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We have developed a subtractive renormalization methold witich we can evaluate nucleon-
nucleon (NN) scattering phase shifts produced by the NNrmiateobtained at leading, next-
to-leading, and next-to-next-to-leading order (NNLO) iniral effective theory XET). In this
method the low-energy constants associated with shaisaie NN physics are eliminated from
the Lippmann-Schwinger equation (LSE) for the NN t-matnixfavor of physical observables.
This allows us to straightforwardly compute scatteringgehahifts for ultra-violet cutoffs of at
least 10 GeV. We then perform detailed analyses of the maximutoff at which the use of a
XET NN potential in the LSE makes sense.

Specifically, we show that:

(a) our subtractive renormalization technique reprodieesvn results for the LO potential, in
both S- and P-waves;

(b) a parameterization of short-distance physics in the BNiotential in terms of an energy-
dependent contact term creates scattering resonancelalmhsbound states in S-wave channels
once cutoffs larger than 1 GeV are considered;

(c) the more conventional momentum-dependent contact itetire NNLO potential has prob-
lems of its own at cutoffs larger than 1 GeV,

(d) the NNLO potential yields P-wave phase shifts that hayeificant dependence on renormal-
ization point.

(e) for cutoffs smaller than 1 GeV, using spectral-functiegularization for the long-distance part
of the potential produces results that vary with the cutoff depend on the renormalization point
less than if dimensional regularization is employed to cotaphe two-pion-exchange graphs.
Based on all these results we conclude that, once cutofferétnan the chiral-symmetry breaking
scale are employed, iteration of the two-pion-exchangespid thex ET NN potential in the LSE

does not satisfy all of the criteria required for successfanbrmalization of the problem.
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1. Introduction

Chiral perturbation theoryxPT) is an effective field theory (EFT) that enables calcatati
in the non-perturbative region of QCD. The use of EFT in naclgystems conveys two major
advantages. First, we gain physical insight into the bahranf the strong interaction at large
distances, which is difficult to calculat initio from QCD. Second, our calculations become more
accurate order by order, thus allowing systematic errotrobnAn EFT becomes most powerful
when a clear and large seperation between the low- and mgite scale in the problem is possible.
It has been shown thgtPT is quite successful in the low-energy { GeV) mesonic sector. In
principle, the same theory should work in the low-energyl@oic-nucleon (NN) sector as well.

However, it has been almost two decades sixBd was first applied to the problem of NN
system[1], and difficulties still remain. StandaxdPT power counting, which would predict no
bound state for the deuteron, does not apply to the NN proldbecause of infrared enhancements
of the NN interaction. A nonperturbative treatment of aslgaart of the NN interaction is thus a
necessary ingredient. One needs to either iterate the Néhpiak computed fromyPT using the
Lippmann-Schwinger equation (LSE) [2, 3, 4, 5, 6, 7, 8, 9,110,12, 13, 14, 15, 16, 17, 18, 19],
or determine which part of the potential can be treated itugeation theory [20, 22, 22, 23, 24,
25, 26, 27]. So far there is no consensus as to which of thesalternatives is superior.

Here, we adopt the former approach. In this “chiral effextiveory" ((ET) the behavior of the
XPT potential at high momentum necessitates that a ciitb# placed on the momenta in the LSE.
It is then natural to ask what valuesMftan be used, if renormalization is to be successfully cairrie
out. Difficulties in answering this question have both a techl part, i.e. it is hard to perform a
fit for all unknown low energy constants at high cutoffs bessaof “fine-tuning”; and conceptual
problems regarding what a successful renormalization.ig, i it sufficient that observables be
(approximately) cutoff-independent? (See, e.g., Ref,[[&8 a recent discussion.)

In Sec. 2 we outline a subtractive renormalization techaitpat solves the “fine-tuning” prob-
lem. This technique thus allows us to assess how WEIT at large cutoffs satisfies criteria for
successful renormalization. We have used subtractivermealzation to calculate the NN scatter-
ing amplitude obtained by using leading-order (LO), nextetading-order (NLO), and NNLQPT
NN potentials in the LSE, for cutoffs up o= 19 GeV. We show some results of these calculations
in Sec. 3, and examine the conditions under why& is really improved, order by order, after
renormalization. We do this for both the dimensionallytiegized (DR) and spectral-function-
regularized (SFR) [29%PT potentials, and consider both energy and momentum-depéicon-
tact terms. More details regarding all these methods andtsesan be found in Refs. [30, 31, 32].

2. Main ideas of subtractive renormalization

The main idea of our subtraction method is to construct the édf-shell partial-wavet-matrix
from the knowledge of the long-range part of the potential tive on-shell value of thematrix
for zero energy [30, 31, 32, 33, 34]. The partial-wave LSEgKg by

P’ "2 i (0, ") tin (7, 95 E)

pE+ie—p'2 1)

P ) 2 . (Nd
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Where p%/M = E is the center-of-momentum (c.m.) energy ahdhe cutoff parameter. The
incoming (outgoing) angular momenta are indicated fY). The potentials are defined as:

vin(p,p) = ViR, p) +Cinp" P f(p, P E), (2.2)

wherep(p’) indicates the incoming (outgoing) momentum in the c.m. trarkﬁ is the long-range
potential that is operative in this chann€ly p’"' p' f represents the contact interaction, whéan

be energy or momentum-dependent. First we consider thefcask which is the simplest contact
term in a given partial wave. To relate thenatrix to a physical quantity, a generalized scattering
length for arbitrary angular momentaandl’ can be defined as [35?# = Iimkﬁot"'l(('ﬁfkja, where

for I’ =1 = 0 the usual definition,"ﬁ = t90(0,0;0), is obtained. Dividing the partial-wave LSE,
Eq. (2.1), byp'" p' we obtain

(P PE) _Vi(P.p) 2 M /Adp”p”zvr%]u(p’,p”)tﬁ(p”,p:E)
p'p PP ZHU"p' 0 P+ie—p'2 '

(2.3)

SinceviR(p, p) ~ p''p', Eg. (2.3) is general and can be applied to any partial wave.

In the following we concentrate on P-wavés<(l’ = 1). (The corresponding argument for S-
waves, in the case that we have the standard LO contactdtieraf yPT withl =1'=0, f =1, is
analogous, but more straightforward, as division by a faot@’k is not necessary there.) Consider
the half-shell and on-shelimatrices aE = 0:

T (P k0)] - [vER(PLK)
im [T_ =im Tk o
2 o [ 1 Adp” P2 (iR (P, P") +Ciarp'p”) tin (P, 0;0)
SRS el ol
. t|/|(k,k;0)— BT V|/| (k k)
L'L%[ Kk _-L'L%_ K Ton
A /I 12 (LR // Ak i /I -
+; 2\ 1iim [ /dp p (v|/|~(k,p)+</3;|kp)tu(p,O,O)} 2.5)
T k=0 —p

Subtracting Eq. (2.5) from Eq. (2.4) and multiplying bottes byp’ cancels the unknow@;:

; t|/|(p/,k;0) 011, VH?(p/?k) T VI/I (k k)
[ = St [P - [
) VLR (k p//) _ ti ( // k'O)
- / Vo Py Am{PLK5Y)
; M/ dp { i (9, p") — fim ] ” ]p]lklgg)[ i 12.6)
Here we have used that for P-waves (irg {M = S4. The above limits are well-defined.
The only unknown in Eq. (2.6) is lign,g [M} , which can be solved by standard techniques.

The next step is to apply the same idea again to otﬁéﬁ%@ and hencety (p, p’;0). We
then proceed to calculate the on-shefhatrix and the phase shifts using resolvent identities tha
connect the operatd(E) to the operatot(0). Those details are laid out in Refs. [34, 30, 38, 39].

Next, we consider an energy-dependent contact term in &svale takef Coo= A + yE. This
is the contact term up to NLO and NNLO y¥ET for thelSy channel. To simplify the presentation,
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we adopt the following operator notation for the LSE
t(E) =A +YE+Vir+[A + YE+ViR| Go(E) t(E), (2.7)

wheregy(E) is the free resolvent of the LSE. Settifig= 0 in Eq. (2.7) leads t6(0) = A +vir+
[A +VLR] 9o(0) t(0), which contains only one unknowh, Therefore, the matrix elemetitp’, p; 0)
can be obtained from one experimental datum, here the Nesicat lengthag. After applying the
same idea to obtait{E*) from the phase shifts at an arbitrary energy, and using ptiegeof the
LSE to eliminatey, we have

{(E) +(0)[00(0) ~ Go(ENH(E) + £ {t(0) ~ [1+(0)go(0)] at(E") } Go(ENE(E)
E

- (1- )10+ £ 1+10m0]E). 29

wherea = [1+t(E*)go(E*)]~1. With t(0) andt(E*) known, Eq. (2.8) is an equation fofE) and
can be solved by standard methods with detail given in R&f. [3

Finally, for (more complicated) contact terms such as

2 /2 /2 /2

(8 A Cofp-+ 92 B) (TP A ooy (AT R,
we can solve the problem by combining the above methodsuse.the first subtraction to elim-
inate A, and then relaté(E*) to t(E). For coupled channels, we can apply the idea of dividing
p""p' in LSE to eliminate); p2. However, in the case of the momentum-dependent S-wavaaont
terms, we need to perform one fitting to eliminate the unknoamstantC,. The inputs needed are:

for case (A);ag, and an additional data to perform the fitting;

for case (B)ag, a20, and an additional data to perform the fitting; and

for case (C)ao, a2 and phase shift at an arbitrary ene@ge*). *

3. Resultsand discussion

In this section we present our results in P-waves and S-wavdsmonstrate the following:

(1). Our subtractive renormalization scheme generatadtsesquivalent to the conventional
“fitting” method, with a direct input of physical observable

(2). The energy-dependent contact term produces phass gfat oscillate with respect .

(3). Whether a contact term (or contact terms) is needed fautaff independent result is
exactly determined by the (coordinate-space) singulatitycture of the potential as— 0.

(4). Cutoffindependence in the phase shift does not neasssiean the results are renormalization-
point independent. Both properties are necessary condifiar successful renormalization.

(5). In general, there is a highest cutdff ~ 1 (2) GeV in the LSE one can adopt for the
NNLO DR (SFR) TPE, before the results start to exhibit proise

To show point (1), we compare the LO S-wave phase shift obthfrom the conventional
“fitting” method to our subtractive scheme in the left-handesof Fig. 1. Here the potential is
the one-pion-exchange (OPE) plus a constant contact teign.1Fishows that the results obtained

IThe only restriction orE* is that it must be within the domain of validity of our theory.
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Figure1: (Color online) The comparison of two renormalization metiéor the lowest NN Sy & 3S;-3D;
phase shifts (left two panels) and the bound-state wavéturs(right two panels)o(p) (u(r)) is the3S;
wavefunction andl,(p) (w(r)) denotes théD; wave in momentum (coordinate) space. HAre- 50 GeV
is used. The dotted lines indicate the corresponding resbliained with the CD-Bonn potential [40].

by these two methods agree with each other within a relaifferénce of 2%. (Due to numerical
effects this difference is amplified iey. &1 is well known for its sensitivity of the value of the
unknown constant in the contact term, and we only adjuagaap to certain precision when per-
forming the “fitting” method.) We have verified that the ofiedl t-matrices we obtain also agree
with those obtained from the conventional “fitting” methadthe same accuracy. Therefore, our
subtraction method is as valid as the conventional fittinghaoeg Our method can be applied to
bound-state calculations too. The right-hand side of Fghdws deuteron wavefunctions obtained
from our subtractive method, which are quite close to thagained from the CD-Bonn potential.
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For point (2), we associate the DR NNLO TPE with the energyetielent contact term and
plot the 'Sy phase shifts versus in Fig. 2. The phase shifts show an oscillatory behvaior as a
function of A. A similar oscillatory feature is observed in ti8, — D, channel. (We usey,
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Figure 3: (Color online) The un-renormalized v.s. renormalized NM/&+e phase shifts 8y, = 10 MeV
(un-renormalized) and 100 MeV (renormalized) as a functibA for various xPT potentials: DR NLO,
black dotted line; DR NNLO, red dashed line; SFR NNLO, solidan line. For the renormalized case,
the inputalsf were adjusted at each cutoff to give the best fit to the Nijmegrgalysis [36] in the region
Tiap < 100 MeV.

O(E*) andayg (for the triplet) as the input to generate the results Vidth= 1.4 (10) MeV for the
singlet (triplet) channel.) This phenomenon is caused bydlonance state created by the energy-
dependent potential. We emphasise that the first place vthernghase shifts diverge is at cutoff
A~ 1(1.2) GeV for the singlet (triplet) channel.

(3) involves the short distance { 0) behavior ofv:R in the coordinate space. We calculate
ther — 0 behavior analytically for various P-waves potentials bstdhem in Table I. At the same
time, we plot the un-renormalized v.s. renormalized pha#féssat Tja, = 10 (100) MeV for TPE
up to DR NLO, DR NNLO and the SFR TPE up to NNLO in Fig. 3. (Heradahroughout
this paper, we adopt an intrinsic cutoff = 800 MeV for the SFR TPE.) For the renormalized
cases, the contact term has the fdtﬁﬂ p" p'. Comparing the un-renormalized v.s. renormalized
case indicates whether a contact term is needed for the gh#t¢o be stable with respect 1.
This is exactly determined by the— 0 structure listed in Table I. If the potential is singuladan
attractive forr — 0 (denoted as“R” in Table 1), then the contact term is regliié it is not (“U”
in Table 1) then the phase shifts will have a stahle~ o limit even in the absence of a contact
term (see also Refs. [17, 18, 37]). T#R®, — 3F, channel for DR NNLO is a special case, since
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the coupled-channels potential has two attractive simgaidggenpotentials in the— 0 limit, and so
one subtraction is not sufficient to make phase shifts indeget ofA in this channel.
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els) or SFR TPE (right two panels) up to
NNLO with momentum-dependent con-
tact terms. We usag = —23.7 fm as in-
put and then perform a fit to either the
effective rangeg = 2.7 fm (solid black
line) or the phase shift &y, = 200 MeV
i B S (dashed red line). The phase shifts [36]
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(4) To see why a cutoff-independent result in the phaseishifit neccessarily renormalization-
point-independent, we plot th&, phase shift obtained with the DR and SFR NNLO TPE along
with the momentum-dependent contact term (denoted as Aasethe end of the previous section)
in Fig. 4. As mentioned before, in this case we perform themealization by the one-subtraction-
plus-one-fitting procedure. The results obtained by fittmghe effective range, or to the phase
shift at Tz = 200 MeV are shown. One can see that the two different fit praesdgenerate
different results for the sami. This is especially visible aA = 500 and 1000 MeV for the DR
NNLO TPE, where a resonance-like behavior is present indtterl case whef; is fitted torg.
For values ofA\ not close to these problematic cutoffs the phase shift i®sinmdependent of the
renormalization point. In contrast, for the SFR TPE, the tlifferent fitting procedures lead to
almost the same phase shift farbetween 700- 1800 MeV. By switching to the SFR TPE, we
achieve renormalization-point-independence for a widage ofA.
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— 180

T A=doo
A700 E Figure 5: (Color online) The best fit for

-+ A=800 |

2 Ateood the NN 3S;,—3D; phase shifts as a function
of the laboratory kinetic energy for different

cutoffsA ranging from 0.6 to 1 GeV. The po-

: tentials employed are the SFR NNLO with

O 1.‘ 1 a momentum-dependent central part of the

NN N 1 A I N N A I (L A I Y
o I'c
T

. O e e e B A i
S 6 10f- 2 contact term. The values of the Nijmegen
[ I 8- ! . . .
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A NPT s .
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Finally, for point (5), we plot théS; — 3D, phase shifts in Fig. 5. These results are obtained
by the SFR or DR TPE up to NNLO plus the momentum-dependertacbterm (labeled as (C)
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in the previous section). For the DR TPE case, the best d\fidralready diverges away from
the Nijmegen analysis in the mixing angle/at= 1000 MeV. This implies that there is a critical
cutoff A¢ ~ 1 GeV. Above that we cannot iterate DR NNLO TPE in LSE and olgtaa good
fit in the 3S; — 3D, channel. Moreover, as shown in Fig. 4, at thisthe renormalization-point-
independence also breaks down for the DR NNLO TPE int8aehannel. Therefore, we conclude
that for the DR TPE in S-waves, the highest cutoff one can titoiine LSE isAc ~ 1 GeV. For
the P-waves, a detail analysis of the renormalization{pdépendence suggests thhat~ 1— 1.2
GeV for the DR NNLO TPEJ[31]. As with the S-waves, if the SFR TiBERdopted, ther. can be
extented to 2 GeV before similar problems appear.

4. Summary and Conclusions

We developed a subtractive renormalization schemg ESF NN potentials which allows us to
go to an arbitrarily high cutoff in the LSE. Our calculatiosisow that the energy-dependent contact
term creates scattering resonances and shallow bound Bt&ewave channels once cutoffs larger
than 1 GeV are considered. Momentum-dependent contacs tierthe NNLO potential also has
problems at these cutoffs. We also investigate the sinigpkstructure of the potential and find that
the LO conclusion presented in Ref.[15] holds up to NNLO. @ualysis in S-waves and P-waves
shows that the two-pion-exchange potential should not beried in the Lippmann-Schwinger
equation and treated non-perturbatively if cutoffs largram 1 GeV are employed.
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