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1. Introduction

The polarizabilities of a composite system such as the pion are elementary structure constants,
just as its size and shape. They can be studied by applying electromagnetic fields to the system, that
is, by the Compton scattering processγ +π → γ +π or the crossed-channel reactionsγ +γ ⇄ π +π.
The low-energy theorem expresses the zeroth- and first-order terms of the amplitude by the charge
and the mass of the pion. The second-order terms in the photonenergy describe the response of
the pion’s internal structure to an external electric or magnetic dipole field, they are proportional to
the electric (α) and magnetic (β ) dipole polarizabilities. In this contribution we concentrate on the
polarizabilities determined by forward (α + β ) and backward (α −β ) scattering.
Within the framework of the partially conserved axial-vector (PCAC) hypothesis and current alge-
bra, the polarizabilities of the charged pion were related to the radiative decayπ+ → e+νeγ [1].
Chiral perturbation theory (ChPT) at leading non-trivial order,O(p4), confirmed this result,απ+ =

−βπ+ ∼ l̄∆ [2], where l̄∆ ≡ (l̄6 − l̄5) is a linear combination of scale-independent parameters of
the Gasser and Leutwyler Lagrangian [3]. AtO(p4) this combination is related to the ratio of
the pion axial-vector form factorFA and the vector form factorFV of radiative pion beta decay,
FA/FV = l̄∆/6 [3]. Once this ratio is known, chiral symmetry makes anabsoluteprediction at
O(p4), απ+ = 2.64± 0.09, here and in the following in units of 10−4 fm3. Corrections to this
leading-order result were calculated atO(p6) and turned out to be rather small [4, 5]. This makes
the following predictions for the polarizabilities a very significant test of ChPT [5]:

απ+ + βπ+ = 0.16±0.1, (1.1)

απ+ −βπ+ = 5.7±1.0. (1.2)

The results of ChPT are in sharp contrast with recent predictions based on dispersion relations
(DRs) [6],

απ+ −βπ+ = 13.60±2.15. (1.3)

In this work, the dispersion integrals are saturated by various meson contributions in thes and t
channels. The free parameters are fixed by the masses, total widths, and partial decay widths of
these mesons at resonance. However, the extrapolation to energies below and above resonance is
performed with specific resonance shapes whose analytic properties leave room for considerable
model dependence.
In the present contribution we address the conflicting results obtained by ChPT and DRs. Section 2
gives a brief introduction to the Mandelstam plane and the kinematics used to describe the scatter-
ing amplitudes. In Sec. 3 we present the elements of the DRs used by Fil’kov and Kashevarov [6]
and investigate the analytic structure of this model along the lines of our earlier work [7]. Our
conclusion in Sec. 4 summarizes the arguments against the predictions of Ref. [6].

2. Kinematics and Mandelstam Plane

The Mandelstam variables for Compton scattering,γ(k)+ π(p) → γ(k′)+ π(p′),

s= (k+ p)2 , t = (k−k′)2 , u = (k− p′)2 , (2.1)
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Figure 1: The Mandelstam plane for Compton scattering on the pion. Left panel: The hatched areas for
s> m2, t > 4m2, andu > m2 show the physical regions in thes, t, andu channels, respectively. Right panel:
The hatched area forms the triangle bounded by the thresholds of two-pion production,s= 4m2, t = 4m2,
andu = 4m2. See text for further explanation.

are constrained bys+ t +u = 2m2, wherem is the pion mass. The crossing-symmetric variableν
is defined by

ν =
s−u
4m

. (2.2)

The two Lorentz-invariant variablesν andt span the Mandelstam plane shown in Fig. 1. They are
related to the initial (Eγ ) and final (E′

γ ) photon lab energies and to the lab scattering angleθ by

ν = Eγ +
t

4m
=

1
2
(Eγ +E′

γ),

t = −4Eγ E′
γ sin2(θ/2) = −2m(Eγ −E′

γ). (2.3)

The scattering matrix can be expressed by 2 independent amplitudes, denoted byM++(ν , t) and
M+−(ν , t), the superscripts indicating the helicity of the photons inthe channelγ + γ → π + π.
Because of the crossing symmetry they satisfy the relationM+±(−ν , t) = M+±(ν , t).

The Mandelstam plane is displayed in Fig. 1. The hatched areas in the left panel show the
physical regions in thes, t, andu channels. The dashed lines mark the onset of inelasticitiesdue
to the thresholds of two-pion states with invariant mass≥ 4m2 in the respective channels. The
polarizabilities are obtained in the quasi-static limit, that is, in the limit of approaching the origin
of the Mandelstam plane,s = u = m2 or ν = t = 0 (solid circle). The polarizabilities may be
calculated by dispersion integrals running along lines through the origin, e.g.,ν = 0, t = 0, and
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u = m2. The right panel of Fig. 1 highlights the triangle below the thresholds: within the dashed
area, the non-Born scattering amplitudes for realt andν are real functions without any singularities.
Therefore, these amplitudes can be Taylor expanded about the origin of the Mandelstam plane,
with a convergence radius given by the border lines of the triangle. The leading terms of these
Taylor series describe Thomson scattering, the polarizabilities can be read off the subleading terms.
Contrary to this basic requirement, the model of Ref. [6] contains lines of square-root singularities
passing through the internal triangle. The vector mesons are modeled with a factor 1/

√
s, which

also leads to a factor 1/
√

uby the crossing symmetry, and the scalarσ meson contains a factor 1/
√

t
leading to a divergence at the origin of the Mandelstam plane, at which point the polarizabilities are
determined. In the following we concentrate on the vector mesons, in particular theρ(770). The
case of theσ meson has been discussed in Ref. [7], most of the other intermediate meson states in
the work of Ref. [6] have similar singularities.

3. Model of Fil’kov and Kashevarov for Vector Mesons

The model of Ref. [6] describes the contribution of a vector mesonV = {ρ ,ω} to Compton
scattering by an energy-dependent coupling constantg(s) at the vertexγ + π ⇆ V and a vector
meson propagator 1/{(M − iΓ(s)/2)2 − s}, with M the mass of the vector meson andΓ(s) its
energy-dependent width. The term quadratic inΓ(s) is neglected (small-width approximation). In
the notation of Ref. [6], the vector meson contributions to the amplitudes take the form

M+−(s) =
4g(s)2

M2−s− iMΓ(s)
, M++(s) = −sM+−(s) . (3.1)

The widthΓ(s) has the energy dependence of a P wave at threshold,

Γ(s) =

(

s−4m2

M2−4m2

)3/2

Γ0 , (3.2)

with Γ0 the width of the vector mesonV at resonance,s = M 2. Furthermore, the square of the
energy-dependent coupling constant,g(s)2, is defined with ans−1/2 singularity in order to obtain
convergence of the dispersion integrals at large energies,

g(s)2 =
6πM

s1/2

(

M
M2−m2

)3

Γγ , (3.3)

with Γγ the partial decay width forV → π + γ .
The vector meson contributions to the polarizabilities arederived from the amplitudes by

α + β =
m
2π

M+−(s= m2), α −β =
1

2πm
M++(s= m2) . (3.4)

Combining these equations with Eq. (3.1), we obtain

α + β = −(α −β ) ⇒ α = 0. (3.5)

The (quasi-static) electromagnetic transition from the pion (JP = 0−) to the intermediate vector
meson (JP = 1−) is a magnetic dipole transition yielding a paramagnetic contribution toβ and, as
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meson α + β α −β α β
ρ 0.063 −1.15 −0.54 0.61
ω 0.721 −12.56 −5.92 6.64

Table 1: Results of Ref. [6] for the contributions ofρ andω mesons to the polarizabilities of charged and
neutral pions, respectively, in units of 10−4 fm3.
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Figure 2: Dispersion relations for Compton scattering on the pion. Left panel: Thes channel singularities
introduced by Ref. [6] are the vector meson resonance nears= M2, the onset of the physical cut ats= 4m2,
and the onset of the unphysical cut ats= 0. In order to determine the polarizability at(ν = 0,t = 0) (solid
circle), the dispersion integral can be obtained along different paths, e.g.,t = 0, u = m2, andν = 0. Right
panel: Contour integrals in the complexν plane, related to forward DR (path alongt = 0). On provision that
the physical Riemann sheet is free of singularities except for the physical cuts describing particle production,
the Cauchy integral along the small circle aboutν = 0 can be replaced by the dispersion integrals over
the discontinuities along the cuts (dashed lines) and a big circle whose contribution should vanish for an
infinitely large radius. However, the model of Ref. [6] contains additional square-root singularities ats= 0
andu = 0. See text for further explanation.

a consequence, a ratioR= (α−β )/(α +β ) =−1. To the contrary, Fil’kov and Kashevarov predict
a ratioR≈−20 and a large electric polarizabilityα (see Table 1). Even more surprising, the latter
carries a negative sign, a result possible only in a relativistic quantum field theory. In conclusion,
the results of Ref. [6] are at variance with Eq. (3.5).
The discussed discrepancy is related to the unphysical singularities ats= 0, t = 0, andu= 0, very

close to the origin of the Mandelstam plane at which the polarizabilities are determined. The left
panel of Fig. 2 displays the singularities of the model in theschannel, the unphysical singularity at
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s= 0, the threshold for two-pion production ats= 4m2, and the vector-meson pole position near
s= M2. Also shown are the paths of integration for three DRs, alongt = 0, u = m2, andν = 0.
Fil’kov and Kashevarov evaluate the dispersion integral over the physical cut, froms = 4m2 to
infinity, they ignore thes−1/2 singularity and the unphysical cut resulting from it. However, the
factorss−1/2 andu−1/2 are not small details but necessary to fulfill the premises ofTitchmarsh’s
theorem, the square integrability of the amplitude along any line parallel to the real axis. Moreover,
even for a model fitting the data in the physical region, one should not trust the extrapolation to the
origin of the Mandelstam plane if the model has a singularityat or close to this point. Setting the
imaginary parts of the amplitudes equal to zero for Re[s] < 4m2, Fil’kov and Kashevarov tacitly
annul Titchmarsh’s theorem and at the same time create a non-analytic amplitude, for which no
DRs exist. The right panel of Fig. 2 illustrates the problem in the complexν-plane. Let us start
from a contour integral along a small circle aboutν = 0. If the functionF(ν) is analytic within the
circle, the function atν = 0 is given by Cauchy’s integral,

F(0) =
1

2π i

∮

F(ν ′)
ν ′ dν ′ . (3.6)

Assuming that the physical sheet contains only the singularities of two-pion production atν =

±νthr = ±3
2 m, we can blow up the small circle to the big contour in the rightpanel of Fig. 2, with-

out changing the value of the integral,F(0). On condition that the function is square integrable, the
contribution of the large circle (solid part of the big contour) vanishes if its radius goes to infinity.
The functionF(0) is then determined by the integrals over the discontinuity of Im[F(ν)] on the
physical cuts−∞ < Re(ν)≤−νthr andνthr ≤ Re(ν) < ∞ (dashed part of the big contour). Because
the discussed model has additional square-root singularities atν = ±1

2 m, additionalunphysical
cuts appear, which we suggest to draw along the real axis suchthat at least the neighborhood of
ν = 0 remains an analytic region. With these provisions Titchmarsh’s theorem assures that DRs
exist, however at the expense of introducing unphysical cuts.
Although the square-root factors are essential to provide the required convergence at infinity,
Fil’kov and Kashevarov neglect the large contributions from the associate discontinuities. As an
example, such neglect could be turned into the statement Im[F(ν)] = 0 if −νthr < Re[ν ] < νthr.
The result would be two “walls” in the complex plane with a non-analytic strip in between. Quite
generally, any statement that the imaginary part of an analytic function be zero in a certain area
makes this area (and therefore the function itself) a non-analytic one, because an analytic function
can only containisolatedsingular points.
The analytic structure of the model amplitudes is further illustrated in Fig. 3. The left panel shows

the contour plot of Im[M+−(s)] in the complex plane,s= x+ iy. The physical (right-hand) cut with
a maximum discontinuity nearx = M2 ≈ 0.55GeV2 is clearly seen. However, the unphysical (left-
hand) cut ranging froms= 0 to the left turns out to be of similar importance. Nearx= −11 GeV2,
we also observe a “bound state” embedded on the left cut. Thisunphysical pole is a consequence
of the energy-dependent width in the resonance propagator of Eq. (3.1). The forward polarizability
α + β is determined at the point(x = m2,y = 0), squeezed in between the two cuts. The right
panel of Fig. 3 shows the same plot for Im[M++(s)], which is related to the backward polarizability
α −β . Because of the additional factors in this amplitude, theρ-meson resonance appears sup-
pressed.
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Figure 3: Contour plots for the imaginary parts of theρ meson contributions toM+−(s) (left panel) and
M++(s) (right panel) in the complex plane with coordinatess= x+ iy, all in units of GeV2.
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Figure 4: The integrands of the dispersion integrals for the polarizabilities α + β (left panel) andα −β
(right panel), as function ofx in units of GeV2. See text for further explanation.

Figure 4 displays the integrands of the dispersion integrals for the polarizabilitiesα±β as function
of x = Re[s]. The integration yields the followings-channel contributions for theρ meson:

α + β = 0.17 (l.c.)+0.03 (r.c.) = +0.20,

α −β = 0.98 (l.c.)−1.18 (r.c.) = −0.20, (3.7)

where l.c. and r.c. denote the contributions of the left and right cuts, respectively. In agreement
with Eq. (3.5), the total result yields a paramagnetic contribution of the vector meson to the po-
larizability. In particular,R= (α −β )/(α + β ) = −1, whereas the right-hand contributions lead
to a ratio close toR= −40. We note that the values forα + β given in Eq. (3.7) include only the
s-channel contribution of theρ meson, whereas the predictions of Ref. [6] listed in Table 1 contain
bothsandu channels.
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α + β α −β
model real r.c. l.c. rest real r.c. l.c. rest

A0 0.04 0.04 0.00 − −0.04 −1.04 −0.08 1.08
B0 0.04 0.03 − 0.01 −0.04 −1.15 − 1.11
C0 0.04 0.03 − 0.00 −0.04 −1.93 − 1.89
A 0.20 0.05 0.15 − −0.20 −1.06 0.86 −
B 0.20 0.03 0.17 0.00 −0.20 −1.02 0.81 0.01
C 0.20 0.03 0.17 − −0.20 −1.18 0.97 −

Table 2: Thes-channelρ-meson contributions to the polarizabilitiesα + β andα −β for various models
described in the text. The column “real” lists the values obtained directly from the real parts of the model
amplitudes, the columns “r.c.” and “l.c.” show the contributions of the dispersion integrals over the right and
left cuts, respectively, the column “rest” gives contributions from Cauchy integrals around unphysical poles
and at infinity. Within rounding errors, the three integral contributions add up to the entry “real”.

Unfortunately, also somewhat modified resonance models fail to give reasonable predictions based
on dispersion relations. In Ref. [7], we have studied 6 such models: Model A with a constant width
Γ(s) ≡ Γ0, model B with a pole atM− iΓ(s)/2, and model C derived from model B by dropping
terms quadratic inΓ(s) as well as models A0, B0, and C0 related to the previous modelsby in-
troducing an energy-independent coupling,g(s) ≡ g(M 2). As shown in Table 2, all these models
contain contributions from unphysical cuts, poles, or the “big circle” at infinity [7].

4. Conclusions

The polarizabilities of the pion are elementary structure constants and therefore fundamental
benchmarks for our understanding of QCD in the confinement region. These polarizabilities have
been calculated in ChPT to the two-loop order with an estimated error of less than 20 % [5]. It
is therefore disturbing that these predictions are at variance with the results of L.V. Fil’kov and
V.L. Kashevarov by 2 standard deviations. The latter results are based on meson exchange models
and performed in the framework of dispersion relations. As an example, this procedure leads to
απ+ −βπ+ = 13.60±2.15 [6], whereas ChPT predicts 5.7±1.0 [5], all in units of 10−4 fm3. The
discrepancy originates from huge contributions of intermediate meson states in the approach of
Ref. [6]. In ChPT, on the other hand, the vector mesons enter only atO(p6) through vector-meson
saturation of low-energy constants. They are usually treated in the zero-width approximation and
estimated to yield a much smaller effect, e.g., anω contribution of about 1 unit to the neutral
pion polarizability [8, 9]. Moreover, Fil’kov and Kashevarov predict large contributions of vector
mesons to both the electric and the magnetic polarizabilities of the pion, at variance with the fact
that the transition from the pion (JP = 0−) to the intermediate vector meson (JP = 1−) is driven by
magnetic dipole radiation leading to a (para)magnetic contribution only.
The apparent discrepancy between the two approaches can be traced to the specific forms for the
imaginary part of the Compton amplitudes [6], which serve asinput to determine the polarizabili-
ties at the Compton threshold (s= m2, t = 0) by dispersion integrals. In order to obtain amplitudes
with good properties at high energies, Fil’kov and Kashevarov introduce energy-dependent cou-
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pling constants with a square-root singularity (e.g., 1/
√

sor 1/
√

t). The resulting amplitudes fulfill
the following conditions to set up dispersion relations:
(I) The amplitudes are analytic on the physical Riemann sheet except forisolatedpoints on the
real axis. As an example, thes-channel singularities of Ref. [6] are situated (i) at the threshold for
two-pion states (s= 4m2), which leads to the physical cut, and (ii) at the origin of the Mandelstam
plane (s= 0), which leads to an unphysical cut.
(II) The amplitudes are square integrable along any line parallel to the real axis, albeit at the ex-
pense of the unphysical cut starting ats= 0.
Based on these conditions, Titchmarsh’s theorem asserts that the real and the imaginary parts of
the amplitudes are Hilbert transforms, that is, they are related by dispersion relations.
In their actual calculations, Fil’kov and Kashevarov ignore the contribution from the unphysical cut
by setting the imaginary part equal to zero “below the threshold of two-pion production”. However
one implements this statement in practice, a look at the contour plot in Fig. 3 shows that the proce-
dure will inevitably introduce a “wall” in the complex plane, separating a region with finite values
of the imaginary part from zero values. Because all the points on this wall become non-analytic
ones, the function itself is no longer analytic and therefore condition (I) is no longer fulfilled (note:
condition (I) allows only forisolatedsingularities). Furthermore, in the region of vanishing imag-
inary parts, the only possible analytic function is a real constant everywhere. And unless this
constant vanishes, one easily finds that also condition (II)breaks down. These arguments show
the inconsistency of first introducing the factor 1/

√
s for convergence at large energies and later

ignoring its consequence, the unphysical cut, at low energies. The results of this inconsistency
are: (i) the vector meson effects are grossly overestimatedand (ii) the magnetic dipole transition
γ + π ⇆ ρ/ω yields alarge negativecontribution to the electric polarizability. Similar problems
show up for the exchange of other mesons. In particular, the 1/

√
t factor for σ exchange in thet

channel leads to a diverging amplitudeM++(t) at t = 0, the point at which the polarizability is to
be predicted. Even apart from dispersion relations, we would not recommend to fit the data in the
measurable region by functions that approach infinity at or near the point to which one wants to
extrapolate. In conclusion, the reported discrepancies between ChPT and dispersion theory result
from applying the latter theory to non-analytic functions.
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