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1. Introduction

Chiral effective field theory (EFT) provides a systematic and model-independent framework
to analyze low-energy hadronic processes. In particular, nuclear forces have been successfully
derived [1]. However, knowledge of the consistent electromagnetic exchange current operator is
needed to study, for example, electron and photon few-nucleon reactions with momentum transfer
of orderMπ .

To the best of our knowledge, no applications have so far been performed to electron and
photon inelastic few-nucleon reactions with the momentum transfer of the order Mπ where a lot of
experimental data are available, see [2] for a recent review article on thetheoretical achievements in
this field based on conventional framework. Recent progress in the accurate description of the two-
[3, 4] and more-nucleon systems [5] within the chiral EFT, see also [6] and references therein, gives
a strong motivation to apply this framework to the abovementioned processes.This requires the
knowledge of the consistent electromagnetic exchange current operator for non-vanishing values
of the photon momentum. While the leading two-nucleon contributions to the exchange current
arise from one-pion exchange and are well known, the corrections atthe one-loop level have not
yet been completely worked out.

Pastore et al. [7, 8] have recently performed an important step towards the description of the
exchange current operator. They calculate the electromagnetic current operator at leading one-loop
order based on time-ordered perturbation theory.

In this contribution, we discuss the two-pion exchange current operatorat leading one-loop
order in the framework of unitary transformation. Since we use a completely different formalism,
our results provide a non-trivial check of the results of Pastore et al. Further, we also present results
for the exchange current density which, to the best of our knowledge,have not been presented
before. The results are given in extremely compact formulae in configuration space. An expression
in momentum space and a more details can be found in [9].

This manuscript is structured as follows. In section 2 we briefly review the method of unitary
transformation and discuss how nuclear currents can be calculated. Results in configuration space
are given in section 3. We end with a summary and outlook.

2. Nuclear currents using the method of unitary transformation

We begin with a brief reminder about the method of unitary transformation, applied in the
calculation of nuclear potentials, for details see [1].

Following Okubo [10] the unitary transformationU can be parameterized as

U =

(

η(1+A†A)−1/2 −A†(1+AA†)−1/2

A(1+A†A)−1/2 λ (1+AA†)−1/2

)

, (2.1)

in terms of the operatorA with the propertyA = λAη , where we introduced projection operators
η (λ ) on the purely nucleonic (the remaining) part of the Fock space satisfyingη2 = η , λ 2 = λ ,
ηλ = λη = 0 andλ + η = 1. The operatorA has to be chosen in a way that the transformed
HamiltonianH̃ ≡U†HU is block-diagonal in theη− andλ− subspaces.

2



P
o
S
(
C
D
0
9
)
1
0
8

Electromagnetic currents from chiral EFT S. Kölling

In Ref. [11], a convenient formulation of the power counting has been presented. The low-
momentum dimensionν of the effective potential,V, V ∼ O(Q/Λ)ν with Q andΛ refering to the
soft and hard scales of the order of the pion andρ-meson masses, respectively, is given (modulo
the normalization constant−2) by the overall inverse mass dimension of the coupling constants
entering the expression forV:

ν = −2+∑Viκi , κi = di +
3
2

ni + pi −4. (2.2)

Here, whereVi is the number of vertices of typei while di , ni andpi refer to the number of deriva-
tives orMπ -insertions, nucleon field and pion field operators, respectively. Further, κi is simply
the canonical field dimension of a vertex of typei (up to the additional constant−4). Writing the
effective chiral HamiltonianH as

H =
∞

∑
κ=1

H(κ) , (2.3)

the operatorA can be calculated recursively from the requirement that the transformedHamiltonian
is block-diagonal,

A =
∞

∑
α=1

A(α) ,

A(α)=
1

Eη −Eλ
λ

[

H(α)+
α−1

∑
i=1

H(i)A(α−i)−
α−1

∑
i=1

A(α−i)H(i)−
α−2

∑
i=1

α− j−1

∑
j=1

A(i)H( j)A(α−i− j)
]

η .(2.4)

Here,Eη (Eλ ) refers to the free energy of nucleons (nucleons and pions) in the stateη (λ ). It
is important to emphasize that Eq. (2.1) does not provide the most general parametrization of
the unitary operator. Moreover, as found in Ref. [11], the subleadingcontributions to the three-
nucleon force obtained using the parametrization in Eq. (2.1) cannot be renormalized. To restore
renormalizability at the level of the Hamilton operator additional unitary transformationU ′ in the
η-subspace of the Fock space had to be employed,ηU ′ηU ′†η = ηU ′†ηU ′η = η , whose explicit
form at lowest non-trivial order is given in that work.

It is, in principle, straightforward to extend this formalism to low-energy electromagnetic reac-
tions such as e.g. electron scattering off light nuclei. Here and in what follows, we restrict ourselves
to the one-photon-exchange approximation to the scattering amplitude. The effective nuclear cur-
rent operatorηJµ

eff(x)η acting in theη-space is then defined according to

〈Ψ f |Jµ(x)|Ψi〉 = 〈φ f |ηU ′†ηU†Jµ(x)UηU ′η |φi〉 ≡ 〈φ f |ηJµ
eff(x)η |φi〉 , (2.5)

whereη |φi, f 〉= ηU ′†ηU†|Ψi, f 〉 denote the transformed states and we have omitted the components
λ |φi, f 〉 which is justified as long as one stays below the pion production threshold. Inthe above
expression,Jµ(x) denotes the hadronic current density which enters the effective LagrangianLπNγ

describing the interaction of pions and nucleons with an external electromagnetic fieldA µ and is
given by

Jµ(x) = ∂ν
∂LπNγ

∂ (∂νAµ)
− ∂LπNγ

∂Aµ
. (2.6)

Notice that contrary to the Hamilton operator, the unitarily transformed current does, in general,
not have the block-diagonal form, i.e.ηU†Jµ(x)Uλ 6= 0. Again, it is important to realize that
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the above definition ofηJµ
eff(x)η does not fully incorporate the freedom in the choice of unitary

transformations. Thus, one might expect that this formulation yields the effective current opera-
tor which is not renormalizable by a redefinition of the low-energy constants(LECs) entering the
underlying Lagrangian. Indeed, renormalizability of the effective current operator implies highly
non-trivial constraints in the case of one-pion exchange contributions at the one-loop level since all
β -functions of the LECsl i from Lπ [12, 13] anddi from LπN [14, 15] are fixed. We have verified
that the ultraviolet divergences entering the expressions for the one-pion exchange contributions
using the formulation based on theA µ -independent unitary transformation as described above can
indeed not be completely removed by the redefinition of the corresponding LECs. Thus, a more
general parametrization of the unitary transformation is required in order torestore renormalizabil-
ity of the nuclear current. This can be achieved if one allows for the unitaryoperator to depend
explicitly on the external electromagnetic field,U(A µ). The operatorU(A µ) then has to be cho-
sen in such a way that the transformed HamiltonianU†(A µ)HπNγU(A µ) is block-diagonal (with
respect to theη- andλ -spaces) and coincides with the one given in Ref. [11] when the external
electromagnetic field is switched off. The effective nuclear current operatorηJµ

eff(x)η in this more
general formulation receives additional contributions which are not included in Eq. (2.5) and re-
sult fromA µ -dependent pieces ofU(A µ) in the expressionU†(A µ)HπNγU(A µ) whose form is
determined by renormalizability of the resulting nuclear current operator. These additional terms
in ηJµ

eff(x)η are found to have no effect on the two-pion exchange current and willbe discussed in
detail in a separate publication [16] devoted to the one-pion exchange contributions. Finally, we
emphasize that the power counting employed in the present work implies the following restrictions
on the photon momentumk in the two-nucleon rest frame

|~k| ∼ O (Mπ) , k0 ∼ O

(

M2
π

m

)

≪ Mπ , (2.7)

whereMπ and m refer to the pion and nucleon masses, respectively. For the kinematics with
k0 ∼ O (Mπ), one will have to systematically keep track of the new soft momentum scale

√
Mπm.

This goes beyond the scope of the present work.
For the calculation of the leading two-pion exchange two-nuclear currentoperator in the

present work we only need the leading pion and pion-nucleon terms in the effective Lagrangian

L
(2)

ππ =
F2

π
4

tr
[

DµUDµU† +M2
π(U +U†)

]

,

L
(1)

πN = N†(i v ·D+gAS·u)N , (2.8)

where the superscripti in L (i) denotes the number of derivatives and/or pion mass insertions. Here,
Fπ (gA) is the pion decay constant (the nucleon axial-vector coupling),N represents a nucleon
field in the heavy-baryon formulation andSµ = 1

2γ5σµνvν is the Pauli-Lubanski spin vector which
reduces toSµ = (0, 1

2~σ) for vµ = (1,0,0,0). At the order we are working and for the contributions
to the current operator considered in the present work, all LECs entering Eq. (2.8) should be taken
at their physical values. Further, the SU(2) matrixU = u2 collects the pion fields and various
covariant derivatives are defined according to

DµU = ∂µU − ir µU + iUl µ ,
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uµ = i
[

u†(∂µ − ir µ)u−u(∂µ − il µ)u†] ,

DµN =
[

∂µ +Γµ − iv(s)
µ

]

N with Γµ =
1
2

[

u†(∂µ − ir µ)u+u(∂µ − il µ)u†] . (2.9)

To describe the coupling to an external electromagnetic field, the left- and right-handed currentsrµ

andlµ and the isoscalar currentv(s)
µ have to be chosen as

rµ = lµ =
e
2
Aµτ3 , v(s)

µ =
e
2
Aµ , (2.10)

whereedenotes the elementary charge. Expanding the various terms in the effective Lagrangian in
powers of the pion field and using the canonical formalism along the lines of Ref. [17], we end up
with the following interaction terms in the Hamilton density

H
(1)

21 =
gA

2Fπ
N†

(

~σ~τ · ·~∇~π
)

N ,

H
(2)

22 =
1

4F2
π

N†[~π × ~̇π
]

·~τN ,

H
(4)

42 =
1

32F4
π

(

N† [~τ ×~π]N
)

·
(

N† [~τ ×~π]N
)

, (2.11)

and the electromagnetic current density is of the form

J0
20

(−1)
=

e
2

N†(1+ τ3)N ,

J0
02

(−1)
= e

[

~π × ~̇π
]

3 ,

~J02
(−1)

= −e
[

~π ×~∇~π
]

3 ,

~J21
(0)

= e
gA

2Fπ
N†~σ [~τ ×~π]3N . (2.12)

In the above expressions we adopt the notation of Ref. [11]. In particular, the subscriptsa and
b in H

(κ)
ab andJµ

ab
(κ)

refer to the number of the nucleon and pion fields, respectively, while the
superscriptκ gives the dimension of the operator as defined in Eq. (2.2). Further, the symbol ·· in
Eq. (2.11) denotes a scalar product in the spin and isospin spaces.

3. Results in configuration space

For the sake of convenience, we distinguish between seven classes of contributions according
to the power of the LECgA (i.e. proportional tog0

A, g2
A andg4

A) and the type of the hadronic current
Jµ

20, Jµ
21 or Jµ

02 as shown in Fig. 1. Notice that there are no contributions proportional tog0
A and

involving Jµ
20 andJµ

21. We also emphasize that the second diagram in the class 3 does not generate
any contribution. It results from the term in the Hamilton density which is absentin the Lagrangian
and arises through the application of the canonical formalism. Finally, it should be understood that
the meaning of diagrams in the method of unitary transformation is different from the one arising
in the context of covariant and/or time-ordered perturbation theory.

Below, we give explicit results for the current and charge densities,Jµ = (ρ, ~J), resulting from
the individual classes using the notation

〈~p1
′~p2

′|Jµ |~p1~p2〉 = δ (~p1
′ +~p2

′−~p1−~p2−~k)

[

c7

∑
X=c1

Jµ
X +(1↔ 2)

]

, (3.1)
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Class 1:

Class 2:

Class 3:

Class 4:

Class 5:

Class 6:

Class 7:

Figure 1: Diagrams showing contributions to the leading two-pion exchange currents. Solid and dashed
lines refer to nucleons and pions, respectively. Solid dotsare the lowest-order vertices from the effective
Lagrangian while the crosses represent insertions of the electromagnetic vertices as explained in the text.
Diagrams resulting from interchanging the nucleon lines are not shown.

where~pi (~pi
′) denotes the incoming (outgoing) momentum of nucleoni and~k is the photon momen-

tum. In order to avoid confusion with the nucleon labels, in the following we label the Cartesian
components of various vectors in isospin space by the superscripts rather than subscripts. Further,
(1↔ 2) refers to the contribution resulting from the interchange of the nucleon labels. We find the
following compact results for the current density in configuration-spacefrom the individual classes
of the diagrams shown in Fig. 1:

~Jc1(~r10,~r20) = e
g2

AM7
π

128π3F4
π

[

~∇10[~τ1×~τ2]
3 +2

[

~∇10×~σ2

]

τ3
1

]

δ (~x20)
K1(2x10)

x2
10

,

~Jc2(~r10,~r20) = −e
g4

AM7
π

256π3F4
π

(

3∇2
10−8

)

[

~∇10[~τ1×~τ2]
3 +2

[

~∇10×~σ2

]

τ3
1

]

δ (~x20)
K0(2x10)

x10

+e
g4

AM7
π

32π3F4
π

[

~∇10×~σ1

]

τ3
2 δ (~x20)

K1(2x10)

x2
10

,

6



P
o
S
(
C
D
0
9
)
1
0
8

Electromagnetic currents from chiral EFT S. Kölling

~Jc3(~r10,~r20) = −e
M7

π
512π4F4

π
[~τ1×~τ2]

3(~∇10−~∇20)
K2(x10+x20+x12)

(x10x20x12)(x10+x20+x12)
,

~Jc5(~r10,~r20) = −e
g2

AM7
π

256π4F4
π

(

~∇10−~∇20

)

[

[~τ1×~τ2]
3~∇12 ·~∇20−2τ3

1~σ2 ·
[

~∇12×~∇20

]

]

× K1(x10+x20+x12)

(x10x20x12)
,

~Jc7(~r10,~r20) = e
g4

AM7
π

512π4F4
π

(

~∇10−~∇20

)

[

[~τ1×~τ2]
3~∇12 ·~∇10

~∇12 ·~∇20+4τ3
2~σ1 ·

[

~∇12×~∇10

]

~∇12 ·~∇20

]

× x10+x20+x12

x10x20x12
K0(x10+x20+x12) , (3.2)

and the charge density

ρc1(~r10,~r20) = ρc2(~r10,~r20) = ρc3(~r10,~r20) = 0,

ρc4(~r10,~r20) = e
g2

AM7
π

256π2F4
π

τ3
1 δ (~x20)

(

∇2
10−2

) e−2x10

x2
10

,

ρc5(~r10,~r20) = −e
g2

AM7
π

256π2F4
π

τ3
2 δ (~x20)

(

∇2
10−2

) e−2x10

x2
10

,

ρc6(~r10,~r20) = −e
g4

AM7
π

256π2F4
π

δ (~x20)

[

τ3
1

(

2∇2
10−4

)

+ τ3
2 ~σ1 ·~∇10~σ2 ·~∇10 − τ3

2~σ1 ·~σ2

]

e−2x10

x2
10

−e
g4

AM7
π

128π2F4
π

δ (~x20)τ3
1

(

3∇2
10−11

) e−2x10

x10
,

ρc7(~r10,~r20) = −e
g4

AM7
π

512π3F4
π

[

(τ3
1 + τ3

2)

(

~∇12 ·~∇10
~∇12 ·~∇20+~∇12 ·

[

~∇10×~σ1

]

~∇12 ·
[

~∇20×~σ2

]

)

+[~τ1×~τ2]
3~∇12 ·~∇10

~∇12 ·
[

~∇20×~σ2

]

]

e−x10

x10

e−x20

x20

e−x12

x12
. (3.3)

In the above expressions,Kn(x) denote the modified Bessel functions of the second kind and we
have introduced dimensionless variables~x10 = Mπ~r10,~x20 = Mπ~r20 and~x12 = Mπ~r12 = Mπ(~r1−~r2).
Further,xi j ≡ |~xi j | and all derivatives with respect to~x10,~x20 and~x12 are to be evaluated as if these
variables were independent of each other. We also emphasize that the above expressions are valid
for x10 + x20 > 0. Finally, it should be understood that the behavior of the current and charge
densities at short distances will be affected if one uses a regularization with a finite value of the
cutoff.

4. Summary and Outlook

The application of the method of unitary transformation to derive the leading two-pion ex-
change two-nucleon charge and current densities based on chiral effective field theory was pre-
sented. The resulting nuclear current is given configuration space, where we were able to evaluate
all loop integrals analytically leading to very compact expressions in terms of the modified Bessel
functions of the second kind. We have also explicitly verified that the derived exchange currents
fulfill the continuity equation, see [9] for details.
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In addition to the two-pion exchange contributions, there are also one-pionexchange and short-
range terms at orderO(eQ), see Refs. [7, 8] for a recent work based on time-ordered perturbation
theory. As will be demonstrated in a subsequent publication [16], renormalization of the one-pion
exchange contributions at the one-loop level strongly restricts the ambiguityin the definition of the
current and provides a highly non-trivial consistency check of the calculation. In particular, one
needs to ensure thatall appearing ultraviolet divergences are absorbed into redefinition of theLECs
di andl i from L

(3)
πN andL

(4)
π , respectively, with already knownβ -functions, see e.g. [12, 13, 14,

15]. This work is in progress [16].
Finally, in the future, one also needs to test the convergence of the chiralexpansion for the

one- and two-pion exchange currents by calculating the corrections at order O(eQ2). Given the
large numerical values of the LECsc3,4 from L

(2)
πN , one might expect sizeable corrections which,

indeed, is well known to be the case for the two-pion exchange potential [18]. In this context, it
might be advantageous to include the∆(1232) isobar as an explicit degree of freedom in effective
field theory utilizing the small scale expansion [19].
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