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The pion and nucleon mass differences generate a very pronounced cusp in the photoproduction

reaction of a single neutral pion on the proton. A nonrelativistic effective field theory to describe

this reaction is constructed. The approach is rigorous in the sense that it is an effective field

theory with a consistent power counting scheme. Expressions for theS- andP-wave multipole

amplitudes at one loop are given. The relation of the phase ofthe electric multipoleE0+ to the

phase of theS-wave ofπ0p→ π0p scattering is discussed.
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1. Introduction

The photoproduction reaction of neutral pions on the protonis a reaction which shows a strong
effect due to isospin breaking. The electric multipoleE0+ exhibits an exceptionally strong cusp at
theπ+n threshold (see for instance Ref. [1]). The strength of this cusp is intimately related to the
charge exchange scattering length of pion-nucleon scattering. Therefore, accurate experimental
data of the photoproduction reaction allows one to access the pion-nucleon scattering lengths.

Along the lines of previous work which analyzed the cusps inK → 3π andη ′ → ηππ de-
cays [2–4], we construct a nonrelativistic theory which provides a rigorous framework to describe
the structure of the cusp order by order in a perturbative expansion in terms of small momenta
and effective range parameters of pion-nucleon scatteringas well as threshold parameters of the
photoproduction reaction [5]. By construction, the theorycorrectly reproduces the low-energy
singularities in the Mandelstam plane.

The cusp in neutral pion photoproduction has been studied before. Ref. [6] introduces a two-
parameter model, which captures the most important leadingeffect of the cusp. In Ref. [7], a
coupled channelS-matrix approach is used to investigate the cusp structure.

2. Multipole decomposition

Some basic relations and definitions used in the analysis of pion photoproduction are collected.
We calculate the matrix element for the processp(p1)+ γ(k)→ p(p2)+ π0(q) at leading order in
the electromagnetic couplinge,

〈p2,q out|p1,k in〉=−i(2π)4δ (4)(Pf −Pi) ū(p2, t
′)εµJµu(p1, t) , (2.1)

wherePi andPf denote the total four momentum in the initial and in the final state, respectively
andε µ stands for the polarization vector of the photon.

To analyze the photoproduction reaction of pions, electricand magnetic multipoles are usually
introduced. To this end, the amplitude is written in terms oftwo component spinorsξt and Pauli
matricesτk [8],

M = 8π
√

sξ †
t ′ Fξt ,

F = iτ · ε F1 + τ · q̂τ · (k̂× ε)F2 + iτ · k̂ q̂ · ε F3 + iτ · q̂ q̂ · ε F4 . (2.2)

The hat denotes unit vectors. TheFi are decomposed into electric and magnetic multipoles with
the help of derivatives of the Legendre polynomialsPl(z) [8],

F1 = ∑
l=0

[lMl+ + El+]P′l+1(z)+ [(l +1)Ml−+ El−]P′l−1(z) ,

F2 = ∑
l=1

[(l +1)Ml+ + lMl−]P′l (z) ,

F3 = ∑
l=1

[El+−Ml+]P′′l+1(z)+ [El−+ Ml−]P′′l−1(z) ,

F4 = ∑
l=1

[Ml+−El+−Ml−−El−]P′′l (z) . (2.3)

The discussion is restrained to the center of mass frame in the rest of the article.
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3. Nonrelativistic framework

To describe the behavior of the multipoles close to threshold – where the energy of the pro-
duced pion and of the proton are small – a nonrelativistic calculation is justified. Furthermore, it
offers the advantage that all the masses can be set to their physical value. Therefore, all the poles
and branch points appear at the correct place in the Mandelstam plane. Moreover, the interaction
of the nucleon and the pion is described by effective range parameters, which allows one to directly
access the pion-nucleon scattering lengths.

The covariant formulation of nonrelativistic field theories introduced in
Refs. [2–4] is used here since it incorporates the correct relativistic dispersion law for the parti-
cles. The nonrelativistic proton, neutron and pion fields are denoted byψ , χ andπk, respectively.
The kinetic part of the Lagrangian after minimal substitution takes the form (see Ref. [9])

Lkin = ∑
±

(

iπ†
±DtW±π±− i(DtW±π±)†π±−2π†

±W
2
±π±

)

+ iψ†DtWpψ− i(DtWpψ)†ψ−2ψ†
W

2
pψ

+2χ†Wn(i∂t −Wn)χ +2π†
0W0(i∂t −W0)π0 , (3.1)

with

W0 =
√

M2
π0−△ , Wn =

√

m2
n−△ , Dtπ± = (∂t ∓ ieA0)π± ,

Dtψ = (∂t − ieA0)ψ , W± =
√

M2
π −D2 , Wp =

√

m2
p−D2 ,

Dπ± = (∇± ieA)π± , Dψ = (∇+ ieA)ψ . (3.2)

Note that since the photon is treated as an external field, itskinetic term is absent.

4. Power counting

Close to threshold, the momenta of the incoming proton and photon are of the order of the
pion mass whereas the outgoing particles have very small momenta. Therefore, we count momenta
of the outgoing pion and the outgoing proton as a small quantity of O(ε) and the momenta of
the incoming proton and of the photon asO(1). All the masses are counted asO(1). The mass
differences of the charged and neutral pion,∆π ≡ M2

π −M2
π0 and of the proton and the neutron,

∆N ≡m2
n−m2

p are counted asO(ε2). At first sight, this counting scheme seems to lead to infinitely
many terms already in the leading orderp + γ → p + π0 LagrangianLγ because derivatives on
the incoming fields are not suppressed. However, since the the modulus of the momentum of the
incoming particles,|k|, can be expanded in the small momentum|q|,

|k|= ∑
n

knq2n , k0 =
Mπ0

2
2+ y
1+ y

, k1 =
y2 +2y+2
4Mπ0(1+ y)

, y =
Mπ0

mp
, (4.1)

one obtains a valid power counting scheme. The Feynman rule in momentum space of every
operator of orderε0 with a given arbitrary number of derivatives can be expandedin powers of
the small momentumq, yielding one term of orderε0 without any momenta of the incoming fields
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present and subsequent higher order terms. Doing this for every operator ofO(ε0), all the resulting
leading order terms without any momentum dependence can be described by one operator of order
O(ε0) in the interaction Lagrangian. The same procedure leads to finite numbers of operators at
any given higher order inε . The derivatives on the incoming fields are only needed to generate unit
vectors in the direction of the incoming photon. This shows that the nonrelativistic theory is not
capable of predicting the dependence on|k| even at threshold.
An additional generic parametera is introduced to count the pion-nucleon scattering vertices. Every
pion-nucleon interaction vertex counts as a quantity of order O(a) since the coupling constants are
proportional to the pion-nucleon scattering threshold parameters, which are small. The perturbative
expansion is therefore a combined expansion inε anda.

5. Interaction Lagrangian

The Lagrangian needed for the calculation of the amplitudesfor pion photoproduction reads
L = Lkin +Lγ +LπN , whereLkin denotes the kinetic part,Lγ incorporates the interaction with
the photon field and andLπN describes the pion-nucleon sector.

In the pion nucleon sector, the leading terms of the Lagrangian have been given before in
Ref. [10]. First, some notation is introduced in order to write the Lagrangian in a compact form.
For every channeln, we collect the charges of the outgoing and the incoming pions in the vari-
ablesv andw, (n;v,w): (0;0,0),(1;0,+), (2;+,+), (3;0,0), (4;−,0), (5;−,−), thereby assigning
unique values to the variablesv andw oncen is given. The Lagrangian reads

LπN =
(

ψ† χ†)
(

T{0,5} T{1,4}
T †
{1,4} T{2,3}

)(

ψ
χ

)

,

TC = ∑
n∈C

[

Cnπ†
v πw + D(1)

n ∇kπ†
v ∇kπw + D(2)

n π†
v
←→△ πw + iD(3)

n τkε i jk∇iπ†
v ∇ jπw

]

(5.1)

with the abbreviationf
←→△ g≡ f△g+(△ f )g.

For Lγ , the photon is treated as an external vector fieldA which is odd under parity and time-
reversal transformations. One obtains for the gauge invariant Lagrangian

L
(0)

γ =−iG(1)
0 ψ†τkψ Ek π†

0 ,

L
(1)

γ =−iG(2)
1 ψ†τkψ ∇ jEk ∇ jπ†

0 + iG(1)
2 ψ†τmτ lψ Bl ∇mπ†

0

− iG(2)
3 ψ†τ jψ ∇ jEk ∇kπ†

0 ,

L
(2)

γ =−iG(3)
4 ψ†τkψ∇ jlEk∇ jlπ†

0− iG(1)
5 ψ†τkψEk△π†

0

+ iG(2)
6 ψ†τmτ lψ∇nBl∇mnπ†

0− iG(3)
7 ψ†τ jψ∇ jlEk∇klπ†

0

− iG(1)
8 ψ†τ jψEk∇ jkπ†

0 ,

L
(3)

γ =−iG(2)
9 ψ†τkψ∇ jEk△∇ jπ†

0− iG(4)
10 ψ†τkψ∇lmnEk∇lmnπ†

0

+ iG(1)
11 ψ†τmτ lψBl△∇mπ†

0 + iG(3)
12 ψ†τmτ lψ∇inBl∇minπ†

0

− iG(2)
13 ψ†τ jψ∇ jEk△∇kπ†

0− iG(4)
14 ψ†τ jψ∇ jlmEk∇klmπ†

0

− iG(2)
15 ψ†τ jψ∇lEk∇ jklπ†

0 . (5.2)
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The upper index on the coupling constants is introduced for later convenience. Here, the notation
∇i1i2...ik ≡∇i1∇i2 · · ·∇ik is used. Since the structure of the Lagrangian for the other required channel
pγ → nπ+ stays the same, one only has to replace the coupling constants and the field operators,
{ψ†,π†

0 ,G(n)
i } → {χ†,π†

+,H(n)
i }. The full interaction LagrangianLγ is then given by adding the

L
(i)

γ of both channels.

6. Matching relations

In the pion-nucleon sector, the coupling constants of the nonrelativistic Lagrangian,Ci and
D(k)

i can be expressed in terms of pion-nucleon scattering lengths of theS-wave andP-wave,a0+

anda1± and effective range parametersb0+, respectively. Adopting the notation of Ref. [11], in the
isospin limit, the isospin decomposition of theπN scattering amplitudes reads

Tpπ0→pπ0 = Tnπ0→nπ0 = T + , Tpπ0→nπ+ = Tnπ0→pπ− =−
√

2T− ,

Tnπ+→nπ+ = Tpπ−→pπ− = T + + T− . (6.1)

DefiningN = 4π(mp + Mπ), one finds

C0 = 2N a+
0+ , C1 = 2

√
2N a−0+ , C2 = 2N (a+

0+ + a−0+) ,

C3 = C0 , C4 = C1 , C5 = C2 . (6.2)

The matching conditions for theD(k)
i are given in a generic form only. The isospin index of the

threshold parameters can be inferred from Eq. (6.1)1.

D(1)
i = 2N (2a1+ + a1−) , D(2)

i =−N

(

a0+

2mpMπ
+ b0+

)

,

D(3)
i = 2N (a1−−a1+) . (6.3)

Here, higher order terms in the threshold parameters have been dropped. The corrections to these
relations which appear due to isospin breaking have to be calculated within the underlying rela-
tivistic theory. For theCi, they can be found in Refs. [12–15]. Note that the second linein Eq. (6.2)
is only true in the isospin limit.

The constantsG(n)
i andH(n)

i on the other hand are related to the threshold parameters of the
electric and magnetic multipoles of the pertinent channel.In the isospin limit, the expansion of the
real part of the multipoleXl± close to threshold is written in the form

ReXl±(s) =
∞

∑
k=0

X̄l±,2k|q|l+2k , (6.4)

which defines the threshold parametersX̄l±,2k. In the following, the relations of the coupling con-

stantsG(n)
i to these threshold parameters is given at leading order in the pion nucleon threshold

parameters. Since the nonrelativistic theory is not suitedfor the study of the dependence of the

1Note that we use the Condon-Shortley phase convention.
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multipoles on|k|, in this analysis, all vectorsk are turned into unit vectors by the pertinent redefi-
nition of the coupling constants,

G(n)
i = N0k−n

0 Gi , N0 = 4π(mp + Mπ0) . (6.5)

Note that the higher order corrections due to Eq. (4.1) have to be taken care of in the matching
relations. Again, these relations pick up isospin breakingcorrections which have to be evaluated in
the underlying relativistic theory.

Only the matching equations for the couplings of the LagrangiansL
(0)

γ andL
(1)

γ are indicated
here. The remaining relations can be found in Ref. [5]. To ease notation,X̄i± ≡ X̄i±,0 is used.

G0 = 2Ē0+ , G1 = 6(Ē+1 + M̄+1) ,

G2 =−2(M̄−1 +2M̄+1) , G3 = 6(Ē1+− M̄1+) . (6.6)

For the coupling constantsHi the algebraic form of the relations is identical. However, the multi-
poles of the pertinent channels appear and the masses in Eq. (6.5) have to be adjusted.

All coupling constants are assumed to be real. See Ref. [5] for a discussion of this issue.

7. Results

In the following, we provide the expressions for the electric and magnetic multipolesEl+ for
l = 0,1 andMl± for l = 1. The result is written in the form

Xl,±(s) = X tree
l± (s)+ X1Loop

l± (s)+ X2Loop
l± (s) · · · (7.1)

wheres = (p1 + k)2 and the ellipsis denote higher order terms in the expansion in ε anda.

7.1 Tree-level

The tree level result can be written in the formX tree
l± (s) = X t

l±ql + X t
l±,2q2+l + · · · with the

coefficients

Et
0+ = G0 , 3Et

0+,2 = G4−3G5 + G6−G8 ,

6Mt
1+ = G1−G3 , Mt

1+,2 =−1
6G9 + 1

10G10+ 1
15G12+ 1

6G13− 1
30G14,

3Mt
1− = G3−G1−3G2 , Mt

1−,2 = 1
3G9− 1

5G10+ G11− 1
3G12

− 1
3G13+ 1

15G14,

6Et
1+ = G1 + G3 , Et

1+,2 =−1
6G9 + 1

10G10+ 1
15G12− 1

6G13

+ 1
30G14− 1

15G15. (7.2)

One observes thatD-waves appear naturally at orderε2 in this framework (see also Ref. [16]).

7.2 One-loop

All the one-loop contributions are proportional to the basic integral

Jab(P
2) =

∫

dDl
i(2π)D

1
2ωa(l)2ωb(P− l)

1
(ωa(l)− l0)(ωb(P− l)−P0+ l0)

,
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Figure 1: One- and two loop topologies needed to calculate the amplitude. The double line generically
denotes a nucleon, the dashed line a pion and the wiggly line indicates the external electromagnetic field.

ω±(p) =
√

M2
π + p2 , ωi(p) =

√

m2
i + p2 , i = n, p

ω0(p) =
√

M2
π0 + p2 , P2 = P2

0 −P2 . (7.3)

In the limit D→ 4,

Jab(P
2) =

i
16πs

√

(s− (ma + Mπb)2)(s− (ma−Mπb)2) , (7.4)

which is a quantity of orderε . The one-loop result up to and including orderO(aε4) reads












E1Loop
0+ (s)

1
|q|M

1Loop
1+ (s)

1
|q|M

1Loop
1− (s)

1
|q|E

1Loop
1+ (s)













=











P11 P12

P21 P22

P31 P32

P41 P42











(

Jp0(s)
Jn+(s)

)

. (7.5)

The elementsPik are functions of the pion momentumq and the coupling constants of the La-
grangian,

P11 = G0C0 + q2
(

C0E(p0),t
0+,2 −2D(2)

0 G0

)

,

P12 = C1H0 + h2(s,mc,Mπd )
(

C1E(n+),t
0+,2 −D(2)

1 H0

)

−q2D(2)
1 H0 ,

18P21 = q2
(

D(1)
0 −D(3)

0

)

(G1−G3) ,

18P22 = h2(s,mc,Mπd )
(

D(1)
1 −D(3)

1

)

(H1−H3) ,

9P31 = q2
(

D(1)
0 +2D(3)

0

)

(G3−G1−3G2) ,

9P32 = h2(s,mc,Mπd )
(

D(1)
1 +2D(3)

1

)

(H3−H1−3H2) ,

18P41 = q2
(

D(1)
0 −D(3)

0

)

(G1 + G3) ,

18P42 = h2(s,mc,Mπd )
(

D(1)
1 −D(3)

1

)

(H1 + H3) , (7.6)

whereE(c),t
0+,2 denotes the pertinent coefficient of the tree level result ofchannel(c), see Eq. (7.2),

andh2(s,mc,Mπd ) is given by

h2(s,mc,Mπd ) =

(

s− (mn + Mπ+)2
)(

s− (mn−Mπ+)2
)

4s
, (7.7)

which is a quantity of orderε2. Eq. (7.5) and (7.6) clearly show the advantage of the nonrelativistic
description: The strength of the cusp at leading order is parameterized in terms of the coupling
constantC1 and the ratioH0/G0.
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8. Phase of π0p→ π0p scattering

In an isospin symmetric world, the phase of the multipoleE0+ is directly related to the phase
shift of the S-wave of pion-nucleon scattering by virtue of the Fermi-Watson theorem [17]. In
Ref. [7], it is shown with a coupled channelS-matrix approach that to leading order ine, below the
π+n threshold, the phase of theS wave ofπ0p→ π0p scattering is equal to the phase ofE0+,

tanδpπ0→pπ0 = tan
ImE0+

ReE0+
≡ tanδE0+ . (8.1)

The framework developed here allows one to test this statement order by order in the perturba-
tive expansion. To this end, the phase ofE0+ below the second threshold is calculated up to and
includingO(a2ε4),

tanδE0+ = C0 ImJp0 +C2
1Jn+ImJp0−2D(2)

0 ImJp0q2 (8.2)

−2C1D(2)
1 Jn+ImJp0q2−2C1D(2)

1 Jn+ImJp0 h2(s,mn,Mπ)+ · · · .

Calculatingπ0p→ π0p scattering to the same order with the Lagrangian given in Eq.(5.1), one
finds that the phase of theS-wave below the second threshold is indeed equal to Eq. (8.2). However,
the main object of interest is the phase of theS-wave of π0p → π0p scattering in theisospin
symmetry limit,

tanδ̄pπ0→pπ0 = C0ImJp0 +
C2

1

C0
ImJn+ ≃ a+

0+q +2
a−2

0+

a+
0+

q + · · · , (8.3)

which does not agree withδpπ0→pπ0 in the presence of isospin violations already at leading order.

9. Summary and conclusion

We study the photoproduction reaction of pions on the nucleon using a nonrelativistic frame-
work. The electric and magnetic multipolesEl+ for l = 0,1 andM1± are calculated in a systematic
double expansion in the final state pion- and nucleon momenta(counted as a small quantity of
orderε) and the threshold parameters ofπN scattering (denoted bya). Explicit representations for
the multipoles up to and includingε3 andε4a are provided. The corresponding two-loop results as
well as a expressions for the multipole amplitudes in the remaining three reaction channels can be
found in Ref. [5].

The representation is valid in the low energy region, at least up to a photon energy in the lab
frame ofEγ = 165MeV. It accurately describes the cusp structure and allows one to determine the
pion-nucleon threshold parameters from experimental data.

The relation of the phase of the electric multipoleE0+ in the(p0) channel to the phase of the
S-wave ofπ0p→ π0p scattering is discussed in the presence of isospin violation. A relation found
in earlier work [7] is confirmed. We stress that the relation does not allow one to obtain the phase
of π0p→ π0p scattering in the isospin limit.
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