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We present recent results on elastic deuteron Compton scattering calculations for polarised beans

and targets up to next-to-leading order within Chiral Effective Field Theory in the Small Scale Ex-

pansion variant to implement a dynamical∆(1232) degree of freedom. A simple power-counting

argument discloses that np-intermediate rescattering states must be explicitly included at leading

order already. This automatically results in the correct Thomson limit and guarantees current

conservation. In view of ongoing effort at MAXlab, proposals at HIγS and plans at MAMI, we

address in detail single- and double-polarised observables with linearly or circularly polarised

photons on both unpolarised and vector-polarised deuterons. Our results indicate that several of

the polarisation observables can be instrumental to extract not only spin-independent nucleon po-

larisabilities, but also the so-far practically un-determined spin-dependent polarisabilities which

parameterise the stiffness of the nucleon spin in external electro-magnetic fields. Amongst the

questions addressed are: convergence of the expansion for including the∆, the rôle of the np-

rescattering contributions, and sensitivity to the deuteron wave function. An interactiveMathe-

matica 7.0notebook of these findings is available from hgrie@gwu.edu.
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1. Introduction

As the nucleon is not a point-like target, the photon field displaces its charged constituents,
inducing a non-vanishing multipole-moment. Low-energy Compton scatteringγN → γN of real
photons probes therefore the temporal response of the low-energy degrees of freedom inside the
nucleon, encoded in the nucleon polarisabilities [1]. These are parameterised by the most general
interaction between a nucleonN with spin~σ/2 and an electromagnetic field of non-zero energyω :

Lpol = 2πN†[αE1(ω)~E2+ βM1(ω)~B2 + γE1E1(ω)~σ · (~E× ~̇E) (1.1)

+γM1M1(ω)~σ · (~B× ~̇B)−2γM1E2(ω)σiB jEi j +2γE1M2(ω)σiE jBi j + . . .
]

N

Here, the electric or magnetic (X,Y = E,M) photon undergoes a transitionXl →Yl′ of definite
multipolarity l , l ′ = l ±{0,1}; Ti j := 1

2(∂iTj + ∂ jTi). Its coefficients are theenergy-dependentor
dynamical polarisabilitiesof the nucleon [2]. Most prominently, there are six dipole-polarisabilities:
Two spin-independent ones parameterise electric and magnetic dipole-transitions,αE1(ω) and
βM1(ω), whose static values̄α ≡ αE1(ω = 0) andβ̄ ≡ βM1(ω = 0) are often simply called “the po-
larisabilities”. For the proton, all extractions agree within their uncertainties1, ᾱ p ≈ 11.0, β̄ p ≈ 2.8,
with a theoretical uncertainty of≈ 1 [2], see J. McGovern’s contribution to these proceedings for
details. A global analysis of the 28 points for deuteron Compton scattering gave

ᾱs = 11.3±0.7stat±0.6Baldin±1th , β̄ s = 3.2∓0.7stat±0.6Baldin±1th (1.2)

for the iso-scalar nucleon polarisabilities [3, 4] with theBaldin sum ruleᾱ(s) + β̄ (s) = 14.5±0.6
as constraint. Therefore, the proton and neutron polarisabilities are identical within present theo-
retical and experimental uncertainties, as predicted byχEFT. New data from MAXlab to improve
the statistical uncertainties is being analysed [5], and anexperiment at HIγS is approved. Concur-
rently, a concerted effort is under way to reduce the theory-error using higher orders in the chiral
counting [6]. Our goal is a comprehensive approach to Compton scattering in the proton [2, 7],
deuteron [3,4,7–10] and3He [11] in χEFT from zero energy to beyond the pion-production thresh-
old.

Of particular interest are the 4 so far practically un-determined spin-polarisabilitiesγE1E1,
γM1M1, γE1M2, γM1E2 which parameterise the response of the nucleon-spin to the photon field, anal-
ogous to the Faraday effect of classical Electrodynamics. In these proceedings, we give a quick
overview of our present investigations to help extract spin-polarisabilities from polarised deuteron
Compton scattering. As customary for proceedings, we apologise for our biased view and refer to
Refs. [3,4,10] and an upcoming publication [12] for more detailed presentations and references.

2. Ingredients and Observables

2.1 Dynamical Polarisabilities inχEFT

Polarisabilities measure the global stiffness of the nucleon’s internal degrees of freedom against
displacement in an electric or magnetic field of definite multipolarity and non-vanishing frequency

1One measures the scalar dipole-polarisabilities in 10−4 fm3, so that these units are dropped in the following.
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ω and are identifiedat fixed energyonly by their different angular dependence. Nucleon Compton
scattering provides thus a wealth of information about the internal structure of the nucleon. In
contradistinction to most other electro-magnetic processes, it has however only recently been anal-
ysed in terms of a multipole-expansion at fixed energies [2, 13]. Instead, one focused on the static
polarisabilities, i.e. the values at zero photon energy. While quite different frameworks could pro-
vide a consistent picture for the zero-energy values, the underlying mechanisms are only properly
revealed by their energy-dependence. The complete set of dynamical polarisabilities does – like all
multipole-decompositions – not contain more or less information about the nucleonic degrees of
freedom than the Compton amplitudes. But the information ismore readily accessible and easier
to interpret, as each mechanism leaves a characteristic signature in a particular channel.

It is for example well-known that the∆(1232) as the lowest nuclear resonance leads by the
strongγN∆ M1-transition to a para-magnetic contribution in the staticmagnetic dipole-polarisability
β̄∆ = +[7. . .13] and a characteristic resonance-shape as in the Lorentz-Drude model of classi-
cal Electrodynamics. We therefore employ the Chiral Effective Field TheoryχEFT in which the
∆(1232) is included as dynamical degree of freedom, in the “Small Scale Expansion” variant [14].
The polarisability contributions at leading order (LO) arelisted in Fig. 1. Aπ0-pole contribution
vanishes because the deuteron is an iso-scalar.

Figure 1: The LO contributions to the nucleon polarisabilities. Leftto right: pion cloud around the nucleon
and∆; ∆ excitations; short-distance effects. Permutations and crossed diagrams not shown. From Ref. [2].

At this order, the spin-polarisabilities are parameter-free predictions. But as the observed
static valueβ̄ p ≈ 2 is smaller by a factor of 5 than the∆ contribution, a strong dia-magnetic com-
ponent must exist. This fine-tuning at zero energy is unlikely to hold asω is varied: If dia- and
para-magnetism are of different origin, they involve different scales and hence different energy-
dependences. We sub-sume this short-distance Physics which is at this order not generated by the
pion or∆ into twoenergy-independentlow-energy coefficientsδα , δβ . These “off-sets” are deter-
mined by data, and the energy-dependence of the scalar polarisabilities is still a prediction ofχEFT.
Most notably even well below the pion-production thresholdis the strong energy-dependence in-
duced intoβM1(ω) and γM1M1(ω) by the ∆-resonance. Its traditional approximation as “static-
plus-small-slope”,β̄ + ω2β̄ν , is inadequate as low asω & 80 MeV [2]. Not surprisingly, this
contribution is most pronounced at large momentum-transfers, i.e. at backward angles. It resolves
the “SAL puzzle” of deuteron Compton scattering at 94 MeV [3,4, 8, 15], where widely varying
iso-scalar nucleon polarisabilities had been extracted, in disagreement with data taken at lower
energies.

2.2 Embedding the Nucleon in the Deuteron

Neutrons properties are usually extracted from data taken on few-nucleon systems by dis-
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entangling nuclear-binding effects.χEFT allows to subtract two-body contributions of meson-
exchange currents and of wave-function dependence from data with minimal theoretical prejudice
and with an estimate of the theoretical uncertainties. A consistent description must also give the
correct Thomson limit, an exact low-energy theorem which inturn follows from gauge invari-
ance [16]. Its verification is straight-forward in the 1-nucleon sector, where the amplitude is per-
turbative. But the two-nucleon amplitude must be non-perturbative to accommodate the shallow
bound-state: All terms in the LO Lippmann-Schwinger equation of NN-scattering, Fig. 2, includ-
ing the potential, must be of the same order when all nucleonsare close to their non-relativistic

Figure 2: On the consistency ofNN power-counting inχEFT. From Ref. [19].

mass-shell. Otherwise, one of them could be treated as perturbation of the others and a low-lying
bound-state would be absent. Picking the nucleon-pole in the energy-integrationE ∼ Q2

2M leads
therefore to the consistency condition that theNN-scattering amplitudeTNN must be of orderQ−1,
irrespective of the potential used. Here,Q is a typical low-momentum scale of the process under
consideration, e.g. the inverse S-wave scattering length.The relative strength of forces and po-
tentials inχEFT is therefore not just determined by counting the number of momenta. This has
long been recognised in “pion-less” EFT, but is only an emerging communal wisdom in the chiral
version [17–19], see also Birse’s contribution to these proceedings.

In deuteron Compton scattering, this mandates to includeTNN whenever both nucleons propa-
gate close to their mass-shell between photon absorption and emission, i.e. when the photon energy
ω . 50 MeV does not suffice to knock a nucleon far off its mass-shell [19]. Figure 3 lists the con-

Figure 3: Deuteron Compton scattering inχEFT to NLO. Left: one-body part (dot: electric/magnetic cou-
pling; blob: nucleon polarisabilities of Fig. 1). Right: two-body part (pion-exchange currents). Permutations
and crossed graphs not shown. From Ref. [3].

tributions to Compton scattering off the deuteron to next-to-leading order NLO inχEFT. At higher
photon energiesω & 60 MeV, the nucleon is kicked far enough off its mass-shell,E ∼ Q, for the
amplitude to become perturbative. This is intuitively clear, as the struck nucleon has only a very
short time (∼ 1/ω) to scatter with its partner before the second photon has to be radiated to restore
the coherent final state. The diagrams which containTNN in Fig. 3 are therefore less important for
largerω , together with some of the other diagrams. Indeed, the nucleon propagator becomes static
and scales as 1/Q∼ 1/ω , with each re-scattering process inTNN suppressed by an additional power
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of Q. However,NN-rescattering practically eliminates even at these high energies the dependence
on the potential used to produce the deuteron wave-functionandNN-rescattering matrix. We im-
plemented rescattering by the Green’s function method described in [3, 4, 20, 21]. The calculation
is parameter-free after fitting the scalar polarisabilities with the result quoted in eq. (1.2) [3,4].

2.3 Deuteron Observables

Besides the unpolarised cross-section of Refs. [3, 4, 8], new techniques allow measuring ob-
servables with polarised beams and/or targets. For a linearly polarised beam and unpolarised
deuteron, dσ

dΩ

∣

∣

lin
x is the differential cross-section for photon polarisationin the scattering plane,

and dσ
dΩ

∣

∣

lin
y for perpendicular polarisation. The double polarised observables∆ involve a vector-

polarised deuteron and a circularly or linearly polarised photon. Often, experiments discuss asym-
metriesΣ, i.e. cross-section differences divided by their sums, to cancel systematic effects. Figure 4
gives a pictorial representation of the observables considered, in lieu of lengthy formulae.
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Figure 4: Definition of observables for singly and double polarised cross-sections.

Cross-section differences and asymmetries for 6 observables, depending on 6 dipole polar-
isabilities and 3 kinematic variables (photon energyω and scattering anglesθ andφ ) in the cm
and lab frame, and additional constraints like the Baldin sum rule and the forward and backward
spin-polarisabilities, provide a cornucopia of information which cannot adequately be conveyed in
a short article. We therefore focus only on some prominent examples here and note that in order
to aide in planning new experiments, the results for all observables are available as an interactive
Mathematica 7.0notebook from Grießhammer (hgrie@gwu.edu). It produces both tables and plots
of energy- and angle-dependences from 10 to≈ 120 MeV of all the asymmetries and cross-section
differences, as well as of the total cross-section, in both the cm and lab systems, including their
sensitivities to varying the spin-independent and spin-dependent polarisabilities independently.

3. Significance of the∆(1232) and NN Rescattering on Polarisation Observables

We first analyse the∆(1232) and intermediateNN rescattering contributions on polarisation
observables. Figure 5 compares double-polarisation observables within different schemes. The
upper (lower) row shows the parallel (perpendicular) polarisation asymmetry∆circ

z (∆circ
x ) with

circularly polarised photons. The left (right) panels are for ωlab = 45 MeV (125 MeV). As for
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unpolarised observables [4,8], the∆(1232) does not contribute appreciably at 45 MeV, but the ob-
servable is still ruled by including intermediateNN rescattering for the correct Thomson limit. In
contradistinction, the∆ and intermediateNN-rescattering are equally significant at 125 MeV.
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Figure 5: Effects of∆(1232) and of resummingNN intermediate states on the double polarisation observ-
ables∆z (top) and∆x (bottom). Left:ωlab = 45 MeV; right:ωlab = 125 MeV. Dashed (blue):O(Q3) HBχPT
calculation without dynamical∆(1232) or rescattering. Solid (black):O(ε3) calculation with both interme-
diateNN rescattering and dynamical∆(1232). Dot-dashed (red) on left: onlyNN-rescattering added, no
dynamical∆(1232). Dot-dashed (red) on right: only dynamical∆(1232) added, noNN-rescattering.

Like in Refs. [4,8] for unpolarised observables, we find thatboth the∆(1232) and intermediate
NN rescattering are necessary ingredients to identify polarisation observables for reliably extracting
polarisabilities from zero to 125 MeV. We also checked that dependence on the potential used to
produce the deuteron wave-function andNN-rescattering matrix is irrelevant.

4. Results

We now identify selected polarisation observables which are helpful in extracting in particular
spin-polarisabilities. For an unpolarised target,dσ

dΩ
∣

∣

lin
y is at 45 MeV (lab) appreciable sensitive only

to αE1 andβM1, see Fig. 6. At 125 MeV (lab) however, the sensitivity toγM1M1 is large and com-
parable to that ofαE1−βM1. Amongst double-polarisation observables atωlab = 125 MeV, there is
also appreciable sensitivity to the polarisabilities in the linear photon polarisation asymmetry∆lin

z ,
see Fig. 7. The dependences onαE1, βM1 andγM1M1 are again comparable. Finally, the circular
photon polarisation asymmetry∆circ

x atωlab = 125 MeV, shows large and comparable sensitivity on
αE1, βM1 and nowγE1E1, but only minor sensitivity on the other spin-polarisabilities.

Thus, it is imperative that the values of the electric and magnetic polarisabilities be better ex-
tracted so as not to taint any extraction of the spin polarisabilities. While no observable is sensitive
only to one dipole polarisability, closely inspecting (1.1) reveals configurations in which one (or
more) polarisabilities donot contribute for nucleon Compton scattering. In the example of Fig. 9,
a photon is scattered on an unpolarised nucleon in the cm frame such that the linear photon po-
larisation is perpendicular to the scattering plane, cf. [22]. A detector under 90◦ can therefore not
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Figure 6: Differential cross-sections with photons linearly-polarised along they-axis. Left and centre:
Scalar polarisabilities̄α(s) and β̄ (s) are each varied by±2 units, while the sum is constrained by the iso-
scalar Baldin sum rule. Right:γM1M1 varied by±2 units atωlab = 125 MeV.
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Figure 7: The double-polarisation asymmetry∆lin
z with linearly-polarised photons atωlab = 125 MeV.

Left/centre:ᾱ(s) andβ̄ (s) varied by±2 units, no Baldin constraint. Right: variation ofγM1M1 by±2.
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Figure 8: The double-polarisation asymmetry∆circ
z with circularly-polarised photons atωlab = 125 MeV.

From top left to bottom right, variation by±2 units ofαE1, βM1, γE1E1, γM1M1, γE1M2, γM1E2.

detectM1 photons radiated from the induced magnetic dipole in the nucleon. As demonstrated
in the figure, this hold even when the relative motion of the nucleon in the deuteron is taken into
account [12]. Similar configurations can be identified for other dipole polarisabilities.

5. Concluding Questions

Our results indicate that some observables of single- and double-polarised deuteron Compton
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Centre/right: dσ
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lin
y whenαE1/βM1 is varied by±2. Notice theβ -independence at 90◦.

scattering can be used to directly extract some of the so-farnearly un-determined spin-polarisabilities.
However, as these are higher-order relative to the electricand magnetic polarisabilities, the former
can only be extracted reliably when the scalar polarisabilities are known with better accuracy. With
this goal, an experiment at MAXlab is being analysed as we speak, and an experiment at HIγS is
approved. Concurrently, we are improving the theoretical accuracy by including higher orders in
χEFT [6]. To find all nucleon spin-polarisabilities, one therefore needs to work through:

(1) A set of relatively low-energy experiments,ω . 80 MeV, where the spin-polarisabilities are
negligible but the scalar polarisabilities can be determined to high accuracy. This will also
reveal differences between the proton and neutron polarisabilities and their constituents.

(2) With a better handle onαE1 andβM1, a combination of concurrent unpolarised and polarised
measurements can be used to extract the spin polarisabilities. Most efficient seems a set of
double-polarised experiments atω & 100 MeV but below the pion-production threshold.

In principle, a multipole-analysis of 4+ 1 experiments at different angles suffices in step (2) to
over-determine the 4 spin-polarisabilities – if the data has unprecedentedly high accuracy.γE1E1

andγM1M1 can to a good degree be extracted uniquely from∆circ
x and∆lin

z , respectively. However,
a larger number of independent data will be necessary to account for the high complexity of these
experiments, and for the fact that no clear-cut observablesexist for the “mixed” spin-polarisabilities
γE1M2 andγM1E2. In each, the accuracy achievable and the observables and kinematics most suited
strongly depend on geometry and acceptance of the experimental setup. We have therefore made
our detailed results available as interactiveMathematica 7.0notebook (email to hgrie@gwu.edu).

In the long run, a multipole-analysis of Compton scatteringat fixed energies from double-
polarised, high-accuracy experiments provides a new avenue to extract the energy-dependence of
the six dipole-polarisabilities per nucleon [2]. A concerted effort of planned and approved exper-
iments atω . 200 MeV is indeed under way: polarised photons on polarised protons, deuterons
and3He at TUNL/HIγS; tagged protons at S-DALINAC; polarised photons on polarised protons
at MAMI. The unpolarised experiment on the deuteron at MAXlab over a wide range of energies
and angles is being analysed [5]. With at present only 28 (un-polarised) points for the deuteron in
a small energy range ofω ∈ [49;94] MeV and error-bars on the order of 15%, high-quality data
allow one to zoom in on the proton-neutron differences and provide first information on the spin-
polarisabilities. We re-iterate that a publication elaborating on these findings is forthcoming [12].

Enlightening insight into the electro-magnetic structureof the nucleon has already been gained
from combining Compton scattering off nucleons and few-nucleon systems withχEFT and the
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(energy-dependent) dynamical polarisabilities; and a host of activities should add to it in the coming
years, so that we understand the response of the nucleon spinconstituents to external electro-
magnetic fields, as parameterised by its spin-polarisabilities.
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