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1. Introduction

The polarizabilities of a compaosite system such as the pieel@mentary structure constants,
just as its size and shape. They can be studied by applyinga@igagnetic fields to the system, that
is, by the Compton scattering procgss im— y+ rror the crossed-channel reactions y = m+11.
The low-energy theorem expresses the zeroth- and first-tedas of the amplitude by the charge
and the mass of the pion. The second-order terms in the plestergy describe the response of
the pion’s internal structure to an external electric or n&ig dipole field, they are proportional to
the electric ¢) and magneticff) dipole polarizabilities. In this contribution we conceate on the
polarizabilities determined by forwardr & ) and backwarddq — ) scattering.

Within the framework of the partially conserved axial-\vacfPCAC) hypothesis and current alge-
bra, the polarizabilities of the charged pion were relatethe radiative decayr™ — e vey [1].
Chiral perturbation theory (ChPT) at leading non-trivieder, & (p*), confirmed this resuliy,;- =
—B+ ~ I [2], wherel, = (I_e — I_5) is a linear combination of scale-independent parameters of
the Gasser and Leutwyler Lagrangian [3]. &tp*) this combination is related to the ratio of
the pion axial-vector form factdfa and the vector form factof, of radiative pion beta decay,
Fa/Fv = I_A/6 [3]. Once this ratio is known, chiral symmetry makesadisoluteprediction at
o(pY), apr = 2.6440.09, here and in the following in units of 16fm3. Corrections to this
leading-order result were calculatedtp®) and turned out to be rather small [4, 5]. This makes
the following predictions for the polarizabilities a vengsificant test of ChPT [5]:

Qi — By = 5.7+ 10. (1.2)

The results of ChPT are in sharp contrast with recent priedietbased on dispersion relations
(DRs) [6],
O — B = 1360+ 2.15. (1.3)

In this work, the dispersion integrals are saturated byouwsrimeson contributions in theandt
channels. The free parameters are fixed by the masses, idthswand partial decay widths of
these mesons at resonance. However, the extrapolatioretgies below and above resonance is
performed with specific resonance shapes whose analytpegies leave room for considerable
model dependence.

In the present contribution we address the conflicting teslitained by ChPT and DRs. Section 2
gives a brief introduction to the Mandelstam plane and therkiatics used to describe the scatter-
ing amplitudes. In Sec. 3 we present the elements of the D&$ g Fil’kov and Kashevarov [6]
and investigate the analytic structure of this model aldraylines of our earlier work [7]. Our
conclusion in Sec. 4 summarizes the arguments againstedipons of Ref. [6].

2. Kinematics and M andelstam Plane
The Mandelstam variables for Compton scatteri(g) + r1(p) — y(K') + m(p'),

s=(k+p?, t=(k-K?2, u=(k-p)> (2.1)
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Figure 1: The Mandelstam plane for Compton scattering on the piont pafel: The hatched areas for
s> ¥, t > 4n?, andu > m? show the physical regions in tiset, andu channels, respectively. Right panel:
The hatched area forms the triangle bounded by the threslélvo-pion productions = 4n?, t = 4n?,
andu = 4. See text for further explanation.

are constrained bg+t +u = 27, wherem s the pion mass. The crossing-symmetric variable
is defined by
s—u
vV=——. 2.2
4m (2.2)

The two Lorentz-invariant variablasandt span the Mandelstam plane shown in Fig. 1. They are
related to the initial E,) and final E{,) photon lab energies and to the lab scattering afdig

t 1 )
v=Et o =5E+E),
t = —4E,E) sinf(6/2) = —2m(E, — E}). (2.3)

The scattering matrix can be expressed by 2 independenitadgd, denoted bi**(v,t) and
M*~(v,t), the superscripts indicating the helicity of the photonshia channely +y — m+ m.
Because of the crossing symmetry they satisfy the reldiofi (—v,t) = M*T*(v,t).

The Mandelstam plane is displayed in Fig. 1. The hatchedsare#he left panel show the
physical regions in ths, t, andu channels. The dashed lines mark the onset of inelastidties
to the thresholds of two-pion states with invariant masény in the respective channels. The
polarizabilities are obtained in the quasi-static limittis, in the limit of approaching the origin
of the Mandelstam planes=u = n? or v =t = 0 (solid circle). The polarizabilities may be
calculated by dispersion integrals running along linesugh the origin, e.g.y =0,t =0, and
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u = m?. The right panel of Fig. 1 highlights the triangle below thessholds: within the dashed
area, the non-Born scattering amplitudes for tealdv are real functions without any singularities.
Therefore, these amplitudes can be Taylor expanded abeudriin of the Mandelstam plane,
with a convergence radius given by the border lines of trengjie. The leading terms of these
Taylor series describe Thomson scattering, the polafiiabican be read off the subleading terms.
Contrary to this basic requirement, the model of Ref. [6]taors lines of square-root singularities
passing through the internal triangle. The vector mesoasradeled with a factor A4/s, which
also leads to a factor/1/u by the crossing symmetry, and the scataneson contains a factoy {/t
leading to a divergence at the origin of the Mandelstam planehich point the polarizabilities are
determined. In the following we concentrate on the vectosons, in particular the(770). The
case of theg meson has been discussed in Ref. [7], most of the other ipt#ate meson states in
the work of Ref. [6] have similar singularities.

3. Modd of Fil’kov and Kashevarov for Vector M esons

The model of Ref. [6] describes the contribution of a vect@sonV = {p, w} to Compton
scattering by an energy-dependent coupling congiés)tat the vertexy+ <V and a vector
meson propagator /(M — il (s)/2)? — s}, with M the mass of the vector meson aRh() its
energy-dependent width. The term quadrati€ {8) is neglected (small-width approximation). In
the notation of Ref. [6], the vector meson contributionshi® amplitudes take the form

2
M+ (s) = M2—4sg£si)MF g M=), (3.1)

The widthl" (s) has the energy dependence of a P wave at threshold,

_AnP 3/2
F(S)=<7,\:2_44mz> Mo, (3.2)

with "y the width of the vector mesow at resonances = M?2. Furthermore, the square of the
energy-dependent coupling constay(s)?, is defined with ars /2 singularity in order to obtain
convergence of the dispersion integrals at large energies,

67M Mo\?3
9(8)2:W<m> Cy, (3.3)

with ", the partial decay width fov — m+y.
The vector meson contributions to the polarizabilitiesdagved from the amplitudes by

_ M (e IR YT
at+p=5M (s=m?), «o B=o M (s=m?). (3.4)
Combining these equations with Eqg. (3.1), we obtain
a+B=—-(a—-pB) = a=0. (3.5)

The (quasi-static) electromagnetic transition from thenpd® = 0-) to the intermediate vector
meson §° = 17) is a magnetic dipole transition yielding a paramagnetiatidoution toB and, as
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| meson| a+B a-B | a B |
p 0.063 —-115 | -054 061
w 0.721 -—-1256 | -592 664

Table 1: Results of Ref. [6] for the contributions @f and w mesons to the polarizabilities of charged and
neutral pions, respectively, in units of 18m?.
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Figure 2: Dispersion relations for Compton scattering on the piorft panel: Thes channel singularities
introduced by Ref. [6] are the vector meson resonancesiedn?, the onset of the physical cut st 4nv,

and the onset of the unphysical cutsat 0. In order to determine the polarizability @t = 0,t = 0) (solid
circle), the dispersion integral can be obtained alongedfft paths, e.gt,= 0, u = n?, andv = 0. Right
panel: Contour integrals in the complexplane, related to forward DR (path alohg 0). On provision that
the physical Riemann sheet is free of singularities exaapht physical cuts describing particle production,
the Cauchy integral along the small circle about O can be replaced by the dispersion integrals over
the discontinuities along the cuts (dashed lines) and aibitpovhose contribution should vanish for an
infinitely large radius. However, the model of Ref. [6] cantadditional square-root singularitiessat 0
andu = 0. See text for further explanation.

aconsequence, arafo= (a —f3)/(a+B) = —1. To the contrary, Fil'kov and Kashevarov predict
aratioR= —20 and a large electric polarizability (see Table 1). Even more surprising, the latter
carries a negative sign, a result possible only in a refdtivquantum field theory. In conclusion,
the results of Ref. [6] are at variance with Eq. (3.5).

The discussed discrepancy is related to the unphysicallgiriges ats= 0,t = 0, andu =0, very
close to the origin of the Mandelstam plane at which the ahilities are determined. The left
panel of Fig. 2 displays the singularities of the model indlesbannel, the unphysical singularity at
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s= 0, the threshold for two-pion production s= 4m?, and the vector-meson pole position near
s= M?. Also shown are the paths of integration for three DRs, atoag), u= n?, andv = 0.
Fi'kov and Kashevarov evaluate the dispersion integrairahe physical cut, frons = 4nm? to
infinity, they ignore thes /2 singularity and the unphysical cut resulting from it. Howewthe
factorss 1/2 andu~/2 are not small details but necessary to fulfill the premiseSimwhmarsh’s
theorem, the square integrability of the amplitude alonglie parallel to the real axis. Moreover,
even for a model fitting the data in the physical region, ormikhnot trust the extrapolation to the
origin of the Mandelstam plane if the model has a singulattgr close to this point. Setting the
imaginary parts of the amplitudes equal to zero fofsRe 4m?, Fil’kov and Kashevarov tacitly
annul Titchmarsh’s theorem and at the same time create amalgtic amplitude, for which no
DRs exist. The right panel of Fig. 2 illustrates the problenthe complexv-plane. Let us start
from a contour integral along a small circle about 0. If the functionF (v) is analytic within the
circle, the function av = 0 is given by Cauchy’s integral,

Assuming that the physical sheet contains only the sinijiglgrof two-pion production av =
+Vihr = i% m, we can blow up the small circle to the big contour in the rigdwmel of Fig. 2, with-
out changing the value of the integr&l(0). On condition that the function is square integrable, the
contribution of the large circle (solid part of the big camtpvanishes if its radius goes to infinity.
The functionF (0) is then determined by the integrals over the discontinuitimgF (v)] on the
physical cuts-co < Re(Vv) < —vyy andvy,, < Re(v) < o (dashed part of the big contour). Because
the discussed model has additional square-root singeRd@ty = i%m, additionalunphysical
cuts appear, which we suggest to draw along the real axisthatfat least the neighborhood of
v = 0 remains an analytic region. With these provisions Titcteima theorem assures that DRs
exist, however at the expense of introducing unphysical. cut

Although the square-root factors are essential to provigerequired convergence at infinity,
Fil'kov and Kashevarov neglect the large contributiongrfrthe associate discontinuities. As an
example, such neglect could be turned into the statemejft(im] = O if —vin, < REV] < Vi
The result would be two “walls” in the complex plane with a renmalytic strip in between. Quite
generally, any statement that the imaginary part of an #indiynction be zero in a certain area
makes this area (and therefore the function itself) a natyéin one, because an analytic function
can only containsolatedsingular points.

The analytic structure of the model amplitudes is furthesttated in Fig. 3. The left panel shows
the contour plot of IfM ™~ (s)] in the complex planes= x+iy. The physical (right-hand) cut with

a maximum discontinuity near= M2 ~ 0.55Ge\? is clearly seen. However, the unphysical (left-
hand) cut ranging frors = 0 to the left turns out to be of similar importance. Ngar —11 Ge\?,

we also observe a “bound state” embedded on the left cut. uriplysical pole is a consequence
of the energy-dependent width in the resonance propaghbkyg.d3.1). The forward polarizability

a + B is determined at the poirfix = m?,y = 0), squeezed in between the two cuts. The right
panel of Fig. 3 shows the same plot for[ivh"*(s)], which is related to the backward polarizability
a — 3. Because of the additional factsin this amplitude, thgp-meson resonance appears sup-
pressed.

Ff/‘f/) dv’. (3.6)
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Figure 3: Contour plots for the imaginary parts of tiremeson contributions tM*~ (s) (left panel) and
M*+ (s) (right panel) in the complex plane with coordinases x+ iy, all in units of Ge\2.
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Figure 4: The integrands of the dispersion integrals for the polailitees o + 3 (left panel) anda — 3
(right panel), as function of in units of Ge\2. See text for further explanation.

Figure 4 displays the integrands of the dispersion intedaalthe polarizabilitiesr + 3 as function
of x=Re[g. The integration yields the following-channel contributions for the meson:

a+pB =017(l.c.)+0.03(r.c.) = +0.20,
a—f =098(l.c)—118(r.c) = —0.20, (3.7)

where I.c. and r.c. denote the contributions of the left aghtrcuts, respectively. In agreement
with Eg. (3.5), the total result yields a paramagnetic dbation of the vector meson to the po-
larizability. In particular,R= (a — B)/(a + B) = —1, whereas the right-hand contributions lead
to a ratio close t&R = —40. We note that the values far+ 3 given in Eqg. (3.7) include only the
s-channel contribution of the meson, whereas the predictions of Ref. [6] listed in Tableritain
bothsandu channels.



Pion polarizabilities Dieter Drechsel

| | a+p H a—p

model || real | r.c. | l.c. | rest real r.c. l.c. rest
A0 0.04]| 004|000 | - —0.04| —1.04| —0.08 | 1.08
BO 0.04|1003| — |0.01| —0.04| —1.15 — 111
Co 0.04|1003| — |0.00| —0.04| —1.93 — 1.89

A 0.20| 005|015| - —-0.20| —-1.06| 0.86 —
B 0.20]| 0.03|017|0.00| —0.20| —1.02| 0.81 | 0.01

C 020 003|017 | - —-0.20| —-1.18| 0.97 —

Table 2: Thes-channelp-meson contributions to the polarizabilities+ 8 anda —  for various models
described in the text. The column “real” lists the valuesaot®d directly from the real parts of the model
amplitudes, the columns “r.c.” and “I.c.” show the conttibuas of the dispersion integrals over the right and
left cuts, respectively, the column “rest” gives contribus from Cauchy integrals around unphysical poles
and at infinity. Within rounding errors, the three integrahtributions add up to the entry “real”.

Unfortunately, also somewhat modified resonance modélofgive reasonable predictions based
on dispersion relations. In Ref. [7], we have studied 6 suobets: Model A with a constant width
' (s) =y, model B with a pole aM —il(s)/2, and model C derived from model B by dropping
terms quadratic iff (s) as well as models A0, BO, and CO related to the previous mdygeis-
troducing an energy-independent coupligés) = g(M?). As shown in Table 2, all these models
contain contributions from unphysical cuts, poles, or thig ‘tircle” at infinity [7].

4. Conclusions

The polarizabilities of the pion are elementary structuwestants and therefore fundamental
benchmarks for our understanding of QCD in the confinemegibme These polarizabilities have
been calculated in ChPT to the two-loop order with an estcharror of less than 20 % [5]. It
is therefore disturbing that these predictions are at magawith the results of L.V. Fil'’kov and
V.L. Kashevarov by 2 standard deviations. The latter resarke based on meson exchange models
and performed in the framework of dispersion relations. Asgample, this procedure leads to
O+ — B = 1360+ 2.15 [6], whereas ChPT predicts7st 1.0 [5], all in units of 104 fm3. The
discrepancy originates from huge contributions of intedia& meson states in the approach of
Ref. [6]. In ChPT, on the other hand, the vector mesons emigrat & (p®) through vector-meson
saturation of low-energy constants. They are usuallydrkat the zero-width approximation and
estimated to yield a much smaller effect, e.g.,@rcontribution of about 1 unit to the neutral
pion polarizability [8, 9]. Moreover, Fil'kov and Kashewar predict large contributions of vector
mesons to both the electric and the magnetic polarizadsilitif the pion, at variance with the fact
that the transition from the piod®{ = 07) to the intermediate vector mesait’ (= 17) is driven by
magnetic dipole radiation leading to a (para)magneticrdmstion only.

The apparent discrepancy between the two approaches ceachd to the specific forms for the
imaginary part of the Compton amplitudes [6], which servénpsit to determine the polarizabili-
ties at the Compton threshold=£ n?, t = 0) by dispersion integrals. In order to obtain amplitudes
with good properties at high energies, Fil'’kov and Kashevantroduce energy-dependent cou-
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pling constants with a square-root singularity (e.g/&or 1/+/t). The resulting amplitudes fulfill
the following conditions to set up dispersion relations:

() The amplitudes are analytic on the physical Riemann tskeeept forisolated points on the
real axis. As an example, tisechannel singularities of Ref. [6] are situated (i) at theegiold for
two-pion statesg= 4m?), which leads to the physical cut, and (ii) at the origin & tMandelstam
plane 6= 0), which leads to an unphysical cut.

(I The amplitudes are square integrable along any linalfgrto the real axis, albeit at the ex-
pense of the unphysical cut startingsat 0.

Based on these conditions, Titchmarsh’s theorem asseattshit real and the imaginary parts of
the amplitudes are Hilbert transforms, that is, they ar@eel by dispersion relations.

In their actual calculations, Fil'’kov and Kashevarov igatiie contribution from the unphysical cut
by setting the imaginary part equal to zero “below the thoébf two-pion production”. However
one implements this statement in practice, a look at theocomqtiot in Fig. 3 shows that the proce-
dure will inevitably introduce a “wall” in the complex plangeparating a region with finite values
of the imaginary part from zero values. Because all the paint this wall become non-analytic
ones, the function itself is no longer analytic and therefarndition (1) is no longer fulfilled (note:
condition () allows only forisolatedsingularities). Furthermore, in the region of vanishinggn
inary parts, the only possible analytic function is a reahstant everywhere. And unless this
constant vanishes, one easily finds that also conditiorb(#aks down. These arguments show
the inconsistency of first introducing the factof\1s for convergence at large energies and later
ignoring its consequence, the unphysical cut, at low easrgilhe results of this inconsistency
are: (i) the vector meson effects are grossly overestimaibed(ii) the magnetic dipole transition
y+ T p/w yields alarge negativecontribution to the electric polarizability. Similar prieins
show up for the exchange of other mesons. In particular, tRé& factor for o exchange in thée
channel leads to a diverging amplitulfe'*(t) att = 0, the point at which the polarizability is to
be predicted. Even apart from dispersion relations, we @vaat recommend to fit the data in the
measurable region by functions that approach infinity atearnhe point to which one wants to
extrapolate. In conclusion, the reported discrepanciésdsn ChPT and dispersion theory result
from applying the latter theory to non-analytic functions.
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