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Chiral low-energy couplings from lattice computations in the epsilon regime

1. Introduction

Lattice QCD simulations with light quarks are now approaching the domain of validity of the
chiral effective theory. The matching of the lattice results with the effective theory predictions
provides a determination of the Low Energy Couplings (LECs) from first principles. Many results
have been presented in the past months for the leading order (LO) and next-to-leading order (NLO)
couplings, both for thé&\; = 2 andN; = 3 effective theory (se€l] for a recent review). The main
issue in this context is the control over the systematic uncertainties, namely the discretization er-
rors, renormalization uncertainties, finite volume effects, the neglected higher order contributions
in the chiral effective theory. For this reason, it is very useful to extract the LECs from a large set
of observables and from different kinematical regimes: this will serve as a valuable cross-check
between lattice determinations and will help to get a comprehensive picture of low-energy proper-
ties of QCD.

An interesting approach is to investigate QCD in a finite volime L3T in the so-called-regime

[2, 3], where the chiral limit is approached by keeping= mxV < O(1), with m the quark mass

andZ the chiral condensate. This corresponds to the “unphysical” situation where the pion wave-
length is larger than the size of the bd¥;L < 1. The peculiar feature of this setup is that the
pion zero-modes contribution becomes non-perturbative and must be treated exactly. This implies
a reorganization of the chiral expansion, such that volume effects are enhanced (polynomial) while
mass effects are suppressed with respect to the usual infinite-volume casee@me, where

M,L > 1). For this reason, at a given order in the perturbative expansion, less LECs will appear:
predictions are less “contaminated” by higher order unknown couplings, makiragrétggme po-
tentially convenient for the determination of the LO consta&nendz.

The power counting adopted in tlheexpansion is the following:

m~et L 1T lre (1.1)
The LO Euclidean chiral Lagrangian fbl; degenerate flavors of massis written as usual

2
2= %Tr(a“u UT)— %Tr(UT +U). (1.2)

The pseudo Nambu-Goldstone boson flélé SU(N¢) is parametrized as

U = Voexp( 26 ). (13)

whereUg represents the collective zero-mode, and the non-zero nipdesstill treated in pertur-
bation theory, with ~ . Then the LO partition function is given by

7 = sumf)[dUO] / [dé‘]exp{; /V d4xTr(8u§au§)+gTr(Uo+UJ)}. (1.4)

In the e-regime, topology plays a relevant rolg:[ by introducing a®@ vacuum and Fourier trans-
forming, one can define the partition function at fixed values of the topological clarge

%- [ ,[dUe(deto)” /[dé]eXp{; / d“xTr(&ué&uéH’;Tr(Uo+UJ>}- (1.5)
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From the partition function one can immediately obtain the quark condensate

0%
b3 = —_ = ~3u. 1.6
As expectedy(u) — O for u — 0, since there is no spontaneous symmetry breaking in a finite box.
Nevertheless, in the-regime one can extract informations about spontaneous symmetry breaking

in infinite volume by means of a finite-size scaling.

2. Lattice QCD in the epsilon regime

Lattice simulations in the-regime are challenging, since one still needs a fairly large volume
(L > 1/(4nF)), while the quark mass must be very smaitly < 1). This fact strongly influ-
ences the choice of the lattice action to be used. Ginsparg-Wilson (GW) fernsioar® [the best
choice from the theoretical point of view, since they guarantee exact chiral symmetry at finite lat-
tice spacing §]. The Dirac spectrum is bounded from below, and arbitrarily small quark masses
are then accessible in numerical simulations. Moreover, the topological charge has a natural defi-
nition through the index theorem: this means that one can perform simulations at fixed topological
charge and match the lattice results with the corresponding predictions of the chiral effective the-
ory for each topological sector. The most adopted implementations of Dirac operators satisfying
the GW relation are the Neuberger Dirac operai@r Pomain Wall Dirac operator with infinite
fifth dimension B], the fixed-point Dirac operatof]. The price to pay to maintain continuum-like
chiral symmetry is the high computational cost. While a large number of quenched simulations has
been performed using various implementations of the GW fermib®d.[L, 12, 13, 14, 15, 16, 17],
dynamical simulations are still very challenging.

The possibility of simulating Wilson fermions in theeregime has not been considered for a
long time: since chiral symmetry is explicitly broken at finite lattice spacing by the Wilson term, the
spectral gap is not bounded from below, which makes the simulation of the small quark mass region
rather problematic. At small quark masses the probability distribution of the gap can approach zero
values, leading to possible integration instabilities and sampling inefficiencies in the algorithm.
In [18, 19 the empirical stability boundn > myin, with mmin 0 a/v/V has been established. A
possible solution to this problem comes from a reweighting technigtie($ee also 21]). This
method has been applied 87 to simulate Wilson fermions in the-regime. Lattice simulations
in the e-regime are feasible also with Wilson Twisted Mass fermions, as present2d 2v].

Another consequence of the explicit breaking of chiral symmetry with Wilson-like fermions is that
an exact definition for the topological charge does not exist at nonzero lattice spacing. Lattice
results nevertheless can be matched with ChPT predictions where the sum over all topological
sectors has been performed.

2.1 Matching lattice QCD with the chiral effective theory

When matching lattice results with the chiral effective theory, one should ideally first perform a
continuum extrapolation in order to eliminate lattice artifacts. Since this is still not always feasible,
an alternative is to incorporate discretization effects in the chiral effective theory by using the
Symanzik approact2p].
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From this point of view, the advantage of using GW fermions appears again: due to exact
chiral symmetry at finite lattice spacing, lattice results are described by continuum chiral effective
theory. The only effect of the descretization would be>4a?) dependence of the LECs extracted
from the matching-.

For Wilson-like fermions the situation is different: there will be new LECs associated to op-
erators describing the lattice artifacts. This has been formulated systematically for pure Wilson
fermions (WChPT) and Wilson Twisted Mass fermio2$§,[27, 28]. This framework has been
recently extended also to tlee expansion?9, 30]. In the Wilson lattice formulation, lattice effects
contribute to the explicit breaking of the chiral symmetry: the important issue is the relative power
counting between the quark mass and the lattice spacitighas been observed that in the region
m ~ a/\éCD (called GSM regime, witla ~ O(&%)), the explicit breaking of the chiral symmetry
is still dominated by the quark mass, and for meson two-point functions lattice effects show up
only at NNLO. On the other hand, whem~ a®/\}, (Aoki regime,a ~ O(&?)) lattice effects con-
tribute already at LO, leading to substantial changes of the continuum behavior. One can moreover
define an intermediate regime, called GSMorresponding to the power counting~ a“/:"'/\?/3
(a~ O(e%)), where lattice artifacts appear at NLO. When simulating lattice QCD |m{r&g|me
with Wilson-like fermions, it is important to stay in the GSM-GSkégion, where lattice artifacts
are suppressed: the small quark mass region must be approached by keeping also a small lattice
spacing. This is an issue which can be addressed only a posteriori by analyzing lattice data using
WChPT as a guidance.

3. Results

3.1 LECs from spectral observables

The link between the spectrum of the QCD Dirac operator and the spontaneous breaking of
chiral symmetry is provided by the Banks-Casher relatiit), [

Z

lim lim lim p(A,m 3.1
A—0m—0V *>°°p( ) 717 ( )

Herep (A, m) represents the spectral density associated to the Euclidean massless Dirac operator,

with imaginary eigenvalue§iy)

i O(A —A)). (3.2)

The spectral density can be computed within the chiral perturbation thegr$3, 34]. At LO in

the e-expansion, one can show that the partition function Ecp) @t fixed topology is equivalent

to the one of a Chiral Random Matrix Theory (RMBH 36, 37]. It follows that RMT reproduces

the same spectral density in terms of dimensionless varidbiestZV, u = mxV (microscopic
spectral density). While the chiral effective theory does not contain any information about the
single eigenvalues, the advantage of this equivalence comes from the fact that with RMT one can
extract the probability distributions of single eigenvalygély, 1) [38, 39]. This means that the

LAdditional operators related to the breaking of Euclidean symmetry can appear, but only at very high order.
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low-lying spectrum of the Dirac operatddy)°“P(m) can be matched with the RMT expectation
values

(6™ (1) = / dpr(Gi 1) G (3.3)

in order to extract the chiral condensateln particular, one matches
(A P2V = (™M (3.4)

Moreover, ratios of eigenvalues are parameter-free predictions which can be compared directly
with lattice QCD results in order to check to which extent is RMT reproduced. Previous quenched
studies with Neuberger fermiong(] observed a good agreement of the ratios involving lowest
eigenvalues for lattice extents> 1.5 fm.

This technique to extrad has been adopted by many authors, using different implementations
of GW fermions. DeGrand and collaboratorsl] used NeubergeN; = 2 Dirac operator, with
a~0.15 fm,L ~ 1.5 fm, mxV ~ 2 -5 and topology fixed tov = 0,1. They obtain the chiral
condensat&EMS(2 GeV) = (282(10) MeV)3.

JLQCD/TWQCD j2] also usedN; = 2 Neuberger fermions, on a lattice wih~ 0.11 fm,L ~ 1.78

fm and with a quark mass correspondingite- mxV ~ 0.556. They fixed the topology te = 0.

As final result for the quark condensate they qud{e(2 GeV) = (251(7)(11) MeV)3. The first er-

ror is statistical, the second represents a systematic uncertainty, estimated by assuming that higher
order corrections are the same as in the chiral effective theory.

P. Hasenfratet al[43] implemented théN; = 2+ 1 parametrized fixed-point Dirac operator which
satisfies the GW relation approximately. They adopted a lattice avith0.13 fm, L ~ 1.6 fm,

myq2V ~ 1.4 andms2V ~ 12.3; the topological charge was fixed to= 0,1,2. For the 2-flavor
condensate they obtaineéS(2 GeV) = (239(11) MeV)3; this result is already corrected for
higher order finite-size effects estimated through the chiral effective theory.

The RMT framework can be extended by adding an imaginary chemical potential, such that
the spectrum of the Dirac operator is sensitive also to the pseudoscalar decay cerestd®
[44]. This strategy has been adopted by DeGrand and collabordtgjrs/ielding zm(z GeV) =
(234(4) MeV)? andF = 84(5) MeV from a lattice witha~ 0.13 fm,L ~ 1.6 fm andu ~ 4.4.

The problematic point of this approach is that while higher order finite-size corrections can be
computed within the chiral effective theory, this is not possible in the framework of RMT. This
means that systematic errors byF might be difficult to quantify.

In another recent worklfp] it is shown that the quark condensate can be extracted from suitable
(renormalizable) spectral observables, for instance the number of Dirac operator modes contained
in a given interval. The technique has been used on Wilson lattice QCD mitbgime, but could
be investigated also in treregime. The advantage of this method is that those observables can be
computed in the chiral effective theory: higher order corrections can be computed and systematic
effects of the extracted LECs can be estimated.

In relation to this, in §7] the quark condensate and the spectral density of the Dirac operator
at fixed topological charge have been computed in the chiral effective theory by using a technique
which is able to smoothly connept ande- regimes. S. Hashimoto presented at this conference
preliminary lattice results for the spectral density obtained by the JLQCD/TWQCDNwih2+1
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(Neuberger fermionsyg]. Through the matching with the NLO predictions &f7], the LECsZ,
F andLg are extracted.

3.2 LECs from two-point meson correlators

Meson two-point functions in the-expansion have been computed for the first time by Hansen
[49] at NNLO. Here we report as example the pseudoscalar density and axial current time corre-
lators at NLO, which is usually the level adopted in the matching with lattice results. For the full
dynamical case, NLO correlators have the general form

CB() = [ &P P(0)) = 6™ fap + behs(t/T)], (3.5)
CRD) = [ dRAGX0AB(0)) = 6% [an-+ baM(t/T)). (3.6)
with a parabolic time dependence given by the function
2
()= [(m—;) —112] (3.7)

The coefficientsapa, bpa Will in general contain non-perturbative integrals over the zero modes,
and will be functions only of the volume and the LO LEEsindF. In particular, forNs = 2 one
obtains, after performing the integrals and summing over all topological sectors

L34 12(2uer) T < B 1|2(2M)> (3.8)
B Heft Il(z,ueff)7 P 2F2 wli(2u) ’ )
F2 12(2utef) ) 2B < 12(2u) > 2T koo 12(21)
=——=(1- - 1- + , 3.9
WS ( terli2en)  TW A\ wh@w) TV ey G0
2T Ip(2u)
bp = —— . 3.10
ATV () (310
We have introducegies = M2V, WhereZe is the one-loop chiral condensatg [
_ 3 B

B1 andkgp are so-called shape coefficients, and depend only on the geometry of theChox [
Meson correlators at NLO in the-expansion have been computed also in the quenched or
partially quenched case, and in fixed topology sectd#ds $1, 52]. In [53] the so-calledmixed
regimehas been considered, where some quarks are igrtegime and others are in tigeregime.
In [30, 29], O(&?) effects have been computed in WChPT at NLO in the G&&dgime forNs =
2. They are parametrized by an extra LECwhich is discretization-dependent, and contribute to
the constant termapa in Egs. @.8, 3.9),

L332A F2A
2= P, Bae=aatpT (3.12)
where
A, — AR213(2f1) — 1111 2(2f1)12(2f1) + 2(3— 2fi%)11(2f)13(2f1) + 5fil3(21)
o= ) (3.13)

2/312(210)1(20)
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Figure 1: Left side: time dependence of the pseudoscalar correlator computefi4by Right side:
pseudoscalar and axial correlators computed2i, [for L ~ 2.8 fm and two quark mass valueg &
0.128150.128125, corresponding o~ 2.1,2.7). Here the axial vector correlator is multiplied by a factor
50 for better visibility.

We have introduce@l = mpcacZV and the dimensionless parameper F2c,a2V. In the contin-
uum part, the replacement— mpcac (1 — ji) is understood.

JLQCD computed the scalar, pseudoscalar, vector and axial-vector correlators using Neu-
berger fermionsNt = 2, a~ 0.11 fm, L ~ 1.78 fm, u ~ 0.556 and topologw = 0 [54]. By
simultaneously matching the pseudoscalar and the axial with continuum chiral effective theory at
NLO, they obtainedMS(2 GeV) = (239.8(4.0)MeV)3 andF = 87.3(5.6) MeV. On the left side
of Fig. 1 we report the pseudoscalar correlator.

In [22] pseudoscalar and axial 2-point functions in #eegime have been computed with
Ni = 2 NHYP Wilson fermions, using the reweighting technique propose@@h [The lattice
spacing is fixed ta ~ 0.115 fm; two volumes have been considerkdy 1.84 fm with a mass
rangefi = MpcaczV ~ 0.7 — 2.9 andL ~ 2.8 fm with fi ~ 2.1 —5. From a continuum NLO fit
of the large volume data, they obtainE¥S(2 GeV) = (2486)MeV)3 andF = 90(4) fm. On the
right side of Figl the two correlators for the two lightest quark masses are shown30jrthe
data have been reanalyzed including @@?) calculated in the GSKMregime, Egs. 3.123.13),
yielding ZMS(2 GeV) = (2494)MeV)3, F = 88(3) MeV andc, = 0.02(8) GeV*. This result shows
that cut-off effects do not impact the extraction of the LECs beyond the level of the statistical
uncertainties.

4. Conclusions

Lattice simulations in the-regime can give important informations about properties of QCD
at low energy. In particular, they can be used to extract Low-Energy-Couplings of the chiral ef-
fective theory: these determinations are independent from the ones obtained in the usual infinite
volume case and are affected by different systematic uncertainties.
Computations in the-regime are numerically still very challenging, especially if one uses lattice
discretizations which preserve the chiral symmetry at finite lattice spacing. Recently it has been
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shown that simulations with Wilson-like fermions are feasible indfregime: they are more af-
fordable from the point of view of the numerical cost, but the explicit breaking of chiral symmetry
requires a special attention when matching lattice results with the chiral effective theory.

In general, it would be very useful to perform lattice computations in a wide range of volumes and
lattice spacings, in order to check if the predicted NLO finite-size scaling is verified and to have a
reliable estimation of systematic errors.

There are several other applications of the chirakpansion in combination with lattice cal-
culations. For instance, the theoretical predictions obtained in the mixed regime introdug@&d in [
can be matched with lattice results: a possible setup could be to use Wilson sea quarkg-in the
regime and GW valence quarks in theegime.

Another possible application is to consider heavy-light mesons and treat the light quarks in the
g-expansion, in particular within the framework of Heavy Meson Chiral Perturbation Theory.

In [55], suitable correlators are defined both in fhand in thee-regime to extract the couplings of

the effective weak Hamiltonian which parametrize khe» 7w amplitudes. This strategy has been
applied to quenched Neuberger fermiof§|] and could be adopted also in the dynamical case.
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