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1. Introduction

The photoproduction reaction of neutral pions on the prig@reaction which shows a strong
effect due to isospin breaking. The electric multipBlg exhibits an exceptionally strong cusp at
the 71" n threshold (see for instance Ref. [1]). The strength of thispds intimately related to the
charge exchange scattering length of pion-nucleon soajteTherefore, accurate experimental
data of the photoproduction reaction allows one to accespitin-nucleon scattering lengths.

Along the lines of previous work which analyzed the cusp&in- 3rr andn’ — nmmr de-
cays [2—4], we construct a nonrelativistic theory whichvinles a rigorous framework to describe
the structure of the cusp order by order in a perturbativeaesion in terms of small momenta
and effective range parameters of pion-nucleon scatteringiell as threshold parameters of the
photoproduction reaction [5]. By construction, the theooyrectly reproduces the low-energy
singularities in the Mandelstam plane.

The cusp in neutral pion photoproduction has been studitmdaeRef. [6] introduces a two-
parameter model, which captures the most important leaglifegt of the cusp. In Ref. [7], a
coupled channeb-matrix approach is used to investigate the cusp structure.

2. Multipole decomposition

Some basic relations and definitions used in the analysi®ofghotoproduction are collected.
We calculate the matrix element for the procesgp:) + y(k) — p(pz) + 1°(q) at leading order in
the electromagnetic couplirgy

(P2, q out/py.kin) = —i(2m)*3' (P; — R) G p2,t ) g u(pa,t) (2.1)

wherePR andP; denote the total four momentum in the initial and in the firtates respectively
andeH stands for the polarization vector of the photon.

To analyze the photoproduction reaction of pions, eleatnit magnetic multipoles are usually
introduced. To this end, the amplitude is written in term$wsd component spinor& and Pauli
matricestX [8],

M =8T/SE]F &,
F=it-eF14+1-§7- (Kx &) Fo+iT-K§-Fa+iT-§§-£F4. (2.2)

The hat denotes unit vectors. THeare decomposed into electric and magnetic multipoles with
the help of derivatives of the Legendre polynomigl&) [8],

F1= I; My + B R (@) + [+ DM+ B R4 (2),
F2= I;[(I +OM +IM_R(2),

Fg= IZ B —ML R (D) + B+ MR 4(2),

Fa= Ii M —E.—M_—-E_]R'(2). (2.3)

The discussion is restrained to the center of mass frameiret of the article.
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3. Nonrédativistic framewor k

To describe the behavior of the multipoles close to threskolvhere the energy of the pro-
duced pion and of the proton are small — a nonrelativisticutation is justified. Furthermore, it
offers the advantage that all the masses can be set to thaiicphvalue. Therefore, all the poles
and branch points appear at the correct place in the Maadelglane. Moreover, the interaction
of the nucleon and the pion is described by effective rangapeters, which allows one to directly
access the pion-nucleon scattering lengths.

The covariant formulation of nonrelativistic field thearie introduced in
Refs. [2—4] is used here since it incorporates the corrdativistic dispersion law for the parti-
cles. The nonrelativistic proton, neutron and pion fieldsa@enoted by, x and 1, respectively.
The kinetic part of the Lagrangian after minimal substgnttakes the form (see Ref. [9])

gkin = Z (lTiDtWi T — |(thi ni)Tr[i — Z@Wi ni>

+ig DWWy — i(DWpy) T — 29" W2y

+2X Wh (i —Wh) X + 275 Wo(i 6k —Wo) T, (3.1)
with
Wo= /M2, — A, Wh= /M- A, DL = (& F ieAo) TL: |
D = (& — iefo) W. = \/Mz-D2, Wp=/mg—D2,
D = (0+ieA)m., Dy =(O+ieA)y. (3.2)

Note that since the photon is treated as an external fielkinigic term is absent.

4. Power counting

Close to threshold, the momenta of the incoming proton aradgphare of the order of the
pion mass whereas the outgoing particles have very smallentanTherefore, we count momenta
of the outgoing pion and the outgoing proton as a small gtyanfi O(¢) and the momenta of
the incoming proton and of the photon @¢1). All the masses are counted @1). The mass
differences of the charged and neutral pidR,= M2 — Mgo and of the proton and the neutron,
Ay =me— mf) are counted a®(&?). At first sight, this counting scheme seems to lead to infinite
many terms already in the leading ordes y — p+ r° Lagrangian.?), because derivatives on
the incoming fields are not suppressed. However, since thentidulus of the momentum of the
incoming particles|k|, can be expanded in the small momentign
_ Mp 2+y Y +2y+2 ~ My

—_— (4.1)

k| = n , _ Y+ _
8 Zk”q 0= Ty TV Y mp

one obtains a valid power counting scheme. The Feynman muteodmentum space of every
operator of ordee® with a given arbitrary number of derivatives can be exparnidegbwers of
the small momentury, yielding one term of ordeg® without any momenta of the incoming fields
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present and subsequent higher order terms. Doing this éoy @perator oD(£°), all the resulting
leading order terms without any momentum dependence caadugibed by one operator of order
0O(£Y) in the interaction Lagrangian. The same procedure leadsite fiumbers of operators at
any given higher order ia. The derivatives on the incoming fields are only needed teigee unit
vectors in the direction of the incoming photon. This sholat the nonrelativistic theory is not
capable of predicting the dependencellkireven at threshold.

An additional generic parametais introduced to count the pion-nucleon scattering vestiéevery
pion-nucleon interaction vertex counts as a quantity oéo@ja) since the coupling constants are
proportional to the pion-nucleon scattering thresholdpaaters, which are small. The perturbative
expansion is therefore a combined expansion amda.

5. Interaction Lagrangian

The Lagrangian needed for the calculation of the amplitddepion photoproduction reads
L = Lin+ L+ L, WhereZin denotes the kinetic party), incorporates the interaction with
the photon field and an&’ describes the pion-nucleon sector.

In the pion nucleon sector, the leading terms of the Lageangiave been given before in
Ref. [10]. First, some notation is introduced in order totevthe Lagrangian in a compact form.
For every channeh, we collect the charges of the outgoing and the incoming siarthe vari-
ablesvandw, (n;v,w): (0;0,0),(1;0,4), (2;+,+), (3;0,0), (4;,—,0), (5;—,—), thereby assigning
unique values to the variablgsandw oncen is given. The Lagrangian reads

Tios) Tiray 1]
LN = L.UT XJr {T' 7 ’
( ) T{1,4} Tr23) X
Te= Y |G+ DY O 0, + DY i) A+ iDP e MO {0l | (5.1)
nee¢

with the abbreviatiorf Z)g =fAg+ (Af)g.
For .7, the photon is treated as an external vector feeld/hich is odd under parity and time-
reversal transformations. One obtains for the gauge iawatiagrangian

29 = —icf YT wET,
A = -6 piyDE DI il gt B Oy
—ic? yrtiywnDlEk oM,
.2,52) _ —in)lPTTklI/D“EkD“ ng_ iGél)LIJTTkLIJEkATIg
+ic gt wore' o™ — iR gt wol EXOY
—iGy gt yER DR,
29 = —ic@ gD A0 i —iGlY witwo™ERD™ gl
+iGHwtm B ADMY + G witmr wOe' oM
_ iG&?wTTijjEkADkng _ iG(l‘:l)w‘rTjwmjlmEkalmrg
—icRyftiyo'exaiM . (5.2)
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The upper index on the coupling constants is introducedater lconvenience. Here, the notation
Oiiz- = Oi102... Ok js used. Since the structure of the Lagrangian for the o#fwrired channel
py — nirt stays the same, one only has to replace the coupling cosstadtthe field operators,
{w", 8,61 — {xT, 7 ,H”}. The full interaction Lagrangiar¥, is then given by adding the
.,2”}” of both channels.

6. Matching relations

In the pion-nucleon sector, the coupling constants of tharelativistic LagrangianC; and
Di(k> can be expressed in terms of pion-nucleon scattering lsrajtthe Swave andP-wave,ag
anday+ and effective range parametdxs_, respectively. Adopting the notation of Ref. [11], in the
isospin limit, the isospin decomposition of th#\ scattering amplitudes reads

Tp"0—>pn° = Tnno—)nno = T+ ) Tpnoenrﬁ = Tnno—)prr = _\/§T7 )
Toret ot = Tor —pr =T+ T (6.1)

Defining.4" = 4m(m, + M), one finds

CO:ZJVa{L’ Cl:zﬁﬂaaw CZZZJV(a5r++a5+)>
C3=0Cy, Cs=0Cq, Cs=0Co. (6.2)

The matching conditions for thi(k) are given in a generic form only. The isospin index of the
threshold parameters can be inferred from Eq. {6.1)

pW — 2 - D@ _ _ ao+
i 2‘/V( a1—"-"i_al )7 i N 2mpMT(+b0+ )

DO =24 (a —a,). (6.3)

Here, higher order terms in the threshold parameters hase d@pped. The corrections to these
relations which appear due to isospin breaking have to bmileabd within the underlying rela-
tivistic theory. For theC;, they can be found in Refs. [12—-15]. Note that the secondiifi). (6.2)
is only true in the isospin limit.

The constant@i(n> and Hi(”) on the other hand are related to the threshold parametehg of t
electric and magnetic multipoles of the pertinent chanimethe isospin limit, the expansion of the
real part of the multipolé|+ close to threshold is written in the form

ReX4(s) = 3 X alal ", (6.4)
K=0
which defines the threshold parametX@gk. In the following, the relations of the coupling con-

stantsGi(”) to these threshold parameters is given at leading ordereimpithn nucleon threshold
parameters. Since the nonrelativistic theory is not suibedhe study of the dependence of the

INote that we use the Condon-Shortley phase convention.
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multipoles on|k|, in this analysis, all vectors are turned into unit vectors by the pertinent redefi-
nition of the coupling constants,

GV = Moks"Gi, o= AT(My+Myp). (6.5)

Note that the higher order corrections due to Eq. (4.1) haveettaken care of in the matching
relations. Again, these relations pick up isospin breakimgections which have to be evaluated in
the underlying relativistic theory.
Only the matching equations for the couplings of the Lagiamgz,ﬁo) and.,iﬂ}l) are indicated

here. The remaining relations can be found in Ref. [5]. Te@aation X = X o is used.

Go = 2o, G1=6(E.1+M,1),

Gz =-2(M_1+2M4), Gz = 6(E1+ —My). (6.6)
For the coupling constantd; the algebraic form of the relations is identical. Howevike multi-

poles of the pertinent channels appear and the masses i.Eghéve to be adjusted.
All coupling constants are assumed to be real. See Ref. [ ftiscussion of this issue.

7. Results

In the following, we provide the expressions for the elecémnd magnetic multipole, . for
| =0,1 andM,4 for | = 1. The result is written in the form

Xi.+(8) = XIS + X708 + X0 - (7.1)
wheres = (p; +k)? and the ellipsis denote higher order terms in the expansieranda.

7.1 Tree-levd

The tree level result can be written in the fox{i*%(s) = X!, q' + X!, ,q*"' + - with the
coefficients

Ej, = Go, 3ES. , = Ga—3Gs + G — Gg,
6My, = G1—Gs, Mi, 2 = —§Go+ 16G10+ 7£G12+ §G13— 35614,
3M;_ =Gs—G1- 3Gy, Mi 5= 3Go— £G10+G11— 3G12
— 3G13+ 1:Gua,
6E1, = G1+Gs, Ei, 2= —3Go+ 15G10+ 15G12— §G13
+ 35614 — 7:Gi1s. (7.2)

One observes th&-waves appear naturally at ordexin this framework (see also Ref. [16]).

7.2 One-loop

All the one-loop contributions are proportional to the basiegral

dP| 1 1
3o (P?) = / 1(211)P 20a(1) 2005 (P —1) (wa(l) —lo)(an(P—1) = Po+1lo)’
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Figure 1: One- and two loop topologies needed to calculate the andglitirhe double line generically
denotes a nucleon, the dashed line a pion and the wigglyrisieates the external electromagnetic field.

\/M%erz w(p)=/m+p?, i=np
wo(p) = 2, +p2, P2 = P2 P2, (7.3)

In the limit D — 4,

J (PZ) 167Ts

(s— (Ma+Mp)?)(S— (Ma—Mpp)?), (7.4)

which is a quantity of ordeg. The one-loop result up to and including or@(as*) reads

1E3%050p§§) P11 P2

\q| M (S) N P21 P22 Jpo(S) (7 5)
\qilMiEoop(S) | Pa P () ) .
|Fl‘Ell_l;oo'o(s) Pa1 Paz

The elementdk are functions of the pion momentumand the coupling constants of the La-
grangian,

Pi1=GoCo+q (COEOJr 5 — 2D Go)
Piz = CiHo + (s, e, Mye) (G ~ DPHo ) — 62D H,
1871 = ¢* (D — D ) (61— Ga).
18P>, = h2(s, me, M ) (D(l1> - D(13)> (Hy — Ha),
9Py = g2 (DE,1> + 2D§,3)> (G3— Gy —3Gy),
9Ps; = h2(s, e, Mys) (DY + 2D ) (Hg — H1 — 3Hy),
18Ps1 = 07 (Dén - Dé?))) (G1+Ga),

18Py = h2(S, Mg, M ¢ <D(11) _ D<13>) (H1+ Hs), (7.6)

WhereE((,i)’t2 denotes the pertinent coefficient of the tree level resutthainnel(c), see Eq. (7.2),

andh?(s,mg,M ) is given by

(s— (My+ My )?) (s— (My— My )?)

7S ) (7.7)

h?(s, Mg, M) =

which is a quantity of ordeg?. Eq. (7.5) and (7.6) clearly show the advantage of the nativistic
description: The strength of the cusp at leading order iarpaterized in terms of the coupling
constantC; and the ratidHo/Go.
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8. Phase of mp — r%p scattering

In an isospin symmetric world, the phase of the multipggje is directly related to the phase
shift of the Swave of pion-nucleon scattering by virtue of the Fermi-§dat theorem [17]. In
Ref. [7], it is shown with a coupled chanr@imatrix approach that to leading orderanbelow the
' nthreshold, the phase of tiSawave of °p — n°p scattering is equal to the phasem, ,

ImEg,
tandy 0 pr0 = tanR Eo+ anodg,, . (8.1)

The framework developed here allows one to test this stateworeler by order in the perturba-
tive expansion. To this end, the phasetgf below the second threshold is calculated up to and
including O(a?¢%),

tande,, = ColMJpo+C2dn; ImJpo — 2D2IMJpoq? (8.2)
— 21D P 3 ImJpo g% — 2C1D P 3 ImJpo (s, my, Myy) +

Calculatingm®p — n°p scattering to the same order with the Lagrangian given in(&d,), one
finds that the phase of tf&wave below the second threshold is indeed equal to Eq. (@@yever,
the main object of interest is the phase of ®ave of m°p — n°p scattering in thesospin
symmetry limit,

C?
tanépnoﬂpno ColmJpo + alme ~ a0+q + 2:+ . (8.3)
+

which does not agree witd,0_, 0 in the presence of isospin violations already at leadingiord

9. Summary and conclusion

We study the photoproduction reaction of pions on the nurclesing a nonrelativistic frame-
work. The electric and magnetic multipolgs, for | = 0,1 andM1. are calculated in a systematic
double expansion in the final state pion- and nucleon mom@otanted as a small quantity of
ordere¢) and the threshold parametersrifl scattering (denoted tg). Explicit representations for
the multipoles up to and including? ande*a are provided. The corresponding two-loop results as
well as a expressions for the multipole amplitudes in theaiaing three reaction channels can be
found in Ref. [5].

The representation is valid in the low energy region, attlapgo a photon energy in the lab
frame ofE, = 165MeV. It accurately describes the cusp structure andvaltme to determine the
pion-nucleon threshold parameters from experimental data

The relation of the phase of the electric multip&g in the (p0) channel to the phase of the
Swave of®p — m°p scattering is discussed in the presence of isospin violaf\arelation found
in earlier work [7] is confirmed. We stress that the relatioesinot allow one to obtain the phase
of m°p — n®p scattering in the isospin limit.
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