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1. Introduction

The origin of the nuclear force is one of the major unsolved problems in particle and nuclear
physics. To describe the elastic nucleon-nucleon (NN) scattering at low-energies and the deuteron
properties, the notion of the NN potential turns out to be very useful [1]. The phenomenological
NN potentials which can fit the NN data precisely are known to have the following properties:
(i) The long range part (the relative distancer > 2 fm) is dominated by the one-pion exchange
introduced by Yukawa [2]. (ii) The medium range part (1 fm < r < 2 fm) receives significant
contributions from the exchange of two-pions (ππ) and heavy mesons (ρ, ω, andσ ). (iii) The
short range part (r < 1 fm) is best described by a strong repulsive core as introduced by Jastrow
[3]. (iv) A strong attractive spin-orbit force in the isospin 1 channel exists at medium and short
distances. (i) is related to the tensor force which is a key for the deuteron binding, (ii) is important
for the binding of nuclei with more than 2 nucleons, (iii) is important for the stability of nuclei and
neutron stars, and (iv) is related to the3P2 neutron pairing which leads to the neutron superfluidity
inside neutron stars [4].

A repulsive core surrounded by an attractive well as seen in the phenomenological nuclear
force is a common feature of the “effective" potentials between composite particles. The Lenard-
Jones potential between neutral atoms or molecules is a well-known example in atomic physics.
The potential between4He nuclei is a typical example in nuclear physics. The origin of the re-
pulsive cores in these examples are known to be the Pauli exclusion among electrons or among
nucleons. The same idea, however, is not applicable to the NN potential, because the quark has not
only spin and flavor but also color which allows six quarks occupy the same state without violating
the Pauli principle. To account for the repulsive core of the NN force, therefore, various different
ideas have been proposed so far [5]: an exchange of the neutralω meson as proposed by Nambu
[6], exchanges of non-linear pion field, a combination of the Pauli principle with the one-gluon-
exchange between quarks and so on. Despite all these efforts, convincing account of the nuclear
force has not yet been obtained.

2. NN interactions from lattice QCD

Under the situation mentioned above, it is highly desirable to study the NN interactions from
the first principle lattice QCD simulations. A theoretical framework suitable for such purpose was
first proposed by Lüscher [7]: For two hadrons in a finiteL3 box, an exact relation between the
energy spectrum in the box and the elastic scattering phase shift was derived: If the range of the
hadron interactionR is sufficiently smaller than the size of the boxR< L/2, the behavior of the
Bethe-Salpeter (BS) wave functionψ(~r) in the intervalR< |~r|< L/2 under the periodic boundary
conditions has sufficient information to relate the phase shift and the two-particle spectrum. The
Lüscher’s method bypasses the difficulty to treat the real-time scattering process on the Euclidean
lattice. Furthermore, it utilizes the finiteness of the lattice box effectively to extract the information
of the on-shell scattering matrix and the phase shift. This approach has been applied to the NN
scattering lengths in [8].

Recently, we have proposed a closely related but an alternative approach to the NN interac-
tions from lattice QCD [9, 10]. The starting point is the same BS wave functionψ(~r): Instead of
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looking at the wave function outside the range of the interaction, we consider the internal region
|~r| < R and define an energy-independent non-local potentialU(~r,~r ′) from ψ(~r) so that it obeys
the Schrödinger type equation in a finite box. SinceU(~r,~r ′) for strong interaction is localized in its
spatial coordinates due to confinement of quarks and gluons, the potential receives finite volume
effect only weakly in a large box. Therefore, onceU is determined and is appropriately extrap-
olated toL → ∞, one may simply use the Schrödinger equation in the infinite space to calculate
the scattering phase shifts and bound state spectra to compare with experimental data. Further ad-
vantage of utilizing the potential is that it would be a smooth function of the quark masses so that
it is relatively easy to handle. This is in sharp contrast to the the scattering length which shows
a singular behavior around the quark mass corresponding to the formation of the NN bound state
[11].

Since we consider the non-asymptotic region (|~r| < R) of the wave function, the resultant
potentialU and theT-matrix are off-shell. Therefore, they depend on the nucleon interpolating
operator adopted to define the BS wave function. This is in a sense an advantage, since one can
establish a one-to-one correspondence between the nucleon interpolating operator and the NN po-
tential in QCD, which is not attainable in phenomenological NN potentials. It also implies that
the NN potential on the lattice and the phenomenological NN potentials are equivalent only in the
sense that they give the same phase shifts, so that the comparison of their spatial structures should
be made only qualitatively.

3. Non-local potential from the BS wave function

Let us consider the following BS wave function for the 6-quark state with total energyW and
the total three-momentum~P =~0 in a finite box;Ψαβ (~r =~x−~y, t) = 〈vac|nβ (~y, t)pα(~x, t)|W,~P =
~0〉 ≡ ψαβ (~r)e−iWt. The local composite operators for the proton and the neutron are denoted by
pα(~x, t) andnβ (~y, t) with spinor indicesα andβ . The state|W,~P =~0〉 is a QCD eigenstate with
baryon number 2 and with the same quantum numbers as the pn system. One should keep in mind
that|W,~P=~0〉 is nota simple superposition of a product state|p〉⊗|n〉, since there are complicated
exchanges of quarks and gluons between the two composite particles.

The spatial extent of the NN interaction in QCD is short ranged and is exponentially sup-
pressed beyond the distanceR > 2 fm. Therefore, the spatial part of the BS wave function in
the “outer region" (r > R) satisfies the Helmholtz equation below the pion production threshold,
(∇2 + k2)ψαβ (~r) = 0, up to an exponentially small correction. Then we can define the non-local
potentialU from ψ andk2 measured on the lattice:

(E−H0)ψαβ ,E(~r) =
∫

Uαβ ;γδ (~r,~r ′)ψγδ ,E(~r ′)d3r ′, (3.1)

Uαβ ;γδ (~r,~r ′) = Vαβ ;γδ (~r,~v)δ (~r−~r ′), (3.2)

where~v(= ~p/µ = −i∇/µ) is the velocity operator. To make a formal resemblance with the
non-relativistic case, we have introduced the “effective center of mass energy",E = k2/(2µ) =
k2/mN and the “free Hamiltonian",H0 =−∇2/mN. By construction, the solution of Eq.(3.1) with
Uαβ ;γδ (~r,~r ′) extrapolated toL → ∞ reproduces the correct BS wave function in the asymptotic
region, and hence the phase shifts and binding energies of the two-nucleon system.
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The simplest interpolating operators for the nucleonN = (p,n) in terms of the quark field
q(x) would beNβ (x) = εabc(qa(x)Cγ5qb(x))qcβ (x), with a, b and c being color indices andC
being the charge conjugation matrix. Such a local operator is most convenient for relating the BS
wave function to the four-point Green’s function and the scattering observables atL→ ∞. Closely
related formulation was given long time ago by Nishijima, Zimmermann and Hagg who derived
the generalized reduction formula for local composite fields [12].

In principle, one may choose any composite operators with the same quantum numbers as the
nucleon to define the BS wave function. Different operators give different BS wave functions and
different NN potentials, although they lead to the same observables. This is quite analogous to the
situation in quantum mechanics where the unitary transformation of the wave function changes the
structure of the potential while the observables are not modified. A theoretical advantage of our
approach based on lattice QCD is that we can unambiguously trace the one-to-one correspondence
between the NN potential and the interpolating operator in QCD as we mentioned.

The general form of the non-local NN potentialU or equivalently the velocity dependent
NN potentialV in Eq.(3.2) in the two-component spinor space has been classified by Okubo and
Marshak [13]. The leading order (LO) and the next-leading-oder (NLO) terms of the the velocity
expansion ofV(~r,~v) reads [14]

V = VC(r)+VT(r)S12+VLS(r)L ·S+O(~v2), (3.3)

= V0(r)+Vσ (r)(σ1 ·σ2)+Vτ(r)(τ1 · τ2)+Vστ(r)(σ1 ·σ2)(τ1 · τ2)

+[VT0(r)+VTτ(r)(τ1 · τ2)]S12

+[VLS0(r)+VLSτ(r)(τ1 · τ2)]L ·S+O(~v2), (3.4)

whereVC andVT are LO (O(~v0)) terms, whileVLS is a NLO (O(~v)) term. On the lattice, it is rela-
tively unambiguous to extract information for the orbital angular momentum states` = 0,1,2,3 =
S,P,D,F using the irreducible representations of the cubic group [7]. Then, at most 16 independent
(14 diagonal and 2 off-diagonal) matrix elements of the potential are obtained, so that 8 unknown
LO and NLO terms in Eq.(3.4) can be extracted in two different ways.

4. Central and tensor forces from lattice QCD

To define the BS wave function on the lattice, we start from the four-point correlator,

Gαβ =
〈

vac
∣∣∣nβ (~y, t)pα(~x, t)J pn(t0;JP)

∣∣∣vac
〉
→ A0 ψαβ (~r;JP) e−E0(t−t0) (t À t0), (4.1)

whereA0 is anr-independent constant. The states created by the sourceJ pn have the conserved
quantum numbers,(J,Jz) (total angular momentum and its z-component) andP (parity). For study-
ing the nuclear force in theJP = 0+ (1S0) channel and theJP = 1+ (3S1 and3D1) channel, we adopt
a wall source with the Coulomb gauge fixing att = t0. The BS wave function in the orbital S-state
is defined with the projection operator for the orbital angular momentum (P(`)) and that for the spin
(P(s)) asψ(r;1S0) = P(`=0)P(s=0)ψ(~r;0+) andψ(r;3S1) = P(`=0)P(s=1)ψ(~r;1+).

The asymptotic momentumk for the S-states is obtained by fitting the BS wave function
ψ(~r) with the Green’s functionG(~r;k2) in a finite and periodic box satisfying(∇2 +k2)G(~r;k2) =
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−δlat(~r) with δlat(~r) being the periodic delta-function. The fits are performed outside the range of
the NN interaction determined by∇2ψ(~r)/ψ(~r) [15]. The NN scattering lengths for the S-states
can be deduced from the standard Lüscher’s formula [7].

In the LO of the velocity expansion, only the central potentialVC(r) and the tensor potential
VT(r) are relevant: The central potential acts separately on the S and D components, while the
tensor potential provides a coupling between these two. Therefore, we consider a coupled-channel
Schrödinger equation in theJP = 1+ channel [16]:

(
H0 +VC(r)+VT(r)S12

)
ψ(~r;1+) = Eψ(~r;1+). (4.2)

Projections to the S-wave and D-wave components are obtained asψαβ (r;3S1)≡P(`=0)ψαβ (~r;1+)
andψαβ (r;3D1) ≡ (1−P(`=0))ψαβ (~r;1+). In the LO of the velocity expansion, it is sometimes

useful to define the “effective" central potentialVeff
C (r) [9]: Veff

C (r) = E + 1
mN

∇2ψ(r)
ψ(r) . Note that

Veff
C (r) in the 3S1 channel contains the effect ofVT(r) implicitely as higher order effects through

the process such as3S1 →3 D1 →3 S1.

5. Numerical results in quenched QCD

In the quenched simulations, we employ the standard plaquette gauge action on a324 lat-
tice with the bare QCD coupling constantβ = 6/g2 = 5.7. The corresponding lattice spacing is
1/a = 1.44(2) GeV (a' 0.137 fm) determined from theρ meson mass in the chiral limit. The
physical size of our lattice then readsL ' 4.4 fm. We adopt the standard Wilson quark action
with the hopping parameterκ = 0.1640,0.1665,0.1678, which correspond tomπ ' 731,529,380
MeV, respectively. The periodic boundary condition is imposed on the quark fields along the spa-
tial direction, while the Dirichlet boundary condition is imposed in the temporal direction at the
time-slicet = 0. The wall source is placed on the time-slice att0/a≡ 5 with the Coulomb gauge
fixing at t = t0. The lowest effective c.m. energyE in the above setup ranges from−0.4 MeV to
−1 MeV. Note thatE for scattering states can be negative in a finite box.

5.1 Central and tensor forces in the3S1 channel

Shown in Fig.1 is the central potentialVC(r) and tensor potentialVT(r) together with effective
central potentialVeff

C (r) in the 3S1 channel obtained in the LO velocity expansion. In the real
world, Veff

C (r) is expected to acquire sufficient attraction from the tensor force. This is the reason
why bound deuteron exists in the3S1 channel while the bound dineutron does not exist in the1S0

channel. Now, we see from Fig.1 that the difference betweenVC(r) andVeff
C (r) is still small in our

quenched simulations due to relatively large quark masses.
The tensor potentialVT(r) in Fig. 1 shows that it is negative for the whole range ofr with a

minimum at short distance below0.5 fm. If the long range part of the tensor force is dominated
by the one-pion exchange as expected from the meson theory,VT(r) could be rather sensitive to
the change of the quark mass. As shown in Fig.2, it is indeed the case: Attraction ofVT(r) is
substantially enhanced as the quark mass decreases. For practical applications in nuclear physics,
it is more useful to parametrize the lattice results by known functions. We have tried such a fit
for VT(r) under the assumption of the one-ρ-exchange + one-pion-exchange with Gaussian form
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Figure 1: The central potentialVC(r) and the tensor potentialVT(r) obtained from theJP = 1+ BS wave
function atmπ = 529MeV.
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Figure 2: Quark mass dependence of tensor potential. The lines are the four-parameter fit using the one-ρ-
exchange + one-pion-exchange with Gaussian form factors.
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e−mρ r
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(mπ r)2

)
e−mπ r

r .
The results are shown by the solid lines in Fig.2.

5.2 Velocity dependence of the potential

So far we have considered the potential determined from the lattice data taken almost at zero
effective c.m. energyE ' 0 MeV. If the local potential determined from the other energies have
different spatial structure, it is an indication of the velocity dependent terms. Such a velocity
dependence has been recently studied by changing the spatial boundary condition of the quark field
from the periodic one to the anti-periodic one [17]: On a323×48 lattice with the lattice spacing
a = 0.137fm, 2000 gauge configurations are accumulated. The minimum momentum is given by
~pmin = (π,π,π)/(32a), which leads to|~pmin| ' 240MeV andE ' 50 MeV. In Fig.3, the central
NN potential for the1S0 state with APBC (E ' 50 MeV) is plotted as a function ofr at t/a = 9,
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Figure 3: The central NN potentials for the1S0 state with APBC (red bars) and PBC (blue crosses) in
quenched QCD att/a = 9.

together with the one with PBC (E ' 0). Fluctuations of the data with APBC at large distances
(r > 1.5 fm) are mainly caused by contaminations from excited states, together with statistical
noises. The potential atr < 1.5 fm, on the other hand, is less affected by such contamination. As
seen from Fig.3, the NN potentials are almost identical betweenE ' 0 andE ' 50MeV. Namely,
the non-locality of the potential with our choice of the interpolating operator is small and the LO
potentials shown in the present paper can be used in the energy region at least up toE ∼ 50 MeV
without significant modifications.

6. Numerical result in (2+1)-flavor QCD

To compare our results with empirical data, a key role is played by a full QCD calculation on
a large volume with a smaller quark mass. The PACS-CS collaboration is generating (2+1)-flavor
gauge configurations by employing the Iwasaki gauge action atβ = 1.90 on 323×64 lattice and
the O(a)-improved Wilson quark (clover) action with a non-perturbatively improved coefficient
cSW = 1.715 [18]. The lattice scale is determined bymπ , mK andmΩ, which leads toa' 0.091
fm. Thus, the spatial extension amounts toL ' 2.90 fm. The periodic boundary condition is
imposed along the spatial direction, while the Dirichlet boundary condition on the time-slicet = 32
is imposed along the temporal direction. The wall source on the time-slice is located att = 0 with
the Coulomb gauge fixing. Fig.4 shows the full QCD results of the central force formπ ' 702
MeV: VC(r;1S0) andVeff

C (r;3S1) are obtained from BS wave functions on the time-slicest = 8 and
t = 9, respectively, where the ground state saturations are achieved within error bars. Similar to the
quenched results, a repulsive core surrounded by an attractive well can be seen in full QCD.

7. Concluding remarks

We have discussed the basic notion of the nucleon-nucleon potential and its field-theoretical
derivation from the equal-time Bethe-Salpeter amplitude in QCD. By construction, the non-local
potential defined through the projection of the wave function to the interaction region (the inner
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Figure 4: Central and effective central potentials in (2+1)-flavor lattice QCD simulations withmπ = 702
MeV.

region) correctly reproduces the asymptotic form of the wave function in the region beyond the
range of the nuclear force (the outer region). Thus the observables such as the phase shifts and
the binding energies can be calculated after extrapolating the potential to the infinite volume limit.
Non-locality of the potential can be taken into account successively by making its velocity expan-
sion, which introduces the velocity-dependent local potentials. The leading order terms of such
velocity expansion are the central potential and the tensor potential, and the next-to-leading order
term is the spin-orbit potential.

As an exploratory study, we carried out quenched lattice QCD simulations of the two-nucleon
system in a spatial box of the size (4.4 fm)3 with the pion massmπ = 380,529,731 MeV. The
NN potential calculated on the lattice at low energy is found to have all the characteristic features
expected from the empirical NN potentials obtained from the experimental NN phase shifts, namely
the repulsive core surrounded by the attractive well for the central potential. As for the tensor
potential obtained by the coupled channel treatment of the3S1-state and the3D1-state, appreciable
attraction at long and medium distances is found. Phenomenological fit of the tensor potential
strongly suggests the existence of the one-pion-exchange in its long range part.

There are a number of directions to be investigated on the basis of our approach:

1. Determination of the velocity dependence is important in deriving the NN potentials useful
for the wide range of scattering energies. As mentioned in Sec.5.2, studies along this line
using the anti-periodic boundary condition in the spatial direction have been already started
[17].

2. To derive the realistic NN potentials on the lattice, it is necessary to carry out full QCD
simulations with dynamical quarks. As mentioned in Sec.6, studies along this line with
the use of the (2+1)-flavor QCD configurations generated by PACS-CS Collaboration are
currently under way [16].

3. The hyperon-nucleon (YN) and hyperon-hyperon (YY) potentials are essential for under-
standing the properties of hyper nuclei and the hyperonic matter inside the neutron stars.
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Recently, studies of the YN potential in quenched QCD [19] and in full QCD [20] have been
started.

4. The three-nucleon force is thought to play important roles in nuclear structures and in the
equation of state of high density matter [21]. Since the experimental information is scarce,
simulations of the three nucleons on the lattice may lead to the first principle determination
of the three-nucleon potential in the near future.
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