0.964(5) RBC-UKQCD [13]; f0(0) = 0.9560(57)(62) ETMC [17] . (3.8)
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Figure 3: Determination of Vus and Vud based on the lattice results for Vus/Vud and the RBC-UKQCD
result for Vus. The vertical blue band corresponds to Vud in [9]. The black curve is the unitarity condition
|Vud |2 + |Vus|2 = 1 .

These values are lower than those obtained using analytical methods based on the two-loop ChPT
formulae of [18].

Comparing the lattice results in eqs.(3.6) and (3.8) with the expectations from the standard
model (3.5) (which, it should be noted, was based on the value of Vud in (3.4)) we see that there is
very little room for new physics contributions to the violation of the unitarity of the first row of the
CKM matrix. This is illustrated in fig. 3 1 and will be quantified in [7].

3.2.1 SU(2) Chiral Perturbation Theory for K`3 Decays

In this section I review the applications of SU(2) chiral perturbation theory to K`3 decays at
q2 = q2

max where it is natural and at q2 = 0 where, because the pion is hard, it is not [19].

K`3 decays at q2
max. SU(2) chiral perturbation theory can naturally be applied to K`3 decays near

the end point of phase space where the momentum of the pion is small (in the rest frame of the
kaon). Although we cannot perform simulations at the unphysical Callan-Treiman point where
q2 = m2

K −m2
π , as mu = md → 0 the value of q2 at the edge of the physical phase space, q2

max =

(mK−mπ)2 approaches the Callan-Treiman point and we have the relation

f0(q2
max) −→

mπ→0

f (K)

f
' 1.26 , (3.9)

where f (K) and f are the kaon and pion decays constants in the SU(2) chiral limit, and the value 1.26
is estimated on the basis of the chiral behaviour of the ratio of decay constants in the RBC-UKQCD
simulation [2] 2. On the other hand when we look in table 1 at the RBC-UKQCD values of f0(q2

max)

obtained with pion masses ranging from 670 MeV to 330 MeV [13] there is little indication of
convergence towards 1.26 in the chiral limit. We investigated this using SU(2) ChPT and found that
although the chiral logarithms are of approximately the correct size to account for the difference

1I am grateful to Andreas Jüttner for providing this figure and to the Flavianet Kaon Working Group for developing
this way of presenting the results.

2Thanks to Enno Scholz for providing this number.
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between the results in table 1 and 1.26 they have the wrong sign, tending to make the form factor
decrease towards the chiral limit. The result is

f0(q2
max) =

f (K)

f

[

1− 11
4

m2
π

(4π f )2 log m2
π

Λ2
χ

+
λ1

4π f
mπ +

λ2
(4π f )2 m2

π + · · ·
]

. (3.10)

The coefficients λ1,2 cannot be evaluated within SU(2) ChPT. They can be estimated however, by
converting the results from SU(3) chiral perturbation theory, where there are no unknown constants
at one-loop level except for f (K)/ f [20, 21]. This conversion suggests that they have the correct
sign and magnitude to account for the difference of the observed results from 1.26.

It should be noted that this rapid chiral behaviour at the edge of phase space is not limited to
the form factor of the kaon, but also applies to the heavy mesons where

f D→π
0 (q2

max) −→
mπ→0

f (D)

f
and f B→π

0 (q2
max) −→

mπ→0

f (B)

f
,

and yet in the region of quark masses where we have data, the f0(q2
max) are below the expected

ratios of decay constants. As an example consider fig.14 in ref.[22] where the form factor f0 for
B→ π semileptonic decays does not appear to approach the expected value of f (B)/ f as q2→ q2

max.

K`3 decays at q2 = 0. At first sight it appears that SU(2) ChPT should not be applied at q2 = 0,
since in this case the final-state pion is hard; in the rest frame of the kaon its energy is mK/2.
However, we argue in [19] that the chiral logarithms come from soft internal loops and that it is
possible to evaluate them:

f0(0) = f+(0) = F+

(

1− 3
4

m2
π

16π2 f 2 log
(

m2
π

µ2

)

+ c+m2
π

)

(3.11)

f−(0) = F−

(

1− 3
4

m2
π

16π2 f 2 log
(

m2
π

µ2

)

+ c−m2
π

)

, (3.12)

where F+,− and c+,− are unknown constants which depend on ms but not on mud . In arriving at
(3.11) and (3.12) we use integration by parts and equations of motion to reduce the infinite chain of
higher order operators which contain additional derivatives on the hard external pion to the leading
operator. It may be possible to formulate this approach to ChPT with hard external pions in terms
of an effective theory in which hard and soft pions are separated, but this has not yet been achieved.

The approach described here can also be applied to the semileptonic form factors at other
values of q2 and to other processes. It has been applied to nonleptonic kaon decays [6] and in the
preceding talk Bijnens has referred to the approach as Heavy Pion Chiral Perturbation Theory.

Since the chiral extrapolation is the major source of systematic uncertainty for the lattice de-
termination of Vus from K`3 decays, it is important to have all the possible theoretical information
to guide us, and in particular it would be very helpful to extend the result in (3.11) to NNLO.

4. BK

Calculations of the parameter BK which contains the non-perturbative QCD effects in K0 – K̄0

mixing have been performed for about 20 years. BK is defined in terms of the matrix element of
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B̂K = 0.722 ± 0.040
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Figure 4: Recent unquenched results for B̂K together with the average proposed by P.Boyle at the 2009
Kaon International Conference.

the single ∆S = 2 operator which contributes in the Standard Model:

〈K̄0 |(s̄γµ(1− γ5)d)(s̄γ µ(1− γ5)d) |K0〉=
8
3 f 2

Km2
KBK(µ) . (4.1)

If the lattice formulation has good chiral and flavour symmetries then the ∆S=2 operator in (4.1)
renormalizes multiplicatively. The renormalization can be performed nonperturbatively. Recent
unquenched results for the scale invariant parameter B̂K are shown in fig. 4. I highlight two
calculations with results which are in remarkable agreement. The first is the RBC-UKQCD re-
sult presented in [23, 2], B̂K = 0.720(13)(37) which was obtained from its domain wall fermion
(DWF) datasets at a single lattice spacing but with an estimate of 4% for the discretisation uncer-
tainties; this is the largest component of the quoted error. (B̂K = 0.720(13)(37) corresponds to
BMS

K (2GeV) = 0.524(10)(28).) The second calculation by Aubin, Laiho and Van de Water ob-
tained B̂K = 0.724(8)(28) [24] and was obtained using domain wall valence quarks and staggered
sea quarks at two lattice spacings. The taste unitarity violations were removed using SU(3) CHPT
at NLO (including some of the NNLO terms). In both cases the ∆S = 2 operator was renormalized
non-perturbatively using the same techniques.

Given these results I am happy to take

B̂K = 0.722(40) (4.2)

as the current best value as was proposed by P.Boyle at the 2009 Kaon International Conference.

5. K→ ππ Decays

An understanding of the longstanding puzzle of the ∆I = 1/2 rule and the theoretical deter-
mination of ε ′/ε , whose experimental measurement confirmed the existence of direct CP-violation
in kaon decays, are major long-term goals for the lattice community. In 2001, two collaborations
published some very interesting quenched results on non-leptonic kaon decays, in particular,

Collaboration(s) Re A0/Re A2 ε ′/ε
RBC 25.3±1.8 −(4.0±2.3)×10−4

CP-PACS 9÷12 (-7÷ -2)×10−4

Experiments 22.2 (17.2±1.8)×10−4
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Figure 5: The mass dependence of the K→ π matrix element. ml , mx and mz are the masses of the sea and
valence light quark and the valence "heavy" (strange) quarks respectively.

where A0 and A2 are the decays into isospin I = 0 and I = 2 two-pion final states. These results
were obtained not only in the quenched approximation, but also at lowest order in the SU(3) chiral
expansion and at relatively heavy masses (mπ > 400−500 MeV). At Lowest Order in SU(3) ChPT
the K→ ππ decay amplitude is given in terms of K→ π and K→ vacuum matrix elements, i.e. with
at most one hadron in the initial and final state. In spite of the limitations of these calculations, the
authors did achieve the control of the ultraviolet problem, i.e. the numerical subtraction of power
divergences and the renormalization of the weak operators. This is highly non-trivial.

The RBC/UKQCD collaboration have repeated the calculation with the 243 DWF ensembles
in the pion-mass range 240-420 MeV [25, 26]. For illustration consider the determination of α27,
the LO LEC for the ∆I = 3/2 (27,1) operator:

O3/2
(27,1) = (s̄d)L

{

(ūu)L− (d̄d)L
}

+ (s̄u)L (ūd)L , (5.1)

where the subscript L stands for left. Satisfactory fits for the mass dependence were obtained using
NLO SU(3) ChPT, but again the corrections were found to be very large, casting serious doubt
on the approach. This is illustrated in fig.5, the dashed curve represents the curve in the SU(3)
limit (mu = md = ms) and the value of this curve in the chiral limit is much below the data points,
demonstrating that the one-loop corrections are very large. Thus the use of soft-pion theorems is
not sufficiently reliable and K→ ππ matrix elements have to be computed directly.

In general the computation of matrix elements with multi-hadron states is not understood theo-
retically. For K→ ππ decays however, under the assumption that the s-wave phase-shift dominates
the rescattering and that inelastic states can be neglected the theoretical framework is understood.
Consider first the propagation of two pions, between time 0 and t. Four diagrams contribute to the
two-pion propagator:

0 t
V

1

2

4

3

0 0t t 0 t
D C R

2

1 4

3 2

1 4

3 2

1 4

3
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Figure 6: The correlation function and effective mass for the (ππ)I=2 propagator (top line) and for the
(ππ)I=0 propagator (middle line) as a function of time t. The bottom line shows the (ππ)I=0 propagator with
the contribution from diagram V removed. The data is from an exploratory calculation by RBC-UKQCD
(courtesy of Qi Liu).

If the two pions are in an I=2 state then only diagrams D and C contribute and the correlation
function is proportional to D-C. For the propagation of the I=0 state all four diagrams contribute
and the correlator is proportional to 2D+C-6R+3V. The principle difficulty in the evaluation of
K→ (ππ)I=0 decay amplitudes is the evaluation of diagrams with a vacuum contribution such as
diagram V in the propagation of two pions. To illustrate this point consider the plots shown in
fig. 6 which show the correlation functions for two pions (left-hand panels) and the corresponding
effective masses (right-hand panels), both as functions of the time t. The data is from an exploratory
study by the RBC-UKQCD collaboration and I am grateful to Qi Liu for providing them. The top
row contains the results for the I = 2 state and as expected these are very clean. The middle row
on the other hand, shows the corresponding results for the I = 0 state and we see that large errors
start at an early time. The bottom row shows the I = 0 correlation function but with the V diagram
removed, highlighting that the problem is largely due to the precision with which we can do the
vacuum subtraction from the correlation function. In order to make further progress we need to try
to develop techniques which would allow us to extend the range of t where the errors are small and
to use this range most effectively. Attempts to do this are under way.

6. Conclusions and Prospects

These are exciting times. Unquenched lattice simulations are presenting results with good
precision with very light quarks and much effort is now being devoted to considering how lattice
calculations will best help to clarify any new physics discovered at the LHC. The consistency of
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results with different actions is impressive and important and adds hugely to our confidence. The
chiral regime is being mapped out for the spectrum and decay constants with some simulations
bring performed with light quarks close to the physical ones. The more expensive simulations
with good chiral and flavour properties, such as the domain wall fermions which were used by
RBC-UKQCD in obtaining many of the results presented above, will be used to extend the range
of physical quantities which can be studied in lattice kaon physics. I imagine that by the next
Chiral Dynamics Workshop in 2012, the chiral behaviour of many fundamental quantities will be
well understood and the low energy constants will be determined with excellent precision. For this
to be achieved, there will have to be continued close collaboration between the ChPT and Lattice
communities.

In this talk I have not had the opportunity to discuss how we perform the renormalization
of bare lattice quantities or operators. I want to stress however, that the precision of lattice cal-
culations has now reached the point where we need significant cooperation from the perturbative
QCD community. Many (but not all) lattice calculations are implemented using non-perturbative
renormalization, in which the renormalization conditions are performed non-perturbatively and
perturbation theory using the lattice action is completely avoided. For this to be possible the renor-
malization conditions have to be ones which can be simulated, such as ones based on the evaluation
of Green functions at external momenta which serve as the renormalization scale [27] or on the use
of the Schrödinger functional [28]. Higher order perturbative calculations on the other hand tend
to be performed using dimensional regularization which cannot be simulated. Thus, in order to
combine lattice results for operator matrix elements with perturbatively computed Wilson coeffi-
cient functions, a matching between two continuum schemes must be performed in perturbation
theory. The matching factor is frequently only available at one-loop order, leading to a significant
error by today’s standard (an important example is the evaluation of ms with domain wall fermions
as discussed in [29], where the error in the determined mass in the MS scheme is largely due to
this continuum calculation.) Cooperation between the perturbative QCD and lattice communities
to define renormalization schemes which can be implemented in lattice calculations and yet which
are convenient for higher order perturbative calculations is now necessary.

I hope that in this talk I have demonstrated that a huge amount has already been achieved in
lattice kaon physics, but that major challenges still lie ahead.

Acknowledgements I warmly thank my colleagues from the RBC-UKQCD and FLAG Collab-
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