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Lattice simulations in theε-regime provide useful informations about the low-energy properties
of QCD. In particular, they allow to extract the Low Energy Couplings from physical observables
which are subject to different systematic corrections with respect to the usual infinite-volume
situation. After a brief introduction on general properties of theε-expansion in the chiral effective
theory, the possible issues concerning lattice simulations are discussed. Finally, the matching of
lattice results with the theoretical predictions and the extraction of the LO couplingsF andΣ is
presented.
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Chiral low-energy couplings from lattice computations in the epsilon regime

1. Introduction

Lattice QCD simulations with light quarks are now approaching the domain of validity of the
chiral effective theory. The matching of the lattice results with the effective theory predictions
provides a determination of the Low Energy Couplings (LECs) from first principles. Many results
have been presented in the past months for the leading order (LO) and next-to-leading order (NLO)
couplings, both for theNf = 2 andNf = 3 effective theory (see [1] for a recent review). The main
issue in this context is the control over the systematic uncertainties, namely the discretization er-
rors, renormalization uncertainties, finite volume effects, the neglected higher order contributions
in the chiral effective theory. For this reason, it is very useful to extract the LECs from a large set
of observables and from different kinematical regimes: this will serve as a valuable cross-check
between lattice determinations and will help to get a comprehensive picture of low-energy proper-
ties of QCD.
An interesting approach is to investigate QCD in a finite volumeV = L3T in the so-calledε-regime
[2, 3], where the chiral limit is approached by keepingµ = mΣV . O(1), with m the quark mass
andΣ the chiral condensate. This corresponds to the “unphysical” situation where the pion wave-
length is larger than the size of the box,MπL < 1. The peculiar feature of this setup is that the
pion zero-modes contribution becomes non-perturbative and must be treated exactly. This implies
a reorganization of the chiral expansion, such that volume effects are enhanced (polynomial) while
mass effects are suppressed with respect to the usual infinite-volume case (orp-regime, where
MπL � 1). For this reason, at a given order in the perturbative expansion, less LECs will appear:
predictions are less “contaminated” by higher order unknown couplings, making theε-regime po-
tentially convenient for the determination of the LO constantsF andΣ.
The power counting adopted in theε-expansion is the following:

m∼ ε
4, L−1,T−1 ∼ ε. (1.1)

The LO Euclidean chiral Lagrangian forNf degenerate flavors of massm is written as usual

L2 =
F2

4
Tr(∂µU∂µU†)− mΣ

2
Tr(U† +U). (1.2)

The pseudo Nambu-Goldstone boson fieldU ∈ SU(Nf ) is parametrized as

U(x) = U0exp

(
2i
F

ξ (x)
)

, (1.3)

whereU0 represents the collective zero-mode, and the non-zero modesξ are still treated in pertur-
bation theory, withξ ∼ ε. Then the LO partition function is given by

Z =
∫

SU(Nf )
[dU0]

∫
[dξ ]exp

{
1
2

∫
V

d4xTr(∂µξ ∂µξ )+
µ

2
Tr(U0 +U†

0 )
}

. (1.4)

In theε-regime, topology plays a relevant rôle [4]: by introducing aθ vacuum and Fourier trans-
forming, one can define the partition function at fixed values of the topological chargeν :

Zν =
∫

U(Nf )
[dU0](detU0)ν

∫
[dξ ]exp

{
1
2

∫
V

d4xTr(∂µξ ∂µξ )+
µ

2
Tr(U0 +U†

0 )
}

. (1.5)
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From the partition function one can immediately obtain the quark condensate

Σ(µ) =
Σ
Nf

∂Z

∂ µ
∼ Σµ. (1.6)

As expected,Σ(µ)→ 0 for µ → 0, since there is no spontaneous symmetry breaking in a finite box.
Nevertheless, in theε-regime one can extract informations about spontaneous symmetry breaking
in infinite volume by means of a finite-size scaling.

2. Lattice QCD in the epsilon regime

Lattice simulations in theε-regime are challenging, since one still needs a fairly large volume
(L � 1/(4πF)), while the quark mass must be very small (mΣV . 1). This fact strongly influ-
ences the choice of the lattice action to be used. Ginsparg-Wilson (GW) fermions [5] are the best
choice from the theoretical point of view, since they guarantee exact chiral symmetry at finite lat-
tice spacing [6]. The Dirac spectrum is bounded from below, and arbitrarily small quark masses
are then accessible in numerical simulations. Moreover, the topological charge has a natural defi-
nition through the index theorem: this means that one can perform simulations at fixed topological
charge and match the lattice results with the corresponding predictions of the chiral effective the-
ory for each topological sector. The most adopted implementations of Dirac operators satisfying
the GW relation are the Neuberger Dirac operator [7], Domain Wall Dirac operator with infinite
fifth dimension [8], the fixed-point Dirac operator [9]. The price to pay to maintain continuum-like
chiral symmetry is the high computational cost. While a large number of quenched simulations has
been performed using various implementations of the GW fermions [10, 11, 12, 13, 14, 15, 16, 17],
dynamical simulations are still very challenging.

The possibility of simulating Wilson fermions in theε-regime has not been considered for a
long time: since chiral symmetry is explicitly broken at finite lattice spacing by the Wilson term, the
spectral gap is not bounded from below, which makes the simulation of the small quark mass region
rather problematic. At small quark masses the probability distribution of the gap can approach zero
values, leading to possible integration instabilities and sampling inefficiencies in the algorithm.
In [18, 19] the empirical stability boundm > mmin, with mmin ∝ a/

√
V has been established. A

possible solution to this problem comes from a reweighting technique [20] (see also [21]). This
method has been applied in [22] to simulate Wilson fermions in theε-regime. Lattice simulations
in theε-regime are feasible also with Wilson Twisted Mass fermions, as presented in [23, 24].
Another consequence of the explicit breaking of chiral symmetry with Wilson-like fermions is that
an exact definition for the topological charge does not exist at nonzero lattice spacing. Lattice
results nevertheless can be matched with ChPT predictions where the sum over all topological
sectors has been performed.

2.1 Matching lattice QCD with the chiral effective theory

When matching lattice results with the chiral effective theory, one should ideally first perform a
continuum extrapolation in order to eliminate lattice artifacts. Since this is still not always feasible,
an alternative is to incorporate discretization effects in the chiral effective theory by using the
Symanzik approach [25].
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From this point of view, the advantage of using GW fermions appears again: due to exact
chiral symmetry at finite lattice spacing, lattice results are described by continuum chiral effective
theory. The only effect of the descretization would be anO(a2) dependence of the LECs extracted
from the matching1.

For Wilson-like fermions the situation is different: there will be new LECs associated to op-
erators describing the lattice artifacts. This has been formulated systematically for pure Wilson
fermions (WChPT) and Wilson Twisted Mass fermions [26, 27, 28]. This framework has been
recently extended also to theε- expansion [29, 30]. In the Wilson lattice formulation, lattice effects
contribute to the explicit breaking of the chiral symmetry: the important issue is the relative power
counting between the quark mass and the lattice spacinga. It has been observed that in the region
m∼ aΛ2

QCD (called GSM regime, witha∼ O(ε4)), the explicit breaking of the chiral symmetry
is still dominated by the quark mass, and for meson two-point functions lattice effects show up
only at NNLO. On the other hand, whenm∼ a2Λ3

QCD (Aoki regime,a∼O(ε2)) lattice effects con-
tribute already at LO, leading to substantial changes of the continuum behavior. One can moreover
define an intermediate regime, called GSM∗, corresponding to the power countingm∼ a4/3Λ7/3

QCD

(a∼ O(ε3)), where lattice artifacts appear at NLO. When simulating lattice QCD in theε-regime
with Wilson-like fermions, it is important to stay in the GSM-GSM∗ region, where lattice artifacts
are suppressed: the small quark mass region must be approached by keeping also a small lattice
spacing. This is an issue which can be addressed only a posteriori by analyzing lattice data using
WChPT as a guidance.

3. Results

3.1 LECs from spectral observables

The link between the spectrum of the QCD Dirac operator and the spontaneous breaking of
chiral symmetry is provided by the Banks-Casher relation [31],

lim
λ→0

lim
m→0

lim
V→∞

ρ(λ ,m) =
Σ
π

. (3.1)

Hereρ(λ ,m) represents the spectral density associated to the Euclidean massless Dirac operator,
with imaginary eigenvalues(iλk)

ρ(λ ,m) =
1
V

∞

∑
k=1

〈δ (λ −λk)〉. (3.2)

The spectral density can be computed within the chiral perturbation theory [32, 33, 34]. At LO in
theε-expansion, one can show that the partition function Eq. (1.5) at fixed topology is equivalent
to the one of a Chiral Random Matrix Theory (RMT) [35, 36, 37]. It follows that RMT reproduces
the same spectral density in terms of dimensionless variablesζ = λΣV, µ = mΣV (microscopic
spectral density). While the chiral effective theory does not contain any information about the
single eigenvalues, the advantage of this equivalence comes from the fact that with RMT one can
extract the probability distributions of single eigenvaluespk(ζk,µ) [38, 39]. This means that the

1Additional operators related to the breaking of Euclidean symmetry can appear, but only at very high order.
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low-lying spectrum of the Dirac operator〈λk〉QCD(m) can be matched with the RMT expectation
values

〈ζk〉RMT(µ) =
∫

dζkpk(ζk,µ)ζk (3.3)

in order to extract the chiral condensateΣ. In particular, one matches

〈λk〉QCDΣV = 〈ζk〉RMT. (3.4)

Moreover, ratios of eigenvalues are parameter-free predictions which can be compared directly
with lattice QCD results in order to check to which extent is RMT reproduced. Previous quenched
studies with Neuberger fermions [40] observed a good agreement of the ratios involving lowest
eigenvalues for lattice extentsL & 1.5 fm.
This technique to extractΣ has been adopted by many authors, using different implementations
of GW fermions. DeGrand and collaborators [41] used NeubergerNf = 2 Dirac operator, with
a' 0.15 fm, L ' 1.5 fm, mΣV ' 2− 5 and topology fixed toν = 0,1. They obtain the chiral
condensateΣMS(2 GeV) = (282(10) MeV)3.
JLQCD/TWQCD [42] also usedNf = 2 Neuberger fermions, on a lattice witha' 0.11 fm,L' 1.78
fm and with a quark mass corresponding toµ = mΣV ' 0.556. They fixed the topology toν = 0.
As final result for the quark condensate they quoteΣMS(2 GeV) = (251(7)(11) MeV)3. The first er-
ror is statistical, the second represents a systematic uncertainty, estimated by assuming that higher
order corrections are the same as in the chiral effective theory.
P. Hasenfratzet al [43] implemented theNf = 2+1 parametrized fixed-point Dirac operator which
satisfies the GW relation approximately. They adopted a lattice witha' 0.13 fm, L ' 1.6 fm,
mu,dΣV ' 1.4 andmsΣV ' 12.3; the topological charge was fixed toν = 0,1,2. For the 2-flavor
condensate they obtainedΣMS(2 GeV) = (239(11) MeV)3; this result is already corrected for
higher order finite-size effects estimated through the chiral effective theory.

The RMT framework can be extended by adding an imaginary chemical potential, such that
the spectrum of the Dirac operator is sensitive also to the pseudoscalar decay constantF at LO
[44]. This strategy has been adopted by DeGrand and collaborators [45], yielding ΣMS(2 GeV) =
(234(4) MeV)3 andF = 84(5) MeV from a lattice witha' 0.13 fm,L' 1.6 fm andµ ' 4.4.
The problematic point of this approach is that while higher order finite-size corrections can be
computed within the chiral effective theory, this is not possible in the framework of RMT. This
means that systematic errors onΣ, F might be difficult to quantify.

In another recent work [46] it is shown that the quark condensate can be extracted from suitable
(renormalizable) spectral observables, for instance the number of Dirac operator modes contained
in a given interval. The technique has been used on Wilson lattice QCD in thep-regime, but could
be investigated also in theε-regime. The advantage of this method is that those observables can be
computed in the chiral effective theory: higher order corrections can be computed and systematic
effects of the extracted LECs can be estimated.

In relation to this, in [47] the quark condensate and the spectral density of the Dirac operator
at fixed topological charge have been computed in the chiral effective theory by using a technique
which is able to smoothly connectp- andε- regimes. S. Hashimoto presented at this conference
preliminary lattice results for the spectral density obtained by the JLQCD/TWQCD withNf = 2+1
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(Neuberger fermions) [48]. Through the matching with the NLO predictions of [47], the LECsΣ,
F andL6 are extracted.

3.2 LECs from two-point meson correlators

Meson two-point functions in theε-expansion have been computed for the first time by Hansen
[49] at NNLO. Here we report as example the pseudoscalar density and axial current time corre-
lators at NLO, which is usually the level adopted in the matching with lattice results. For the full
dynamical case, NLO correlators have the general form

Cab
P (t) =

∫
d3~x〈Pa(x)Pb(0)〉= δ

ab[aP +bPh1(t/T)] , (3.5)

Cab
A (t) =

∫
d3~x〈Aa

0(x)A
b
0(0)〉= δ

ab[aA +bAh1(t/T)] , (3.6)

with a parabolic time dependence given by the function

h1(τ) =
1
2

[(
|τ|− 1

2

)2

− 1
12

]
. (3.7)

The coefficientsaP,A, bP,A will in general contain non-perturbative integrals over the zero modes,
and will be functions only of the volume and the LO LECsΣ andF . In particular, forNf = 2 one
obtains, after performing the integrals and summing over all topological sectors

aP =
L3Σ2

eff

µeff

I2(2µeff)
I1(2µeff)

, bP =
TΣ2

2F2

(
2− 1

µ

I2(2µ)
I1(2µ)

)
, (3.8)

aA = −F2

T

(
1− I2(2µeff)

µeffI1(2µeff)

)
− 2β1

T
√

V

(
1− I2(2µ)

µI1(2µ)

)
+

2Tk00

V
I2(2µ)

µI1(2µ)
, (3.9)

bA = −2T
V

I2(2µ)
µI1(2µ)

. (3.10)

We have introducedµeff = mΣeffV, whereΣeff is the one-loop chiral condensate [3]

Σeff = Σ
(

1+
3

2F2

β1√
V

)
. (3.11)

β1 andk00 are so-called shape coefficients, and depend only on the geometry of the box [50].
Meson correlators at NLO in theε-expansion have been computed also in the quenched or

partially quenched case, and in fixed topology sectors [34, 51, 52]. In [53] the so-calledmixed
regimehas been considered, where some quarks are in theε-regime and others are in thep-regime.

In [30, 29], O(a2) effects have been computed in WChPT at NLO in the GSM∗ regime forNf =
2. They are parametrized by an extra LECc2, which is discretization-dependent, and contribute to
the constant termsaP,A in Eqs. (3.8, 3.9),

aP, a2 = aP +ρ
L3Σ2∆a2

2
, aA, a2 = aA +ρ

F2∆a2

T
, (3.12)

where

∆a2 =
4µ̃2I3

1(2µ̃)−11µ̃I2
1(2µ̃)I2(2µ̃)+2(3−2µ̃2)I1(2µ̃)I2

2(2µ̃)+5µ̃I3
2(2µ̃)

2µ̃3I2
1(2µ̃)I2(2µ̃)

. (3.13)
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Figure 1: Left side: time dependence of the pseudoscalar correlator computed by [54]. Right side:
pseudoscalar and axial correlators computed in [22], for L ' 2.8 fm and two quark mass values (κ =
0.12815,0.128125, corresponding tõµ ' 2.1,2.7). Here the axial vector correlator is multiplied by a factor
50 for better visibility.

We have introduced̃µ = mPCACΣV and the dimensionless parameterρ ≡ F2c2a2V. In the contin-
uum part, the replacementm→mPCAC (µ → µ̃) is understood.

JLQCD computed the scalar, pseudoscalar, vector and axial-vector correlators using Neu-
berger fermions,Nf = 2, a' 0.11 fm, L ' 1.78 fm, µ ' 0.556 and topologyν = 0 [54]. By
simultaneously matching the pseudoscalar and the axial with continuum chiral effective theory at
NLO, they obtainedΣMS(2 GeV) = (239.8(4.0)MeV)3 andF = 87.3(5.6) MeV. On the left side
of Fig. 1 we report the pseudoscalar correlator.

In [22] pseudoscalar and axial 2-point functions in theε-regime have been computed with
Nf = 2 NHYP Wilson fermions, using the reweighting technique proposed in [20]. The lattice
spacing is fixed toa' 0.115 fm; two volumes have been considered,L ' 1.84 fm with a mass
rangeµ̃ = mPCACΣV ' 0.7−2.9 andL ' 2.8 fm with µ̃ ' 2.1−5. From a continuum NLO fit
of the large volume data, they obtainedΣMS(2 GeV) = (248(6)MeV)3 andF = 90(4) fm. On the
right side of Fig.1 the two correlators for the two lightest quark masses are shown. In [30] the
data have been reanalyzed including theO(a2) calculated in the GSM∗ regime, Eqs. (3.12,3.13),
yieldingΣMS(2 GeV) = (249(4)MeV)3, F = 88(3) MeV andc2 = 0.02(8) GeV4. This result shows
that cut-off effects do not impact the extraction of the LECs beyond the level of the statistical
uncertainties.

4. Conclusions

Lattice simulations in theε-regime can give important informations about properties of QCD
at low energy. In particular, they can be used to extract Low-Energy-Couplings of the chiral ef-
fective theory: these determinations are independent from the ones obtained in the usual infinite
volume case and are affected by different systematic uncertainties.
Computations in theε-regime are numerically still very challenging, especially if one uses lattice
discretizations which preserve the chiral symmetry at finite lattice spacing. Recently it has been
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shown that simulations with Wilson-like fermions are feasible in theε-regime: they are more af-
fordable from the point of view of the numerical cost, but the explicit breaking of chiral symmetry
requires a special attention when matching lattice results with the chiral effective theory.
In general, it would be very useful to perform lattice computations in a wide range of volumes and
lattice spacings, in order to check if the predicted NLO finite-size scaling is verified and to have a
reliable estimation of systematic errors.

There are several other applications of the chiralε-expansion in combination with lattice cal-
culations. For instance, the theoretical predictions obtained in the mixed regime introduced in [53]
can be matched with lattice results: a possible setup could be to use Wilson sea quarks in thep-
regime and GW valence quarks in theε-regime.
Another possible application is to consider heavy-light mesons and treat the light quarks in the
ε-expansion, in particular within the framework of Heavy Meson Chiral Perturbation Theory.
In [55], suitable correlators are defined both in thep and in theε-regime to extract the couplings of
the effective weak Hamiltonian which parametrize theK → ππ amplitudes. This strategy has been
applied to quenched Neuberger fermions [56], and could be adopted also in the dynamical case.
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