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The contribution of stochastic background fields to the skéosity n of the gluon plasma
in SU(3) YM theory is calculated. The result for the ratio bfstcontribution to the entropy
density, proportional to the squared chromo-magneticrgicmndensate and the fifth power of
the correlation length of the chromo-magnetic vacuums faff with the increase of temperature.
Numerically, it is of the order of the conjectured lower bdwf 1/(4m), achievable in4” = 4
SYM theory. As a by-product of the calculation, we find a martar form of the two-point
correlation function of gluonic field strengths, which ig tinly one consistent with the Lorentzian
shape of the shear-viscosity spectral function. By the sagthod, we calculate the contribution
of the background fields to the bulk viscosgy
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1. Introduction and preliminary estimates

The RHIC data on collective-expansion dynamics of the hot dense QGP-fireball formed in
ultrarelativistic nucleus-nucleus collisions can be désd by the assumption that this dynamics
is governed by the laws of relativistic hydrodynamics. ielas of different mass are emitted from
the fireball with a common fluid velocity, that is a signatufeachydrodynamic-type behavior.
Furthermore, an agreement between the experimental d&2admhd the predictions of relativistic
hydrodynamics can be reached if the flow of the QGP-fluid iat&r@ as almost non-viscous [3].
This leads to an indication that, in the vicinity of the defbo@ment phase transition, the quark-
gluon plasma (QGP) produced in the RHIC experiments behawees like an ideal quantum liquid
rather than a weakly interacting gas. The mean free paghof a parton, which traverses such a
liquid, is much smaller than the thermal wavelengthk- 1/T, i.e. (L'ri,?fp/ﬁ) < 1L

One can consider for comparison a weakly interacting difjate model of the QGP. There,
Lonip ~ (P0t) ! with p anda; standing for the particle-number density and the Coulomhsiport
cross section, respectively. Using the standard estinmted 2 andg; ~ g*B%Ing~1, whereg =
g(T) is the perturbative finite-temperature QCD coupling, ontiols (Lt /B) ~ 1/(g*Ing™) >
1, that contradicts the above-mentioned experimentalteesdne can check [4] that these results
could have only been reproduced by the dilute-gas modekifprturbative transport cross sec-
tion, g;, were larger by an order of magnitude. This inconsistendphefweakly interacting QGP
with the RHIC data initiated recent calculations of kinatmefficients in thestrongly interacting
relativistic plasmas.

Among these coefficients, the one whose values define whitiglasma can be considered
as weakly or strongly interacting is the shear viscogitylt is related to the abov@ms,/3)-ratio
via the estimategn/s) ~ (Lmip/B), Wheres is the entropy density. According to this relation,
the shear-viscosity to the entropy-density ratjgs, becomes smaller when the plasma interacts
stronger. For instance, far ~ 200MeV and the estimated typical mean free datly, ~ 0.1fm,
one hagn/s) ~0.1. On the other hand, since the mean momentum chApg# a parton, which
propagates through the plasma over the distdngg, is of the order ofT, the Heisenberg un-
certainty principle forbids the ratiQLmp/B) ~ Lmfp - Ap (and therefore alsq /s) to be vanish-
ingly small. Up to now, the minimalemperature-independentlue of 1/(4rm) ~ 0.08 for the
shear-viscosity to the entropy-density ratio has beendoaon4” = 4 SYM theory [5]. It is thus
challenging to find other QCD-motivated models where thi raould be that small.

In this talk, we demonstrate thattemperature-dependemt/s of this order of magnitude is
produced by soft stochastic background fields present igltnen plasma of SU(3) YM theory.
We obtain this contribution to the shear viscosity by medrib@Kubo formula, which relates the
corresponding spectral denspyw) to the Euclidean correlation function of tfig 2)-component
of the energy-momentum tensbi(X, x4). This method, proposed in Ref. [6], has been explored in
Refs. [7, 8] with the aim to simulate shear viscosity on thide. Here we work in the continuum
limit and parametrize the Euclidean correlation functibthe energy-momentum tensors by means
of the stochastic vacuum model [9]. This model generalizE®Qum rules by assuming the exis-
tence of not only the gluon condenség?(FﬁVF} but also of the finite vacuum correlation length
u~L. This assumption is justified by the lattice results on theoeential fall-off at large distances
of the two-point correlation function of gluonic field stgths [10, 11],(F&, (0)F, (X)) ~ e #X.



Shear and bulk viscosities in the stochastic-vacuum apgbroa Dmitri Antonov

By virtue of this finding, the model manages to quantitayivescribe confinement; for instance,
the string tension reads O u~2(g?(F2,)?).

Below we will use a finite-temperature generalization ofgtechastic vacuum model, acces-
sible by implementing the Euclidean periodicity of thecoordinate. In the deconfinement phase
of interest, such a generalization yields for the spati@hgttensionos(T) a formula [12] similar
to its above-quoted vacuum counterpart. This formula reg@E) O u{2<gz(Fij?‘)2>T, WhereuT‘1
is the correlation length of the chromo-magnetic vacuurd,(ay%(Fi?)2>T is the chromo-magnetic
gluon condensate, which survives the deconfinement phessition. The temperature dependence
of the two main ingredients of the modgly; and <gz(Fi]f")2>T, can be extracted from the results of
the lattice simulations [10, 13].

SinceTio = ngf‘“ anu, onea priori expects from the Kubo formula, where thEZ(O)le(x)>—

correlator enters, that the corresponding contributiothto shear viscosity ig [ <gz(Ff-")2>$.
This is a general prediction of the stochastic vacuum moaleblf the kinetic coefficients, for
example for the jet quenching parametgfl4]. In fact, according to the Kubo formula, all the
kinetic coefficients are proportional to the total scattgrcross section of the propagating parton,
which itself is proportional to(gz(Fi‘JT")zﬁ in the stochastic vacuum model [15, 16]. Since the
shear viscosity] and the bulk viscosity, have the dimensionality of [masspne can on entirely
dimensional grounds expect for the contribution of stottbdmckground fields to these quantities
the following result:

n0Z0ur(PFRH?)s. (1.1)

At temperatures larger than the temperature of dimensieckiction, T > T,, ur and(gz(Fi]T")zﬁ

are proportional to the corresponding power of the only disi@nful parameter present in the YM
action at such temperaturegr, i.e.

pr 0T, (FRDH?); DT
On the other hand, the entropy densit¥) O T3, so that one would get
4

s

n

S0 O¢%T) at T>T,. (1.2)

Thus, the stochastic vacuum model predicts a monotoniofeith temperature of bothy /sand
{/s, wheren and { are the contributions of stochastic background fields tostiear and bulk
viscosities, respectively. However, much as for thermadyic quantities [17], one expects that
the full contribution to kinetic coefficients consists ottpart produced by the background fields
and the part produced by the so-called valence gluons. The ledte be confined by the back-
ground fields at largspatial separations, and go over to perturbatively interactingmguat small
spatial separations. At temperatufies> T,, valence gluons interact perturbatively, and should re-
produce known perturbative contributions to kinetic cagffits. The following striking difference
between the two viscosities then occurs. Nam%ﬁ, 0 g*(T) [18] is as monotonically decreas-
ing as thed(g®)-contribution to%, Eqg. (1.2), produced by stochastic background fields. &aste
”‘?;“ O 94(1T) [19], so that the full% is eventuallyincreasingwith temperature. Here, we calculate
only the contribution td% produced by stochastic background fields, Egs. (1.1),.(T.B¢ calcu-
lation of the valence-gluons’ contribution, which shoud}pwoduce”"%” atT > T,, is postponed
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for future studies. Fortunately (see for details the oagimaper [20]), in our approach based on
the Kubo formula, the perturbative contribution to vistiesi can be isolated simultaneously with
the perturbative contribution to the corresponding catieh function of the energy-momentum
tensors. This fact allows us to say that, at least at temyreal > T,, where perturbatively
interacting valence gluons play the main role, their cbation is clearly separated from the con-
tribution of stochastic background fields, which is exptbbelow.

Our study aims at thgquantitativecalculation of relations (1.1) fag and{, and a numerical
comparison of the result fay /swith the 1/(4m)-threshold. In Section 2, by assuming an exponen-
tial fall-off for the two-point correlation function of thenergy-momentum tenso(312(0) T12(x) ),
we obtain from the Kubo formula an integral equation for theciral densityp(w) of . Also
in Section 2, by using fop(w) a Lorentzian-typeansatz with the width equal to the correlation
length of (T12(0) T12(X) ), we explore this equation for the cases of large and sjijal) wherek is
the number of a Matsubara mode. The solution in the Iggkmit yields the range of variation of
the numerical parameter, which enters the initial parametrization @h2(0) T12(x)). The solution
in the smalltk| limit can only coincide with the largék| solution for a single value aff from this
range. This fixesr completely and makes further calculations straightfodvdn Section 3, we
first calculaten analytically, and then use this result to find the ragjs numerically. In Section 4,
we obtain by the same method the bulk-viscosity to the eptdgmsity ratio,{ /s. In Section 5,
we summarize the results of our study.

2. Shear viscosity from the Kubo formula

Shear viscosity) can be defined through the relation

n=n{?

ol (2.1)

w=0

where the spectral densig(w) is a solution to the following integral equation, called Kuior-
mula [6, 8]

- /d3x +z°° (T12(0) Taz2(X, X4 — BN) ). (2.2)

N=—o0

cosh[w (x4 - %)}
sinh(wf/2)
The correlation function on the RHS of this equation is Eledin, the sum runs over winding

modes, and the temperature dependenag afidp is for brevity suppressed. Fourier decomposi-
tion of the integral kernel,

/(; wdwp(w)

cosh|w x4—E o dwoa
SiLh(c(uB/Z)z L 02 PR

wherewy = 2T kis thek-th Matsubara frequency, suggests to solve Eqg. (2.2) indeffrits Fourier
coefficients. One can show (see for details the original pgtg) that, if atT = 0,
2 Ka_a(Mx])

(T12(0)Ta2(x)) = N(a)(G?) IMX)Za (2.3)
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whereK,_, is the MacDonald function, then at > T; the equation for the Fourier coefficients
reads

/ooda)p(a)) _w 29T (a)N(a) (G?)2 - L (2.4)
0 w?+ wf T (wf+Mg) '

Henceforth, we denotéG?) = (g(F2,)?), (G?); = (F*(F*?);, M = 2u, My = 2ur. Further-
more,a > 0 is a numerical parameter, aha) > 0 is a coefficient, which will be determined.
Equation (2.4) is the central object of the subsequent aizaly

To solve this equation, we assume for the spectral densitrentzian-type form (cf. Refs. [6,

8, 21]) .

(@? +M2)a+3’

which guarantees that both sides of Eq. (2.4) have the same{kk behavior. Thisansatzis
consistent with the interpretation M+ as a momentum scale below which perturbation theory
breaks down. Shear viscosity can be obtained by means oRHq.gs

nC(T)
n= W (2.5)

p(w) =C(T)-

We now solve Eq. (2.4) subsequently f&f > 1 and|k| ~ 1, and find botha andC(T). For
lk| > 1, one can expand

2 o0 i—2a
LHS of Eq (2.4) = C(ZT) [ T <M—;> + ;ci <&> } (2.6)
we® [ 2sin(ma) W & X
so that the leading term in the bracket&-iimdependent only foor < 1. Using further the expansion
() Mz
RHS of Eq (2.4) = 29T (a)N(a) 2 - M2 4. [1+ o (—Z)} : (2.7)
o o

we obtain

G2)2
n(T)“k‘»l ~ 2291 ()N (a) sin(ma) < M$>T‘

Rather, forlk| ~ 1, terms of the orde@’(c? /M2'), wherei > 1, can be disregarded, and we obtain

2\ 2
~ /2201 <a+%>N(a)<G >T.

n(T)( ™

IK|~1

In particular, aff > T,, where only thgk = 0)-mode should be considered, this result is exact. As
one can now readily check, the ratio of the two results obtiin

”(T)‘|k|>>1 _ H@)sinma) ¢ oo a<1

1
r’(T)‘\k\Nl v (a * 2)
isequalto 1 atr =1/2. Thatis, at
1
o= >

our results for the shear viscosity becomédependent, as they should be. Remarkably, for
o =1/2, the purely Lorentzian form gé(w) is recovered.
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3. Calculation of theration /s

We should now determine the coefficigvta) in Eq. (2.3) fora = 1/2. To this end, we impose
the Gaussian-dominance hypothesis [9], which disregdrdsconnected part of the correlation
function

(T12(0)Ti2(X)) = (g*FE, (0)FE, (O)FD, (N F5, (X))
The stochastic vacuum model parametrizes confining skfantions of the background fields in
the remaining two-point functions as

G2
(@R (X)FY5(0)) = (82 Ovp — BupBin) - %5%(@, 3.1)
so that "
(T12(0)T12(X)) ~ %DZ(X). (3.2

The dimensionless functiod(x) is usually chosen in the form
D(x) = e KX, (3.3)

Plugging this expression into the formula for the stringsten in the fundamental representation,

GZ
Of = % / d?xD(x), (3.4)

one can define the gluon condensate in termgrofind the vacuum correlation lengfir! as
follows [14, 16]:
(G?) = 7—n20fu2. (3.5)
To obtain for the correlatofT12(0) T12(x)) the functional form given by the RHS of Eq. (2.3),
we modify parametrization (3.3) to

Koo (2u]X])

D(x) = (a) U2 (3.6)

where o7 (a) is a numerical normalization factor. At| > u~1, the new function (3.6) falls off
with the same exponent as Eq. (3.3). To find the normalizdtiotor <7 (a ), we plug Eq. (3.6) into
relation (3.4), which holds for any functidd(x). Using further expression (3.5), we obtain

4

ga)= P dz o (3.7)
The correlator (3.2) now reads
2
Tz OTia()) = T (27, Kea BHN) @9

(2u[x|)z-a
where the functione (a) is given by Eq. (3.7), and we have fixéd = 3. Comparing Eq. (3.8)
with the original definition (2.3), we conclude that

o?(a)
(@)= "576
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Figure 1. Entropy densitys(T) in the units ofT 2 obtained from the lattice values for the presspigg[13]
(courtesy of F. Karsch).

This yields our principal analytic result:

P2 [d(1/2)(GP),?
 4608,2 p2 ’
where«7(1/2) ~ 1.05. The parametric dependence of this expressio(‘ﬁ?tjT and iy is indeed

the one following from the elementary dimensional analysgsle in Introduction. The correspond-
ing functionC(T) entering the spectral density reads [cf. Eq. (2.5)]

n(T) (3.9)

32 72(1/2) (G2)?
)= (E) 576 ugT

Remarkably, forr = 1/2, the functionD(x) is expressible in terms of elementary functions:

Ka/2(2px]) /4 ek 1
D(X) = o7 (1/2) | 220 — or(1)2)- 2 1 .
X =W\ e =W g\ 2

(3.10)

We evaluate now thé /s)-ratio numerically. The value of the deconfinement critiesthper-
ature in SU(3) YM theory, which we assume,Tis= 270MeV [13]. We use the two-loop running
coupling [13]

T b T
“2(T) — 41 — =
g T)= 2boln/\ + bo In <2In/\> , Wherebg

and N, = 3 for the case under study. We also assumepforand for the spatial string tension
in the fundamental representatian(T), the following parametrizations [12, 14§t = u - f(T),

1IN |, 34( Ne

by = o
1 1672

2
= A = 0.104T,
48m2° 3 ) ’ ©
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Figure 2: Calculated values of the ratip/s as a function of temperature. Also shown is the conjectured
lower bound of ¥(4m) for this quantity, realized in” = 4 SYM.

ot(T) = ot - £2(T), whereu = 894MeV [10],0t = (0.44GeV)?, and

f(T) =

{ 1atTe<T<T,

g%z((TT*;{ atT>T,.

We note that, with these parametrizations adopted, theoajpation |k| > 1, used in Egs. (2.6)
and (2.7), means in practi¢i > 3. In fact,% < 0.35 for anyT > T, while the terms disregarded
in those equations are of the order@{M2 /o).

Equation (3.5), extrapolated to finite temperatures, gighg chromo-magnetic gluon conden-
sate(G?), [12, 14]:

(&%) = oy = (@) 14T)
The value ofT, can be obtained from the equationT,) = o, wherea;(T) = [0.5665%(T)T)? is
the high-temperature parametrization of the fundamem@lia string tension [13]. Solving this
equation numerically, one gets
T, = 1.28T..

The entropy densitg = s(T) can be obtained by the formuta= d ps;/d T, where we use for the
pressurep,: the corresponding lattice values from Ref. [13]. In Fig. & plots(T) in the units of
T3,

In Fig. 2, we plot the ratia) /s, with n given by Eqg. (3.9), as a function of temperature. The
temperature dependence of this ratio is determined by ﬂmiﬁn(Gzﬁ/[u?s(T)]. One can check
numerically that, al > 2T, wheres/T? is nearly constant{Gzﬁ/[u?s(T)] =0(g%(T)), as has
been mentioned in Introduction. InsteadTak T < 2T, the calculated) /s falls off much more
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rapidly, due to the strong variation of the entropy densify) at such temperatures (cf. Fig. 1).
Also in Fig. 2, we plot the conjectured lower bound for tig's)-ratio, 7 == 0.08, which is realized

in .4 =4 SYM [5]. This bound is indeed not reached by our valuespalgh they get very close

to it at the highest temperatufie = 4.54T. where the lattice data for the pressure (and therefore
also fors) are available. However, as has been discussed in Intiodudt is expected that the
yet unknown contribution of valence gluons should lead tinarease of the fulh /satT > 2T..
Eventually, afl 2 (5= 10)Tc, the full n /s should mergejpert/s, wherenpertin the next-to-leading

logarithmic approximation reads [19]

T3 27126
Mpert= a 1 2765

g
Thus, the calculated contribution to tig /s)-ratio produced by stochastic background fields is
anyhow subdominant at sufficiently high temperatures.

4. Bulk-viscosity to the entropy-density ratio, { /s

The other coefficient at the first-order derivatives of thimery of energy transport in the energy-
momentum tensor of a non-ideal liquid is the already meetiom Introduction bulk viscosity .

It describes the degree of non-conformality of the QGP, amilshes in any conformal field theory,
including .4 = 4 SYM. Similarly ton, bulk viscosity is defined by its spectral densiyx(w)
as [22]

TTdPbuik

529 dw

w=0

The spectral density obeys the Kubo formula

® cosh[ 3
/O dw ppuik(w) smh(wB/Z /d n_Zoo<T 0)Tuu (X, Xs — Bn)>
Here, Tyu(X) = Bg )[Fa (x )]2 is the nonperturbative contribution to the trace of the YMrgy-
momentum tensor In the one-loop approximation, whgig) ~ —bog®, by = 16”2, one can ex-

press the correlatofT,,(0)Tyv (X)) in terms of the four-point function of gluonic field strength
<g4Fﬁv(O)Fﬁv(O)FAbp(x)FAbp(x)>. Using further again the Gaussian-dominance hypothesescan
approximate this correlation function as follows:

(G*F2,(0)F, (OFL, (OFL, () = (G2)? + 2(gPF 3, (0)FP, (X)), (4.1)

The renormalized spectral density is defined by the suldraétom the full ppyik(w) of an infinite
contribution produced by the first term on the RHS of Eq. (4The corresponding nonperturbative
contribution to the bulk viscosity can readily be obtainadg reads

_ m203ar?(1/2) <GZ>
69122 2

(4.2)
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Figure 3: Calculated ratia] /s as a function of temperature. Also shown for comparison artupbative
values(pert/ S extrapolated down td = Te.

The bulk-viscosity to the entropy-density rafigs as a function of temperature is plotted in Fig. 3.
For comparison, in the same Fig. 3, we plot the rg}ig,/s, where the perturbative bulk viscosity,

_ 0.44302T3
Pet™ In(7.14/g)

has been obtained in Ref. [18] in the leading logarithmicrapation. For illustration, in Fig. 3,
we extrapolate this weak-coupling formula, validTa> (5+10)T., down toT = T.. We note
once again that, at temperaturéss T., Eq. (4.2) yields({/s) O ¢°, whereas Eq. (4.3) yields
(Zpert/s) O g%, in a qualitative agreement with the corresponding curmésg. 3.

(4.3)

5. Concluding remarks and outlook

The main result reported in this talk is the contributiondarced by stochastic background fields
to the shear viscosity in SU(3) YM theory. As has been expected (cf. Introductidhg calcu-
lated contribution ta) turns out to bel u{5<gz(Fij?‘)2>$, where the corresponding proportionality
coefficient given by Eqg. (3.9) is the main result of our stutlige ratio ofn to the entropy density
as a function of temperature is plotted in Fig. 2. Surprilsingur results for the contribution to
n/s produced by stochastic background fields are of the ordey @), that is the conjectured
lower bound for this ratio achievable it” = 4 SYM. Moreover, unlike that theory, our results are
temperature-dependent. The rapid variation at tempesiyr< T < 2T of the calculated con-
tribution ton /s, visible in Fig. 2, could mean that stochastic backgrouniddidrive the fulln /s
towards a minimum, which occurs in this temperature randéigher temperatureg (= 2Tc), the
calculated values should become subdominant comparee twotitribution produced by valence
gluons, which should provide an increase of the fuls towards the known perturbative result.

10



Shear and bulk viscosities in the stochastic-vacuum apgbroa Dmitri Antonov

We would also like to emphasize an interesting fact, whichlieen realized by the end of the
calculation. We have started with the genaratiependent Lorentzian-tymnsatzfor the spectral
density p(w). By using it in the Kubo formula, we have come to the conclugioat only for
the single valueg = 1/2, thisansatzprovides the Matsubara-mode independencp (of). For
this value ofa, the spectral density takes the conventional Lorentziamfoln this way, also
the functionD(x) in the correlator (3.1) is defined unambiguously. Moreoiteturns out to be
expressible in terms of elementary functions, cf. Eq. (8.10

Furthermore, we have calculated the contribution of stsiitdackground fields to the bulk
viscosity {. Its ratio to the entropy density] /s, is plotted in Fig. 3, in comparison with the
known perturbative result [18] extrapolated dowrTte= T.. By using the same approach, one can
also calculate the contribution abn-confiningself-interactions of stochastic background fields,
parametrized by the so-called functibn(x) [9, 16]. This work is currently in progress. Still, the
main problem is to calculate the contribution of valencenghito bothny and{, that should provide
an interpolation with the known perturbative results afisigntly high temperatures.
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