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1. Introduction

The effective field theory (EFT) approach is a very powedol for the investigation of Quan-
tum Chromodynamics (QCD) at long distances. Chiral Peatish theory §PT) [1, 2] is the EFT
for the description of the chiral (pseudo) Goldstones inlteenergy domaire < Ay ~ 1GeV,
with Ay typically the scale of the lowest resonance masses. Reoagitgss has allowed to carry
XPT up tod(p®), i.e., up to the two-loop level [3].

In the intermediate resonance regidwy < E < 2GeV, xPT stops being valid and one must
explicitly include the resonance fields in the Lagrangiascdgtion. Resonance Chiral Theory
(RxT) describes the interaction of resonance and pseudo-teakes within a general chiral in-
variant framework [4, 5]. Alternatively to the chiral cound, it uses the INc expansion of QCD
in the limit of large number of colours [6] as a guideline tgamize the perturbative expansion.
At leading order (LO), just tree-level diagrams contributieile loop diagrams yield higher order
effects.

The infinite tower of mesons contained in larle—QCD is often truncated to the lowest
states in each channel, the so called single resonancexaipptimn (SRA). This approximation
has led to successful predictions @f p*) and &(p®) low-energy constants (LECs) [4, 5, 7, 8, 9].
However, the study of Regge models with an infinite number efons has shown that if one
keeps just the lightest states with exactly the same caypland masses of the full model then
one get wrong values for the LECs [10]. Likewise, that analyisids that the truncated theory
do not produce the right short-distance (SD) behaviour.sThua matching with the OPE power
behaviour the parameters of the truncated theory will becshifted in order to accommodate
the right short-distance dependence. Chiral symmetryreaghe proper low-momentum structure
of the RyT amplitudes aroungy® = 0 but their high energy behaviour is not fixed by symmetry
alone. Nevertheless, one knows that for large Euclidean entax(—p?) = 2 Ge\? the SS— PP
correlator is expected to follow a vanishing behaviour gribed by the OPE. In that sense, the
matched amplitude can be understood with the help of Padéx@prants as a rational interpolator
between the deep Euclidegd = —w and the low-energy domain aroupd = 0 [11, 12]. The
Weinberg sum-rules (WSR) [13] yield the most convenienapeaters for the interpolation rather
than accurate determinations of the resonance couplings.

Not much is known about the extension okR beyond the tree level approximation. Al-
though some theoretical issues on the renormalizabilif)oT still need further clarification [14],
several chiral LECs have been already computed up to NLO M through QFT one-loop cal-
culations [15], dispersion relations [16] and even analy&éh the help of renormalization group
techniques [17]. Here we present the basic ideas of the wdRref. [18], where th&S- PP corre-
lator is computed up to next-to-leading order fiNg (NLO). The one-loop amplitude is then taken
as an improved interpolator between long and short distaand the corresponding modifications
to the former WSRs are extracted. The amplitude is first caatpwithin the subtraction scheme
of xPT [2]. However, though equivalent at low energies, some@pjate schemes are found to
be more convenient and to introduce less uncertaintiesxish constraints.
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2. Weinberg sum rules at leading and next-to-leading or der

The two-point Green functioBS— PP we are interested in is defined by
NEe(p) = i [ d%ePXOTISHS0) ~PWPO)0) =6™N(F), @21

with $* = qyiq andpP? = |qugq, beingA, the Gellmann matricesa= 1,...8).
For convenience, the )/ Lagrangian can be organized in the foth= Zcg+ LR+ ZLrr +
., Where %sg contains just Goldstone bosons and external sourggsncludes operators with
also one resonance fieR] etc. %z is provided by thes(p?) xPT operators and the terms with
one resonce field are given in the SRA by [4]

IGV

I:V uv u I:A uv .
L= —= , + (A7) +cg(SWuy) +cm(Sx.) +idm(Px_),
R N v 7)) + 2\/7<Vuv[ u’]) 2\/§< v F27) 4+ ca i) + Cm(SX+) m(PX-)
(2.2)
where at tree-level operators with two or more resonancestioontribute.
If one computes the one-loop correlator, the perturbatigailt shows the form [16]
1 2F? 16¢3 1602
—N(p?) = = m_ _ m 2 2.3
2 (p%) 72 +|v|§—p2 M2 p? + p(p%), (2.3)

with p(p?) containing the renormalized loop contributions and othee-tevel contributions sub-
leading in /Nc [16, 18]. The correlator has then the high-energy expar{di®h

1 L/ o, 0. P
le'l(p) :(7;4“? (ak +a, In7 ) (2.4)

2 (oo}
The requirement that the amplitude follows the high energdE@ehaviort M(p?) = 1/pS
produces the SD constraints [19] for the log temé@ = az(é) = a((f) = 0, and the non-logarithmic
conditionsa” = 0 and

a” = 2F24 1602 — 162 +A(M) =0,  as” = 16d2 M3 — 1662M3+B(i) = 0. (2.5)

At LO in 1/Nc there are no Iogm& = 0). The remaining non-logarithmic constraints require the
absence of local termagp) = 0) and the usual (largédc) Weinberg sum-rules&, — 8d2 — F2 =0,
cZMZ—d2M3 =07, 13]

At NLO, the WSRs gain the subleading correctidxig) andB(u) [16, 18]2. Notice that now

S&PP

) ~ —12masF* will be neglected in this work [7, 20].
2If one considers just the & Lagranglan,fGB+.,(/R [4], the NLO termsA(u) andB(u) result [18]

IThe tiny dimension four condensagg
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the couplings in (2.5) are the renormalized ones.

One can then consider a different renormalization scheme fe ¢, dm, Ms, Mp (denoted
with hat in the new scheme). The difference between the tlwerses would be provided by the
shiftsk = K + Ak, with Ak a finite constant formally subleading. Singeu) andB(u) are already
NLO in (2.5), their variation is sub-subdominant and can églected, leaving

al?) = 2F? 4 1602 — 16 + [320mAdm— 326mAcn + A()] = O, (2.6)

ay? = 16d2M3 — 162 M3 + [32M3dmAd + 1602AM3 — 32M3EmAcy — 1662AM3+B(u)] = 0.
The terms within the brackets, -], correspond to the finite renormalized contributions fréw t
one-loop diagrams in the new scheme. In general, one fintdhehaxpressions in the brackets suf-
fer from large numerical uncertainties, depending on tleeipe values of the resonance couplings.
However, there is a convenient scheme where the expresaitims brackets become zero. In that
case, (2.6) shows the same structure of the IdgeA/SRs [7], though now in terms of renormal-

ized parameter&. Furthermore, the change of scheme does not change thenlengyeprediction
for the LECs [18]. It just removes the former uncertaintyhie NLO high-energy constraints (2.5).
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