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1. Introduction

Almost two decades ago Weinberg proposed a way to extendibahyjral perturbation theory
to few-nucleon systems [1] in which chiral perturbationaheis applied to the effective potential,
defined as the sum of all possidienucleon irreducible diagrams, rather than to the scateri
amplitude. The amplitude is then generated by solving tlreesponding dynamical equation
such as the Lippmann-Schwinger (LS) equation in the twdemucsector. For recent reviews and
references the reader is referred to Refs. [3, 4, 5].

While phenomenologically successful, the consistency efniderg’s approach was ques-
tioned by several authors. The resulting nucleon-nuclédN) (potential is non-renormalizable
in the traditional sense, i.e. iterations of the LS equagienerate divergent terms with structures
which are not included in the original potential. Consedlyemenormalization of the Neumann
series resulting from iterating the LS equation requiretusion of contributions of infinitely many
higher-order short-range operators in the potential (&terms). The freedom in the choice of the
finite parts of counterterms is compensated by the runnirtgeoforresponding renormalized cou-
pling constants. Notice that the above mentioned comjiicatcan be avoided if pion-exchange
contributions to the potential are treated perturbatiyély7]. The resulting perturbative expan-
sion for the scattering amplitude was found not to conveggenficleon momenta of the order of
the pion mass at least in certain spin-triplet channels 48¢ however Ref. [9], yielding strong
evidence that pion-exchange contributions have to beeeabn-perturbatively [10, 11]. This
is in line with phenomenological successes of Weinbergjgr@gch which treats pion exchange
contributions nonperturbatively. In particular, the madivanced analyses of the NN system at
next-to-next-to-next-to-leading order in the Weinbemg@&ver counting scheme demonstrate the
ability to accurately describe NN scattering data up toeeof-mass momenta at least of the order
~ 2Mp [12, 13]. It is important to emphasize that these studiescarged out within the cutoff
EFT along the lines of Lepage [14, 15] who argued that thefcpgmameter\ in such calculations
should be taken of the order of the relevant hard large scale as e.g. the mass of tpemeson,
see also Refs. [16, 17, 13, 18, 19]. The fairly narrow rangeutdffs A = 450...600 MeV used
in Refs. [12, 13] was criticized in [20] where low NN partiabwes were considered based on the
one-pion exchange potential and contact interactions @y a much larger range of cutoffs with
N\ < 4 GeV. Furthermore, several groups are exploring the piissitA manifestly nonperturbative
renormalization of the LS equation by taking the limit— o, see e. g. [21, 22, 23, 24, 25, 26].
In addition, some authors advocate various kinds of mixedquture by treating certain contribu-
tions to the potential and/or high partial waves in perttidmatheory, see [20, 25]. Finally, using
renormalization-group methods to set up power countingsrfibr NN interaction is explored in
[27].

The purpose of this manuscript is to clarify some concepsgles related to renormaliza-
tion and the role of the cutoff in the context of EFT for the twacleon system. We first discuss
the meaning of low-energy theorems (LETS) for subthrespaldmeters using general arguments
based on the analytic structure of the scattering amplitdeargue that LETs provide an impor-
tant and nontrivial test of long-range physics and thus rnesespected in EFT with explicit pions,
see also [11]. We then consider effective field theory (E6F)ah exactly solvable model for two
nucleons interacting via the longy ¢~ my ) and short-ranger{ ~ mg* < m*) forces which can
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be regarded as a toy model for chiral EFT [28]. We employ thenldégg-like (or, more precisely,
Lepage-like [14]) formulation with a finite cutofi and demonstrate the validity of the LETs as
long as it is chosen of the ordér~ ms. Taking the limitA — o is shown to yield a finite result for
the amplitude but leads to breakdown of LETs. This procediyrtherefore, not compatible with
the EFT framework. We argue thatshould not be taken (considerably) larger than the shadea
scalemg in the problem.

2. Low-energy theorems and the modified effective range expaion

Consider two non-relativistic nucleons interacting via tbcal potentiaM. The ordinary
effective range function
R (K%) =k?cotd (k) (2.1)

with k, I andd (k) denoting the CMS scattering momentum, orbital angular mmuome and phase
shift, respectively, is well known to be a real meromorphindtion ofk? near the origin for local
non-singular potentials of a finite range [29, 30]. It carréiore, be Taylor-expanded leading to
the well-known effective range expansion (ERE)

1 1
A(K) =~ 2k vk vk (2.2)

with a, r andv; being the scattering length, effective range and the dedcahape parameters.
Generally, the radius of convergence of the ERE is boundasd &ibove by the lowest left-hand
singularity associated with the potential. For example Yiakawa-type potentials corresponding
to exchange of a meson of madsthe maximal radius of convergence of the ERE is givek?y
M?/4. For nucleon-nucleon interaction, the ERE is, thereferpected to converge for energies
up to Ejgp ~ M2/(2m) = 105 MeV, wherem denotes the nucleon mass. Notice that pionless
EFT in the two-nucleon sector in the absence of externalcesus equivalent to ERE since both
approaches provide an expansion of the amplitude in povided\y,, have the same validity range
and incorporate the same physical principles.

The framework of ERE can be generalized to the case in whiepakential is given by a sum
of a long-ranger( ~ m(l) and short-ranger{ ~ ng! < m(l) potentialsVi andVs, respectively.
Following van Haeringen and Kok [31], one can define the mediéffective range functiofM

via
21+1

TR
whered" (k) and f\-(k) refer to the phase shift and Jost function associated wéptitentialv
and the quantityM-(k) can be computed from the Jost solutifn(k,r) associated with/, see
[31] for more details and precise definitions. The funcﬂﬁM(kz) reduces, per construction, to
R (k%) for V. = 0 and is a real meromorphic function in a much larger regioergiby 1/rs as
compared tar (k%) since the lowest left-hand singularity due\p is removed fromRM (k?).1
It is, therefore, natural to assume that the coefficienthénrhodified effective range expansion
(MERE), i.e. the Taylor expansion chl'\"(kz) near the origin, are driven by the hard scalg

R (k) = M (k) + cotfd (k) — 3" ()], (2.3)

1The existence o (k) implies certain constraints on the smatehavior ofvy (r).
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(except for the modified scattering length), see [32] forlateel discussion. The meaning of the
LETs becomes evident if one uses Eq. (2.3) to express theasydeffective range functioR (k?)

in terms of the modified oner™(k?), and the quantities which are calculable solely from the
long-range interactiol,. The MERE forF,'V'(kz) then yields an expansion of the subthreshold
parameters entering Eqg. (2.2) in powersmf/ms. In particular, using the first few terms in the
MERE as input allows to make predictions falt coefficients in the ERE. We further emphasize
that the appearance of the correlations between the sshtiidegparameters in the above-mentioned
sense is the only signature of the long-range interactiéowaenergy.

3. Toy model

We now consider two nucleons in the spin-singlet S-wavedating via the two-range sepa-
rable potential

V(b #) = WR(R() H R (P, Rl = VTR RBI= ot @)

where the massay andm fulfill the conditionmy < ms. Further, the dimensionless quantities
andvs denote the strengths of the long- and short-range intereg;trespectively. The choice of the
explicit form of F s(p) is entirely motivated by the simplicity of calculations [28he coefficients

in the ERE generally scale with the mass corresponding ttotigerange interaction which gives
rise to the first left-hand cut in the T-matrix. Notice tha¢ thcattering length can be tuned to any
value by adjusting the strength of the interaction. Thefanehts in the ERE can be expanded in
powers ofm /ms leading to the “chiral” expansion:

1
a= —( §°)+a§1)ﬂ+a§2)ﬁ+...>,
m ms

mg
1/ ©, mm " )
r=—(a 4+’ =40 —=+... ),
m( r r me r mg
1
v (a0 ol 40Py ), 32)

wherea§m>, ar(m) anda\gim) are dimensionless constants whose values are determirtbd gecific
form of the interaction potential. We fine tune the strengtttbe long- and short-range interactions
in such a way that they generate scattering lengths of aalatze. More precisely, we require that
the scattering length takes the valie- a;/m (a= as/ms) with a dimensionless constajat; | ~ 1
(Jas| ~ 1) when the short-range (long-range) interaction is sweiticdff. This leads to

B 8mmay v 4TIMs Qs

m(ayme +méa; —2m2) = ° m(as—1)°
One then finds the following expressions for the first thremsein the “chiral” expansion of the
scattering length

(3.3)

V| =

0) _ 1)

a=a, o’ =(m-1%s, o = (o120, (3.4)
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Figure 1: Leading, next-to-leading and next-to-next-to-leadindgorcontributions to the scattering ampli-
tude in the KSW-like approach. The solid lines denote nudashile the dashed ones represent an insertion
of the lowest-order (i.e0(q1)) long-range interaction. Solid dots (dotted lines) derasténsertion of the
lowest-order contact interactidhCy (subleading orde#(q) contribution to the long-range interaction).

and effective range

o _ 30—4 1 2(a—1)(3a1—4)as
ar = = ) ar = > s
aj q
—1)(3a1 —4) (501 —3) a2+ (2— 2
of? = (=D =050 -3 ot 2= a1)of 5)
|

Notice that in the model considered the leading terms innthens-expansion of the ERE coef-
ficients are completely fixed by the long-range interactidhe scenario realized corresponds to
a strong (at momenta~ m) long-range interaction which needs to be treated nonigatively
and a weak short-range interaction which can be taken irdowndt perturbatively. This particular
hierarchy is not important for our purposes.

At momenta of the ordek < my, the details of the short-range interaction cannot be vesol
An EFT description emerges by keeping the long-range iatiera and replacing the short-range
one by a series of contact terigon(p, p') = Co+ Ca(p? + p’z) +.... Renormalization prescrip-
tion plays an important role in organizing the EFT expansidfke first consider the most convenient
and elegant KSW-like formulation based on the subtractv®rmmalization which respects dimen-
sional power counting at the level of diagrams. The soft aandl lscales in the problem are given
by q={k, u, m} andA = {ms, m}, respectively. Herg: ~ my denotes the subtraction point. The
contributions to the amplitude up to next-to-next-to-iegdorder (NNLO) in theg/A-expansion
are visualized in Fig. 1 and can be easily verified using ndisgensional analysis. Notice that
the natural size of the short-range effects in our model ssiggthe scaling of the short-range in-
teractions in agreement with the naive dimensional arglysi.Co, ~ q°. At NNLO, the linearly
divergent integral occurs which is treated in the followingy

A 12dl 1 mA  mk mu . mk
9= - 7 -1 subtr_ _ MK . MK
The effective range function at NNLO is given by the perttikmaexpansion
am 1 TO TO N2 TO _
keoto = T mTED [1_ T T (T(l)> - T(l)} + ik, (3.7)
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where explicit expressions for the amplitudeés™?, T(® and T® are given in [28]. Theu-
dependence of the renormalized low-energy constant (LE&QG)) is determined by the renor-

malization group equation

d

— 7Y 70O @] =

i [T FTO 4T } 0. (3.8)
One needs two observables to fix the integration constarttseimbove equation fdZy(u), see

Ref. [28] for more details which we choose to &g’ andal? 2 This leads to

_4mos  8uaZ

2
Co(H) g (@), (39)
and the following prediction for the effective range
130 -4 2(a)—1)(3a—4)as (a1 —1) (31 —4) (5a1 —3) a2+ (2— ay) o
r=— + +
mi a agms " aPme m
4um (ay — 1) (3a; — 4) a2 (rmm (3—5a)) + 4ua)) 4
- % . 3.10
r2aime +0 () (3.10)

As expected, the first three terms in the “chiral” expansiérr and shape parametevs see
Ref. [28], are correctly reproduced at NNLO being protedigdhe LETSs introduced in the previ-
ous section. The knowledge afj') for one particulax; is sufficient to predicuﬂ) forall k # j.

An EFT formulation like the one described above which retpwe manifest power counting
at every stage of the calculation is not available in thaggalcase of nucleon-nucleon interaction.
Here, one lacks a regularization prescription &irdivergent integrals resulting from iterations
of the potential in the LS equation which would keep regaktion artefacts small without, at
the same time, introducing a new hard scale in the problenthdrcontext of pionful EFT for
few-nucleon systems, the divergent integrals are usualtdvith by introducing an UV cutoff
A\, which has to be taken of the ordAr~ ms or higher in order to keep regularization artefacts
small. Clearly, cutoff-regularized diagrams do not obemealisional power counting anymore.
Renormalizatioris carried out in this Weinberg-like framework by adjustifig bare LECE; to
low-energy observables at a given valueoivhich then allows to eliminate the bare LECs in all
other quantities of physical interekt.

To be specific, consider the effective potential at nexesaming order in the Weinberg-like
approach as depicted in Fig. 2

Ver(p, B) =i R (P)R(p) +Co. (3.12)

In addition to the divergent integr&]®® in Eq. (3.6), iteration of the above potential in the LS
equation leads to another divergent integral

reg A 12dl V12 +mg Vik+mg  (k+ K+ me
159 = amm [ _ SN VAR I
o (2m3[k2—12+ig][l2+n¢]  2m [ KR+ ms
S imky/k2 +
- %Hn(ﬁ)— . ) oY), (3.12)
2(k2+np) 2N 2(kR+mp)
2|n the considered model, the leading terms in the “chirafiamsion of the subthreshold parameters are driven by

the long-range interaction alone and are, of course, diyneproduced at ordeﬁ(q“”) which is parameter free.
3Notice that the resulting nonlinear equations{6r} do not necessarily possess real solutions for all valugés of
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Figure 2: Effective potential and scattering amplitude in the Wengbléke approach. The dashed-dotted
line refers to the full long-range interaction. Solid dotlditied rectangle refer to the leading and subleading
contact interactions, respectively. For remaining notatiee Fig. 1.

'}
i B

wheres= (2 m — m,z/ms> arccot(m/, /mg — m,z) Neglecting, for the sake of simplicity, the

finite cutoff artefacts represented by ti&A~1)-terms in Egs. (3.6) and (3.12) and performing
straightforward calculations, one obtains for the scattelength:

_ s {Com 20y (Ms(A—sm) +2n¥In(ms/2A)) + rmims] + 4o ms}
m {2nmg (ComA + 272) — Commay [sms— 2m |n(ms/2/\)]2}

an (3.13)

Renormalization is carried out by matching the above esmwasto the value of the scattering
length in the model (to be regarded as a data),

m (2a; — 1) as— oymg
m (Mo as — M)

and expressin@o(/A\) in terms ofaunderlying A Straightforward calculation yields the following
renormalizedexpression for the effective range:

Aunderlying = ) (3.14)

1 [3a—4 2(a—1)(3a1—4)as 4(a—2)as ms
“Ewmla " wm, <W (n3n+1)
(a1 —1) (301 —4) (501 — 3) a2+ (2— o) af 3
+ o >mz+ﬁ(m)]. (3.15)

In agreement with the LETs discussed above, one observatésubleading terms in the “chiral”
expansion of (andv;, see [28]) are correctly reproduced ori&gis appropriately tuned. The sub-
subleading and higher-order terms in the “chiral” expamsifr andv; are not reproduced correctly
being not protected by the LETs at the considered order. dere since the included LEC is
insufficient to absorb all divergencies arising from itemas of the LS equation, nothing prevents
the appearance of positive powers or logarithms of the tutdh the expressions fcmr(zz). The
results in Eq. (3.15) show that this is indeed the case. Therdience o\ occurs, however, only
in contributions beyond the accuracy of calculation andjalsly, does not affect the predictive
power of the EFT as long as the cutoff is chosen to be of ther afttbe characteristic hard scale in
the problemA ~ mg. Taking values\ > m artificially enhances certain higher-order contributions
in the “chiral” expansion of the ERE coefficients spoiling tbredictive power of the theory.

The appearance of positive powers/pfand/or logarithmic terms in the predicted “chiral”
expansion of the subthreshold parameters, see Eq. (3.8%)give the wrong impression that no
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finite limit exists forrp and(vi)a as/A — . In fact, taking the limitA — co does not commute with
the Taylor expansion of the ERE coefficients in powersoflt is easy to see, that all coefficients
in the ERE as well as the on-shell T-matrix stay finite/as+ «. In particular, one obtains the
following infinite-cutoff prediction for the effective rge:

1[3m—4 4(a—12as_ o (8a2—1)+a?(2—20a2) + 16aia2 — 4a?

fo = — + m + Sm|2+...],

ne o e (3.16)

where ellipses refer t&7 (m?)-terms. One observes that the results after removing thef datl
to reproduce the low-energy theorem by yielding wrong valioe ar(1>, which also holds true for

0!\5}) [28] (notice that, per construction, the scattering lengttill correctly reproduced).

4. Discussion and conclusions

The breakdown of LETs in the Weinberg-like approach inhe> o limit can be traced back
to spuriousA-dependent contributions still appearing in expressiamsobservables after renor-
malization is carried out, see e.g. Eq. (3.15), which aedéuant (at the order of calculations) in
the regime/\ ~ mg but become numerically dominant/if > ms. Due to non-renormalizability of
the effective potential as discussed in the introductiochsspurious terms do, in general, involve
logarithms and positive powers Afwhich, as/\ gets increased beyond the hard sealgbecome,
at some point, comparable in size with lower-order term&ien“thiral” expansion. For example,
the appearance of terms linearirwould suggest the breakdown of LETs as the cutoff approaches
the scaleA ~ mé/my. The unavoidable appearance of ever higher power-law givees when
going to higher orders in the EFT expansion implies that thteft should not be increased be-
yond the pertinent hard scale in Weinberg-like or Lepake-tipproach to NN scattering leading
to A ~ ms as the optimal choicé. It is furthermore instructive to compare the predictionstfee
effective range in Egs. (3.10) and (3.15) correspondingvtodifferent renormalization schemes.
One observes that taking>> mg in EqQ. (3.15) has an effect which is qualitatively similactmos-
ing 1 > m in Eq. (3.10) and corresponds to an improper choice of realization conditions in
the EFT framework.

The work of E.E. was supported by funds provided by the Heltal#ssociation (grants VH-
NG-222 and VH-VI-231), by the DFG SFB/TR 16 and by the EU Had}oysics2 project “Study
of strongly interacting matter”. J.G. acknowledges thepsupof the DFG (SFB 443) and Georgian
National Foundation grant GNSF/ST08/4-400. We also thaekorganizers of Chiral Dynamics
2009 for making this exciting conference possible.

References

[1] S. Weinberg, Phys. Lett. B51, 288 (1990); Nucl. Phy$8363 3 (1991).
[2] C. Ordonez and U. van Kolck, Phys. Lett.Z291, 459 (1992).

4These conclusions are, of course, not relevant for the @oidsboson and single-baryon sectors, where observ-
ables are calculated perturbatively aadtdUV divergencies can be absorbed by the corresponding cdentes at any
order in the chiral expansion. In such a case, it is safe ® ttadk limit A — co.



EFT for Nuclear Forces E. Epelbaum

[3] P. F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. 52j.339 (2002).
[4] E. Epelbaum, Prog. Part. Nucl. Ph{¥, 654 (2006).

[5] E. Epelbaum, H. W. Hammer and U.-G. Meif3ner, arXiv:08BB8 [nucl-th], Rev. Mod. Phys. to
appear.

[6] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Letd B}, 390 (1998); Nucl. Phy$3534, 329
(1998).

[7] M. J. Savage, arXiv:nucl-th/9804034.
[8] S. Fleming, T. Mehen, and I. W. Stewart, Nucl. Ph&&77, 313 (2000).
[9] S. R. Beane, D. B. Kaplan and A. Vuorinen, arXiv:0812.893ucl-th].
[10] J. Gegelia, arXiv:nucl-th/9806028; Phys. Lett4B3 133 (1999).
[11] T.D. Cohenand J. M. Hansen, Phys. Reb%:13 (1999); Phys. Rev. 689, 3047 (1999).
[12] D. R. Entem and R. Machleidt, Phys. Rev6g, 041001 (2003).
[13] E. Epelbaum, W. Gléckle and U.-G. MeiR3ner, Nucl. Phys4%, 362 (2005).
[14] G.P. Lepage, arXiv:nucl-th/9706029.

[15] G.P. Lepagetiow to renormalize the Schrédinger equatitaik given at the INT program Effective
Field Theories and Effective Interactions, INT, SeattlSA) June 25-August 2, 2000.

[16] J. Gegelia, Phys. Lett. B29, 227 (1998); J. Phys. @5, 1681 (1999).

[17] T. S. Park, K. Kubodera, D. P. Min, and M. Rho, Nucl. Ph4646, 83 (1999).

[18] J. Gegelia and S. Scherer, Int. J. Mod. Phy21A1079 (2006).

[19] E. Epelbaum and U. -G. Meil3ner, arXiv:nucl-th/0609037

[20] A.Nogga, R. G. E. Timmermans, and U. van Kolck, Phys..iRe¥2, 054006 (2005).
[21] T. Frederico, V. S. Timoteo and L. Tomio, Nucl. Phys6B83, 209 (1999).

[22] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Let6&), 149 (2004); Phys. Rev. ©0, 044006
(2004); Phys. Rev. @2, 054002 (2005); Phys. Rev. 3, 054001 (2006); Phys. Rev. &, 064004
(2006) [Erratum-ibid. (75, 059905 (2007)]; arXiv:0809.3186 [nucl-th].

[23] V. S. Timoteo, T. Frederico, A. Delfino and L. Tomio, Phistt. B621, 109 (2005).
[24] D. R. Entemet al, Phys. Rev. @7, 044006 (2008).
[25] B. Long and U. van Kolck, Annals Phy323 1304 (2008).

[26] C. J. Yang, C. Elster and D. R. Phillips, Phys. RevC014002 (2008); Phys. Rev.&D, 034002
(2009); arXiv:0905.4943 [nucl-th].

[27] M. C. Birse and J. A. McGovern, Phys. Rev7GQ, 054002 (2004); T. Barford and M. C. Birse, Phys.
Rev. C67, 064006 (2003); M. C. Birse, Phys. Rev.7@, 014003 (2006); M. C. Birse, contribution to
these proceedings.

[28] E. Epelbaum and J. Gegelia, Eur. Phys. 41A341 (2009).

[29] J. M. Blatt and J. D. Jackson, Phys. Rég, 18 (1949).

[30] H. A. Bethe, Phys. Rev6, 38 (1949).

[31] H. van Haeringen and L. P. Kok, Phys. Rev28, 1218 (1982).

[32] J. V. Steele and R. J. Furnstahl, Nucl. Phy$3Y, 46 (1998); Nucl. Phys. A£45 439 (1999).



