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1. Introduction

Chiral effective field theory (EFT) provides a systematic and model-iedggnt framework
to analyze low-energy hadronic processes. In particular, nucleeesdave been successfully
derived [1]. However, knowledge of the consistent electromagnetihange current operator is
needed to study, for example, electron and photon few-nucleon resgtithmomentum transfer
of orderMy,.

To the best of our knowledge, no applications have so far been petbto electron and
photon inelastic few-nucleon reactions with the momentum transfer of the Mrgdehere a lot of
experimental data are available, sde [2] for a recent review article dhebeetical achievements in
this field based on conventional framework. Recent progress in thiesaeaescription of the two-
[B, B] and more-nucleon systeni$ [5] within the chiral EFT, see @lso [Btefierences therein, gives
a strong motivation to apply this framework to the abovementioned proceshesrequires the
knowledge of the consistent electromagnetic exchange current opfnatmn-vanishing values
of the photon momentum. While the leading two-nucleon contributions to the exelamrent
arise from one-pion exchange and are well known, the correctiotie atne-loop level have not
yet been completely worked out.

Pastore et al[]7] 8] have recently performed an important step towardkettription of the
exchange current operator. They calculate the electromagnetic toperator at leading one-loop
order based on time-ordered perturbation theory.

In this contribution, we discuss the two-pion exchange current opeatieading one-loop
order in the framework of unitary transformation. Since we use a compléaftdyaht formalism,
our results provide a non-trivial check of the results of Pastore etialh&r, we also present results
for the exchange current density which, to the best of our knowlelalge not been presented
before. The results are given in extremely compact formulae in confignispace. An expression
in momentum space and a more details can be fourld in [9].

This manuscript is structured as follows. In sec{ibn 2 we briefly review thtaedeof unitary
transformation and discuss how nuclear currents can be calculatadtsRegonfiguration space
are given in sectiofl 3. We end with a summary and outlook.

2. Nuclear currents using the method of unitary transformaion

We begin with a brief reminder about the method of unitary transformatioriiealpim the
calculation of nuclear potentials, for details se [1].
Following Okubo [1D] the unitary transformatidhcan be parameterized as

U (n(1+ATA)—1/2 —AT(1+AAT)—1/2> | 2.1)

A(1+ATA)"Y2 ) (1+AANH1/2

in terms of the operatoh with the propertyA = AAn, where we introduced projection operators
n (A) on the purely nucleonic (the remaining) part of the Fock space satisfirgn, A2 = A,

nA =An =0andA +n =1 The operatoA has to be chosen in a way that the transformed
HamiltonianH = UTHU is block-diagonal in the)— andA — subspaces.
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In Ref. [11], a convenient formulation of the power counting has beesgnted. The low-
momentum dimensiomn of the effective potential, V ~ &(Q/A)Y with Q andA refering to the
soft and hard scales of the order of the pion gagheson masses, respectively, is given (modulo
the normalization constant2) by the overall inverse mass dimension of the coupling constants
entering the expression fot:

3
V:—Z—{—Z\/iKi, Ki:di+§ni+pi—4. (2.2)

Here, wheré/; is the number of vertices of typewhile d;, nj andp; refer to the number of deriva-
tives or M -insertions, nucleon field and pion field operators, respectively. €umhis simply
the canonical field dimension of a vertex of tyip@ip to the additional constant4). Writing the
effective chiral Hamiltoniatd as

H=S H®, (2.3)

k=1

the operatoA can be calculated recursively from the requirement that the transfdfamdtonian
is block-diagonal,

a-2a—j-1

1 a-1 Loa-l L L o
Ald) — A [H(U)+ HOAl=) _ 5 aAld=)0) _ ADHO A=D1 n (2.4)
En—Ex i; i; i; le

Here, E; (E,) refers to the free energy of nucleons (nucleons and pions) in therptgtg. It
is important to emphasize that Eq. {2.1) does not provide the most gereeahgirization of
the unitary operator. Moreover, as found in R€f][11], the subleadimgributions to the three-
nucleon force obtained using the parametrization in Ed} (2.1) cannonbemalized. To restore
renormalizability at the level of the Hamilton operator additional unitary transditionU’ in the
n-subspace of the Fock space had to be emplogednU’'n = nU’Thu’n = n, whose explicit
form at lowest non-trivial order is given in that work.

Itis, in principle, straightforward to extend this formalism to low-energytetenagnetic reac-
tions such as e.g. electron scattering off light nuclei. Here and in whaife|le restrict ourselves
to the one-photon-exchange approximation to the scattering amplitude. fEbtvefnuclear cur-
rent operatonJé‘ﬁ(x)n acting in then-space is then defined according to

(We|IH(x)|Wi) = (@r[nU T NUTIF(x)UnU'n|@) = (@ [Nk (x)n| @), (2.5)

wheren|@ ¢) = nU’TnU T|LIJi,f> denote the transformed states and we have omitted the components
Al@ ¢) which is justified as long as one stays below the pion production thresholtie labove
expressionJ#(x) denotes the hadronic current density which enters the effective hgigraZm,
describing the interaction of pions and nucleons with an external electr@tiadgield.«* and is

given by
JH(X) 0\,0(0‘/ AR (2.6)

Notice that contrary to the Hamilton operator, the unitarily transformed cud®ss, in general,
not have the block-diagonal form, i.gUTJ#(x)UA # 0. Again, it is important to realize that
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the above definition of)Jé‘ff(x)n does not fully incorporate the freedom in the choice of unitary
transformations. Thus, one might expect that this formulation yields thetiwtecurrent opera-
tor which is not renormalizable by a redefinition of the low-energy consta€s) entering the
underlying Lagrangian. Indeed, renormalizability of the effectiveenitroperator implies highly
non-trivial constraints in the case of one-pion exchange contributidhe ane-loop level since all
B-functions of the LEC$ from %, [L4,[13] andd; from Z [[L4, 15] are fixed. We have verified
that the ultraviolet divergences entering the expressions for the ionesgchange contributions
using the formulation based on the!-independent unitary transformation as described above can
indeed not be completely removed by the redefinition of the correspondi@s L Thus, a more
general parametrization of the unitary transformation is required in ordlestore renormalizabil-
ity of the nuclear current. This can be achieved if one allows for the unipeyator to depend
explicitly on the external electromagnetic fieldl(.<7"). The operatot) («7H) then has to be cho-
sen in such a way that the transformed HamiltorddiferH)H U (<7#) is block-diagonal (with
respect to thej- and A-spaces) and coincides with the one given in Refl [11] when the externa
electromagnetic field is switched off. The effective nuclear currentacI:penJgﬁ(x)n in this more
general formulation receives additional contributions which are notdediin Eq. [25) and re-
sult from 7H-dependent pieces tf(«7H) in the expressiot) (.7 H)H U («7H) whose form is
determined by renormalizability of the resulting nuclear current operatoesd additional terms
in nJgﬁ(x)n are found to have no effect on the two-pion exchange current antdevdiscussed in
detail in a separate publicatiop [16] devoted to the one-pion exchangebeions. Finally, we
emphasize that the power counting employed in the present work implies theifmlcestrictions

on the photon momentuinin the two-nucleon rest frame

2
K~oMp), KOno (“r”n> <My, 2.7)

where M;; and m refer to the pion and nucleon masses, respectively. For the kinematics with
KO ~ & (My), one will have to systematically keep track of the new soft momentum sdsligm.
This goes beyond the scope of the present work.

For the calculation of the leading two-pion exchange two-nuclear cuopetator in the
present work we only need the leading pion and pion-nucleon terms inféied Lagrangian

F2
L2 - S tr[DLUDFUT - MEU +UT)]

£ = N'(iv-D+gaS-u)N, (2.8)

where the superscriptn .# () denotes the number of derivatives and/or pion mass insertions. Here,
Fr (ga) is the pion decay constant (the nucleon axial-vector coupliNg)epresents a nucleon
field in the heavy-baryon formulation ai@j = %ysa,“,v" is the Pauli-Lubanski spin vector which
reduces t&" = (0, %6) for v, = (1,0,0,0). At the order we are working and for the contributions

to the current operator considered in the present work, all LECsiegteq. (2.B) should be taken

at their physical values. Further, the SU(2) matdx= u? collects the pion fields and various
covariant derivatives are defined according to
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Uy = i [uT(dy —irp)u—u(dy —il)u'],
. . 1 . .

DuN = [du +Ty —|v£f>} N with =3 [uT(du —irpu+u(du—ilHu']. (2.9
To describe the coupling to an external electromagnetic field, the left- amehénded currents,
andl, and the isoscalar curremff) have to be chosen as
wheree denotes the elementary charge. Expanding the various terms in the eflemgikangian in
powers of the pion field and using the canonical formalism along the linesfof[Rf], we end up
with the following interaction terms in the Hamilton density

A = AN (57 BN,

U SR
%”2(2):@ M7t - TN,
4 1 I 2 =
AN = aoea (T[T TIN) - (NT[F x 7EN) (2.11)

and the electromagnetic current density is of the form

_ e
1Y = SNF(1+ 1N,

2
\]82(71) — e[ﬁx iﬂ?’,
joz(_l) = —e[?rx ﬁ*}s,
3 ¥ = e NG T X AN, (2.12)
oF,

In the above expressions we adopt the notation of Ref. [11]. In platiche subscripts and

bin ,%’gl(tf) anngb(K) refer to the number of the nucleon and pion fields, respectively, while the
superscripk gives the dimension of the operator as defined in Ed. (2.2). Furtheryiiea$-- in

Eq. (2.11) denotes a scalar product in the spin and isospin spaces.

3. Results in configuration space

For the sake of convenience, we distinguish between seven classegriiations according
to the power of the LE@a (i.e. proportional tcgg, g4 andg}) and the type of the hadronic current
b, 35 or J, as shown in Fig[]1. Notice that there are no contributions proportiong, &nd
involving J5, andJ;;. We also emphasize that the second diagram in the class 3 does notgenera
any contribution. It results from the term in the Hamilton density which is abeehé Lagrangian
and arises through the application of the canonical formalism. Finally, il@t@uwnderstood that
the meaning of diagrams in the method of unitary transformation is differemt thhe one arising
in the context of covariant and/or time-ordered perturbation theory.

Below, we give explicit results for the current and charge densittes; (p, \T) resulting from
the individual classes using the notation

c7
(B B2 |9¥P1B2) = S(Py' + B2 — Pr— P2 —K) [ )3 J§‘+<1H2>] : (3.1)

X=cl
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Class 1: T -

,,,,, bl Lb b
Class2: | | |
B R
Class 3: b e
Class 4: Lﬁ TL+ T4
y (? y -
Class 5: @
Class 6: £ ,,,,, % T 77777 P %l T\;Xi:’
””””” ®
t 77777 t®
Class 7:
,®,, ,,,,,
Figure 1: Diagrams showing contributions to the leading two-pionhexge currents. Solid and dashed
lines refer to nucleons and pions, respectively. Solid dotsthe lowest-order vertices from the effective

Lagrangian while the crosses represent insertions of #xereimagnetic vertices as explained in the text.
Diagrams resulting from interchanging the nucleon linesrent shown.

wherep; (B') denotes the incoming (outgoing) momentum of nucliemmdk is the photon momen-
tum. In order to avoid confusion with the nucleon labels, in the following wel ldigeCartesian
components of various vectors in isospin space by the superscriptsttethesubscripts. Further,
(1 2) refers to the contribution resulting from the interchange of the nucleotslae find the
following compact results for the current density in configuration-sfrace the individual classes
of the diagrams shown in Fif] 1:

. . g%\MZ[ = o 3 K]_(ZX]_())
Je1 (10, T20) = 61287'[3F,‘T‘ [Dlo[Tl X Tp]"+2 [Dlox Uz} Tl} (%20 2,
- S gaM; 2 = L3 = ~ 7.3 Ko(2x10)
ch (?10, I’zo) = — 672567_[37;# (3|:|10f 8) DlO[Tl X Tz] +2 [Dlo X 02} T 5(220) 7)(10
M7 2 53 K1(2x10)
+ e327T3Fle [Dlo X 0'1} T, 5(?20) X%O ,
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. M L L 5. o Ko (X10+ X20+ X12)
Je3(T10,T20) = —€—— 22— [T1 x T2)° (U10— U ;
3(Mo0.720) 512n4F4[ 1 T2 (H10~z0) (X10%20%12) (X10+ X20+ X12)
; TN P e S R
Jos (T10,720) = 256n4F4 (Dlo— Dzo) [[Tl x To]" U2+ U0 — 21702 - {Dlz X Don
K1 (X10+X20+ X12)
(X10X20X12)

- giMZ[ - - = .32 - - - 3o - - - -
Je7(M"0,T20) = €52 (Dlo— D20) [T1 X T2]" Ua2- U10012- U0+ 47501 - |:|:|12X Dlo} Ui2- U2

5124

X MKQ(Xlo-i-Xzo-l-Xlz), (3.2)

X10X20X12

and the charge density

Pc1(T10,T20) = Pe2 (?10,?20) = pc3(T'10,T20) =0,

(Fro0.720) — - IAMT_ 13 5(3,0) (02— 2) &
Pca(r10,120 256 2F4 20) (10 X2,
g,%‘M7 5 e 2X10
T10,T20) = 5 X 09— 2) ——,
gA 3 (o2 35 Tlind.[ 35, .5, €
Pes(M10,720) = — €525 5(220) [Tl (2010~ 4) + 13 01 U1002 - U1o — 1501 - 02] 2
T Fa X0
g4 M7 3 ) @210
—e—2—-—-—9O(X 307,—11
Togrerd O T (B~ 11 = =
Pc7(M0,720) = 5?37_[324 [(T13+ 73) (alz' D001z Cao+ Dz [ilo X 51} D [izo X 52})

e X100 @ X0 @ X12

+ [T x T3 D1z Do {ﬁzo X 52H : (3.3)
X10 X20 X12

In the above expressionk,(x) denote the modified Bessel functions of the second kind and we
have introduced dimensionless variablggs= M1, X20 = MT20 andxXi2 = M2 = My (1 —T2).
Further,xj = |%;| and all derivatives with respect Ko, X0 andXy, are to be evaluated as if these
variables were independent of each other. We also emphasize thabtreeadpressions are valid
for X130+ %20 > 0. Finally, it should be understood that the behavior of the current hadye
densities at short distances will be affected if one uses a regularizatilbravinite value of the
cutoff.

4. Summary and Outlook

The application of the method of unitary transformation to derive the leadingptaro ex-
change two-nucleon charge and current densities based on cligetivef field theory was pre-
sented. The resulting nuclear current is given configuration spdwrewe were able to evaluate
all loop integrals analytically leading to very compact expressions in term&ohtdified Bessel
functions of the second kind. We have also explicitly verified that the eeéraxchange currents
fulfill the continuity equation, seg][9] for details.
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In addition to the two-pion exchange contributions, there are also oneepatrange and short-
range terms at orde? (eQ), see Refs.l]ﬂ 8] for a recent work based on time-ordered petininba
theory. As will be demonstrated in a subsequent publica@n [16], redizatian of the one-pion
exchange contributions at the one-loop level strongly restricts the ambiguiitg definition of the
current and provides a highly non-trivial consistency check of theutation. In particular, one
needs to ensure thall appearing ultraviolet divergences are absorbed into redefinition bBGs
d andl; from £ and.2?, respectively, with already knowB-functions, see e.g[T12.11B]14,
[15]. This work is in progresg [16].

Finally, in the future, one also needs to test the convergence of the eRjprahsion for the
one- and two-pion exchange currents by calculating the correctionslet @(eQ’). Given the
large numerical values of the LE@s4 from f,s,%,), one might expect sizeable corrections which,
indeed, is well known to be the case for the two-pion exchange potepijl [4 this context, it
might be advantageous to include th@232) isobar as an explicit degree of freedom in effective
field theory utilizing the small scale expansi¢n|[19].
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