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1. Introduction

Testing the validity of Chiral Perturbation Theory (ChPT) is a challengingliasause of the
many unknown parameters, called the Low Energy Constants (LECs)ingniteto the theory. In
particular, at NNLO 90 unknown constants, theappear in the® Lagrangian.

One way to overcome this problem is to study different combinations of wdiskes that
depend on th€; in the same way. These lead®@independent relations which can be used to
perform the test. Furthermore those combinations might be useful to gaimeion on the LECs
too, since they let us isolate the same combinatior aking different observables.

In [2] we study 76 observables at NNLO and find 36 such relations. divgpare ChPT NNLO
predictions with data/dispersive results for 13 of these. The obsesvabitdved are the ones mrt
andrniK-scattering and if,4 decay. Here we first discuss how we perform the numerical analysis,
the results of which appear in Tab.1, 2, 3 and 4, then we present fbrpeacess the relations
studied. Finally we show some preliminary results for a new global fit o ttee NNLO.

2. Numerical Analysis

The numerical analysis of thg-independent relations has been done in the following way.
First we evaluate the combinations of observables appearing in eachfgitke relations using
experiment/dispersive (exp) results of [3] favt scattering, [4] fornK scattering and [5, 6] for
K.a decay. Then we use ChPT results up to onofef7, 8, 9] setting the.; to the values of fit 10
in [1]. Finally we subtract from the first (exp) evaluation the ChPT onbkesE differences will
contain theC; part and higher order corrections. They have been quoted in Tab3lad 4 in
the columns labeled remainder. This has been done for each side of timneelander study. To
check whether a relation is well satisfied we compare the remainders of iteledtside (LHS)
and right-hand-side (RHS). Since they contain the s&meombinations, they should be equal
within the uncertainties.

The errors quoted in the second columns of Tab.1, 2, 3 and 4 are obtduied & quadrature
the uncertainties in [3, 4, 5, 6]. This might result in an underestimate of thlectota because
of correlations. The theoretical errors due to the NLO LECs are shobrarrkets in the columns
of Tab.1, 2, 3 and 4 labeled NNLO 1-loop. They are obtained by vanyiindpe L; around the
central values of fit 10 according to the full covariance matrix as obtdiyeithe authors of [1]
and exploring the region wity?/dof~ 1 . The error is then estimated as the maximum deviation
observed. The error for thig contribution at NLO is never shown since it drops out of all the
relations. No uncertainties due to higher order contributions have bekstad he uncertainties
due to theoretical errors are mostly on the last quoted digit.

3. mrtrscattering
The rirt scattering amplitude can be written as a func#gg t, u) which is symmetric irt, u:

AP — 1tm?) = 33P5%9A(s, t,u) + 3°95P9A(L, u,s) + 5295 CA(ULL, 3) (3.1)
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wheres;t,u are the usual Mandelstam variables. The isospin amplitlitiest) (I = 0,1,2) are
TO(st) = 3A(s,t,u) +A(t,u,8) +A(u,s,t), Ti(sit) = A(s,t,u) — A(u,st), T?(s;t) = A(t,u,S) +
A(u,s,t), and are expanded in partial waves

+o0

Tl(st) = 327‘[; (20 +1)P,(cosh)t)(s), (3.2)
=0

wheret andu have been written @s= —3(s—4m2)(1—cosb), u= —3(s— 4m2)(1+cosB). Near
threshold theé are further expanded in terms of the threshold parameters

s amp), (3.3)

ti(s) = (e +ia*+ 0(a), o=

wherea), b} ... are the scattering lengths, slopes,We studied the 11 parameters where a depen-
dence on th€; shows up. Using+t + u = 4m? we can write the amplitude to ordgf as

A(s,t,U) = by + bps+bgs® 4 by(t — u)% + bss® + bes(t — u)? + non polynomial part ~ (3.4)

The tree level Feynman diagrams give polynomial contribution&(&t,u) which must be ex-
pressible in terms dfy, ..., bg. Therefore we expect and find 5 relations:

(5§ — 2b — 27a; — 1585 + 69| . = —18[bi], , (3.5)
[3aj+bf] = 20[b5—b3—a5+a3]. , (3.6)

[b5+5b5 + 9ai] . = 90[a3—b3].. 3.7)

30} +2585] . = 10[af] , (3.8)

[-5b3+2b3] . = 21[a3]. (3.9)

where[Alg = C/-dependent part oh. All quantities are expressed in unitsmfﬁ. In fact, since
these relations hold for every contribution to the polynomial part, they dig feat the NLO tree
level contribution as well and for two- and three-flavour ChPT. Thug ¢feL;-contributions only
at NNLO via the non polynomial part of Eq. (3.4).

In Tab. 1 we show our numerical results. We quote the left-hand-sid&)ladd right-hand-
side (RHS) of each of the relations. In the second column we use the \&luks threshold
parameters of [3]. The next columns use the ChPT results of [7] ardtigé/contributions from
pure one-loop at NLO, the tree level NLO contribution, the pure two-lamgribution, and thé
dependent part at NNLO (called NNLO 1-loop).

Comparing the remainders of the LHS with the RHS ones, we see that ther@stréhations
are very well satisfied, while the last two work at a level around two sigma.

We can also check how the two-flavour predictions hold up. Since hedthections are in
powers ofm? rather than in powers af, the expansion should converge better. For the ChPT
evaluation we use the threshold parameters as quoted in [3] for their tbektifie NLO LECs.
The result is shown in Tab. 2. We see the same pattern as for the threerftase: the first three
relations are very well satisfied while the last two are somewhat worseshaw liwo sigma.
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[3] NLO NLO | NNLO NNLO remainder
l-loop| LECs| 2-loop 1-loop
LHS (3.5) 0.0094+0.039 0.054 | —0.044 | —0.041 | —0.002(3) | 0.041+0.039
RHS (3.5) | —0.102+0.002 | —0.009 | —0.044 | —0.060 | —0.0086) | 0.018+0.002
10 LHS (3.6) | 0.334+0.019 0.209 0.097 0.103 | 0.029(11) | —0.105+0.019
10 RHS (3.6) | 0.322+0.008 0.177 0.097 0.120 | 0.034(13) | —0.107+0.008
LHS (3.7) 0.216+0.010 0.166 0.029 0.053 0.016(6) | —0.047+0.010
RHS (3.7) 0.18940.003 0.145 0.029 0.049 0.020(7) | —0.054+0.003
10 LHS (3.8) | 0.213+0.005 0.137 0.032 0.053 | 0.03512) | —0.043+0.005
10 RHS (3.8)| 0.1754+0.003 0.121 0.032 0.050 | 0.02910) | —0.057+0.003
10° LHS (3.9) 0.92+0.07 0.36 0.00 0.56 | —0.01(13) 0.00+0.07
10° RHS (3.9) 1.1840.04 0.42 0.00 0.57 0.03(13) 0.15+0.04

Table 1: The relations found in therrr-scattering. The lowest order contribution is always zeraon-

struction. The NLO LEC part satisfies the relation, as it #tholNotice the extra factors of ten for some of

them. All quantities are in the units of powersrof .

[3] two-flavour remainder
[3]
LHS (3.5) 0.009+0.039 —0.003 | 0.007+0.039
RHS (3.5) | —0.1024+0.002| —0.097 | —0.00540.002
10 LHS (3.6) | 0.33440.019 0.332 0.002+0.019
10 RHS (3.6) | 0.322+0.008 0.318 0.004+0.075
LHS (3.7) 0.216+0.010 0.206 0.010+0.010
RHS (3.7) | 0.189+0.003 0.189 0.000+0.003
10 LHS (3.8) | 0.213+0.005 0.204 0.009+0.005
10 RHS (3.8)| 0.175+0.003 0.176 | —0.00140.003
10°LHS (3.9) | 0.924+0.07 1.00 —0.08+0.07
10 RHS (3.9)| 1.18+0.04 1.15 0.04+0.04

are in units of powers af,;+.

4. niK scattering

Table 2: The relations found in tharr-scattering evaluated in two-flavour ChPT. In the secondroalwe
have used the NNLO results quoted in [3]. Notice the extréofaaof ten for some of them. All quantities

The K scattering has amplitudds (s,t,u) in the isospin channels= 1/2,3/2. As for it
scattering we introduce the partial wave expansion of the isospin amplitudes

+00

T'(st,u) = 16n[z (20 +1)P,(cosh)t)(s),
=

and we define scattering lengtils b}, by expanding thé} (s) near threshold:

th(s) = 55k (3 + bl + O(ci)).

Qo =

S
(1=
q

(M +my;)?

) (-

(4.1)

(Mg — mn>2> ’

S




Determination of LECs and testing ChPT at ordé&r(pNLO) llaria Jemos

andt = —2¢2, (1—cosf), u= —s—t+2mg +2mZ. Again we studied only those observables
where a dependence on teshows up.

Itis also customary to introduce the crossing symmetric and antisymmetric amplitti¢es, u)
3TH(st,u) = TY2(st,u)+T¥2(st,u), T (st,u)=TY2(st,u)—T¥2(st,u), (4.2)

which can be expanded aroung: 0, s= u usingv = (s—u)/(4mk) (subthreshold expansion):

F(st,u) = Z citvd, T (stu)= z cithvit, (4.3)
i,J=0 i,J=0

There are 10 subthreshold parameters that have tree level contriblutionthe NNLO LECs. In
Co; andc,, the same combinationCy + 2C3 + 2C4 appears [8]:

16p° [CEO] G~ 3 [Cal}q : (4.4)

Therefore in the isospin odd channel only three subthreshold paranggeindependent con-
tributions from theC;. So for the 7 differencea, = 61/2 3/2 andb, = bl/2 b3/2 getting

contributions at NNLO and three subthreshold parameters we expecrefatJons.

(0 +30>+30-+1) [a; ], = 20%(0+ 12 [0y ], — 2P (0% +1) [5]
1 _
2 (P 3p+l)( 1) [l (4.5)
-1 2 4, 242 1 2_2 1
50+ 2 [bs)o, = L5 [arle - i [ )e + E i sl 46)
5(p°+1) [87]¢, = [ar ], +20 [br]g, (4.7)
7(p*+1) [35] = [& ] + 20 b7 ], (4.8)

the threshold parameters are expressed in unitg;ofand we use the symbpl= mg /my.
T brings in 7 more combinations of threshold parametgfs- a, a4 3/2 andb; = b1/2+
2b?/2, but there are 6 independent subthreshold parameters so we fmd‘mmhyale relation:

1

1
116~ 5055 [%a ~ 3002

7[a31e, = 55 [8]e - Ble + 55 bl (49)
Again these relations hold for all tree-level contributions up to NNLO. Timaerical check
is shown in Tab. 3. The columns in Tab. 3 have the same meaning as in Tab. 1.
The first relation is reasonably satisfied, somewhat below two sigma. Tbadeelation has
a large discrepancy but if we assume a theory error of about half th&ONddntribution it seems
reasonable. The third relation is well satisfied but the RHS has a ratherdapgrimental error.
The fourth relation does not work well, mainly due to the fact that we seemderestimate the

value fora; . The last relation works well.
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[4] NLO | NLO | NNLO NNLO | remainder
1l-loop| LECs| 2-loop 1-loop
LHS (4.5) 5440.3 0.16 0.97 0.77 | —0.11(11) 0.64+0.3

RHS (4.5) 6.9+0.6 0.42| 0.97 0.77 | —0.03(7) 1.8+0.6
10 LHS (4.7) | 0.32£0.01 0.03| 012 0.11 0.00(2) | 0.07+0.01
10 RHS (4.7) | 0.37+0.01 0.02| 012 0.10| -0.01(2) | 0.14+0.01
100 LHS (4.6)| —0.49+0.02 | 0.08| —0.25| —0.17 0.05(3) | —0.21+0.02
100 RHS (4.6)| —0.85+£0.60| 0.03| —0.25 0.11 | —0.03(13) | —0.71+0.60
100 LHS (4.8)| 0.13+0.01 0.04| 0.00 0.01 0.03(1) | 0.05+0.01
100 RHS (4.8)] 0.01+0.01 0.01| 0.00 0.00 0.00(1) | —0.01+0.01
10 LHS (4.9) | 0.29+0.03 0.09| 0.00 0.06 0.042) | 0.13+0.03
10° RHS (4.9)| 0.31+0.07 0.03| 0.00 0.06 0.05(3) | 0.17+0.07

Table 3: The relations found in theK-scattering. The tree level contribution to the LHS and RHS o
relation 1 is 3.01 and vanishes for the others. The NLO LECGsgaisfies the relation. Notice the extra
factors of ten for some of them. All quantities are in the sioit powers ofn,+

5. mrrand 1K scattering

If we consider thetrrand ik system together we get two more relations due to the identities
n 3. 1. 1 .
[bsl, = [Ciolg, + 0 (S0, » [belc, = 7 [Coo), + 1602 [CE (5.1)
whereci‘j (cier) are expressed in units oi,zT”zHl(m%”z"). We can express these relations in terms
of the threshold parameters (all quantities expressed in powens-Qf

6[az]c = (1+p) [af +383] (5.2)
3[(1+p)° (B3] 7(1-p) ] | = (1+p) [7(1-40+p?) [a5]g + [af +20bF] | (B:3)

The numerical results are quoted in Tab. 4. The first relation does r&thwb the second is well
satisfied. If we look in the numerical results we see tgaplays a minor role in the RHS of the
second relation but is important in the first, so this could be the same probletatdn (4.8). A
related analysis can be found in [10].

6. Ky
The decaK ™ (p) — mrt(p1) T (p2)et (pe)V(py) is given by the amplitude [11]

T = SEVGIPY )y (1 yM(PO) (V¥ ~ A 6.1)

whereVH and A* are parametrized in terms of four formfactors; G, H and R (but the R-
formfactor is negligible in decays with an electron in the final state). Usinigbamve expansion
and neglectingl wave terms one obtains [12]:
F = fo+ flo?+ f/q* + flse/Ame + fioX cOSO + ...,
Gp = Up+ 00 + 9y 0" + GeSe/ 4N+ Gt 07X COSO + ... (6.2)



Determination of LECs and testing ChPT at ordé&r(pNLO) llaria Jemos
[3],[4] NLO | NLO | NNLO NNLO remainder
[5],[6] 1-loop | LECs | 2-loop 1-loop
10° LHS (5.2) | 0.34+0.01 0.12| 0.00 0.16 0.00(4) | 0.05+0.01
10° RHS (5.2)| 0.38+0.03 0.12| 0.00 0.05 0.04(2) | 0.16+0.03
10 LHS (5.3) | —0.13+0.01 | —0.12| 0.00| —0.05 0.02(2) | 0.01+0.01
10 RHS (5.3)| —0.09+0.02 | —0.05| 0.00| —0.02 | —0.01(1) | —0.01+0.02
LHS (6.4) —-0.73+0.10 | —0.23| 0.00| —0.15| —0.05(6) | —0.29+0.10
RHS (6.4) 0.50+0.07 0.19| 0.00 0.10 0.03(4) | 0.18+0.07

Table 4: The relations found betweemwt and K -scattering lengths and between the curvature in K4
andniK scattering. All quantities are in the units of powerswf: .

Heresq(se) is the invariant mass of dipion (dilepton) system, ghe- s/ (4m%) — 1. 6 is the angle
of the pion in their rest frame w.r.t. the kaon momentum ardi = —20,X cos6. Using NNLO
ChPT results [8, 9] we find one relation between the quantities defined na{@d2iK scattering:

V2 (] = 64pFr[cio]. - (6.3)

This leads to a relation betweerK threshold parameters arfd§ which, with all quantities ex-
pressed in units ah,:, reads:

— 3o P

35 5
Fr | (2+p+20%) [a3 ] — 5 [&5 +20b5 ] | - (6.4)

4

Numerical results for (6.4) are shown in Tab. 4. The experimental rasuéiken from [5] for
fe/fs and from [6] for fs. This should be an acceptable combination since the central value for
f¢/ fsand ! /fs from [6] are in good agreement with those of [5]. This relation is not satisthe
sign is even different on the two sides. Notice that, in both cases, we &tbatdhe ChPT series
has a large NNLO contribution.

It has been already noticed, see [1] and Fig. 1, that ChPT, at pyeselerestimates the cur-
vature . On the other hand there are indications that dispersive analysis teebmgght help
solving this problem: Fig. 7 in [1] shows that the dispersive result of [£8 a larger curvature
then the two-loop result. Therefore, we do not consider this discrg@amajor problem for ChPT.

7. New fits of the NLO constants (preliminary results)

As remarked in [14], many NNLO calculations are now available in thre@flaChPT. Be-
sides, new lattice and dispersive results and further experimental ea# aur disposal too. A
study of the predictive power of NNLO ChPT is needed, and thereteceaan update of thk; fit.
For this reason we are working on a new program to perform this fit withymaore observables
implemented. So far we have included masses and decay congtanssmfactors, it and ik
scattering lengths and the scalar pion radius. For now we rely on thearesmastimates of thg
used in [1], although our plan is to achieve more information on them.

Ouir first preliminary results are summarized in Tab. 5. In the second coluauate fit 10
of [1]. This was found using the available linear fit fidy4 of [6], Fx /F; = 1.22, the kaon and
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[Fsl
w
T

NNLO ——
reso only
fl NA48
E865 linear - - - --

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

STT
Figure 1: The absolute value of thigs formfactor ats, = cosf = 0 as a function ok, (in GeV units)
above and below threshold. The NNLO result nicely reprodtiee linear fit quoted in [6], but not the large
negative curvature in [5]. The line at the bottom is the dbotion coming from the&€;, which has a positive
curvature.

fit10[1] fitl0iso  NA48/2 Fc/Fx Al
10°L] 043  040+0.12 [098] 097  099+0.13
10°L) 0.73 076+0.12 078 079  060+0.22
10°L  -235 —240+0.37 —312 —3.07+059

1051, =0 =0 =0 =0 0.65+0.64
10°Lf 097  097+011 093 [0.72] [05340.10
103L% =0 =0 =0 =0 0.074+0.65
1°L5  -031 -030+015 -030 -026 —0.21+0.15
10°L 059  061+020 059 0.37+0.17
x? (dof) 025(1) Q17(1) 019(1) Q78(4)

Table 5: Preliminary results for the fitd.g = 0.59 x 102 everywhere, as found from the vector pion radius
in [15]. See text for a longer discussion

eta masses with isospin breaking corrections included and séttingLg = 0. In the column
labeled fit 10 iso we quote the fit we find using the same input as fit 10 but wtitholuding
isospin breaking. As you see the two fits are in good agreement. The colddBYArelies on the
new experimental data from [5]. We checked that the fit does not ehimetuding the curvature
fJ. With this fit ChPT predicts the valug’ = —0.90 to be compared with the experimental one
f/ = —1.58+0.064. Note that the fit in [5] shows large correlations between the slopéhand
curvature of thd= formfactor which have not been taken into account yet. The valuesafidL;
change drastically. The third column shows the fit obtained changing théafti6; to 1.19. This
affects mainlyLs andLg. The last column shows the fit obtained lettingandLg free, and adding
ag, a% aé/z, ag/z and the scalar pion radius. The value obtainedL{pis larger then expected.
Some more comment can be found in [16].
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8. Conclusions

We have performed a systematic search for relations between obsertlailallow a test of
ChPT at NNLO order in &-independent way. We studied in detail the relations forrtire K
scattering andky4 since for these cases enough experimental and/or dispersion theuwlitg Bxist.

The resulting picture is that ChPT at NNLO mostly works but there are treabie cases.
The it system alone works well. ThaK system alone works satisfactorily but with some dis-
crepancies. The same can be said for the combinations of both systemsindoogpart in these
two cases is the presenceayf . ComparingrnK scattering andk.4 leads to a clear contradiction
which needs further investigation.
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