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1. Introduction

As is well known to this community, chiral symmetry plays aaial role in our understanding
of QCD. But, of course, chiral symmetry is broken, and theeethree sources of this breaking.
First is the spontaneous breaking giving rise to an exgdeotailue for the chiral condensatieg.
(Py) # 0. This is invoked to explain the lightness of pions relatvether hadrons. Second, we
have the implicit breaking of the flavor-singlet axia{1) symmetry by the anomaly. This explains
why then’ meson is not so light in comparison with the pions. And finally have the explicit
breaking of chiral symmetry by the quark masses. This mdaatgte pions, while light, are not
exactly massless. In this talk | will discuss some of theertiich physics that arises from the
interplay of these three effects.

The breaking of the classicll(1) axial symmetry is tied to the possibility of introducingant
massive QCD a CP violating parameter, usually caded-or a recent review of this quantity, see
Ref. [1]. One of my goals here is to provide an intuitive andlgative picture of the® parameter
in meson physics. This picture has evolved over many yedns. pbssibility of the spontaneous
CP violation occurring a® = tis tied to what is known as Dashen’s phenomenon [2], firstdhote
even before the days of QCD. In the mid 1970’s, 't Hooft [3]cdiated the underlying connection
between the chiral anomaly and the topology of gauge fieldgerLWitten [4] used large gauge
group ideas to discuss the behavioBat Tin terms of effective Lagrangians. Ref. [5] lists a few
of the early studies of the effects 6fon effective Lagrangians. The topic continues to appear in
various contexts; for example, Ref. [6] contains a diffésgrproach to understanding the transition
at© = mrin the framework of the two-flavor Nambu Jona-Lasinio model.

| became interested in these issues while trying to undetdtze difficulties with formulating

chiral symmetry on the lattice. Much of the picture preséritere is implicit in my 1995 paper
on quark masses [7]. Since then the topic has become hightyosersial, with the realization of
ambiguities precluding a vanishing up quark mass as a ealti the strong CP problem [8] and
the appearance of an inconsistency with one of the popuaritims in lattice gauge theory [9].
Despite the controversies, both results are immediateeguesices of the interplay of the anomaly
and chiral symmetry. The fact that these issues remain patgid drives me to return to them here.
Portions of this discussion appear in more detail in Ref].[10

A crucial issue is that the axial anomaly €My flavor massless QCD leaves behind a residual
Zy; flavor-singlet chiral symmetry. This is closely tied to gatfgeld topology and the QCD theta
parameter. As a consequence | will show that, with degemepadrks carrying a small non-zero
mass, there must appear a first order transitio® at 71. For two flavors this transition studied in
Refs. [7, 11, 12]. This result in turn has several furtherseguences. First, the sign of the quark
mass is relevant for an odd number of flavors. This is not seqeiturbation theory, giving a
simple example where perturbation theory does not provadsglete description of a field theory.
Second, going down to one flavor, chiral symmetry no longeviges an additive protection for
a small fermion mass. And third, the nontrivial dependentéhe number of flavors can in some
cases invalidate the rooting prescription often used taprtate between different flavor contents
in lattice simulations. It is the latter two points which ledveen extremely controversial.
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2. Assumptions

For the purposes of this talk | make a few minimal assumptio@ensidering QCD with
N; light quarks, | assume this field theory exists and confinethénusual way. | assume that
spontaneous chiral symmetry breaking occurs in the mastsleery with(giy) # 0. When masses
are considered, | consider that the usual chiral pertwbdtieory in momenta and masses makes
sense. | also assume that the anomaly gives)tree mass even when the quark masses vanish. |
further consideN; small enough to avoid any possible conformal phases.

| frame the discussion in continuum language, but | imagoreesnon-perturbative regulator
is in place to control divergences. Of course for me this wad the lattice, but | need not be more
specific here. | assume this regulator has brought us clodetoontinuum theory,e. any mo-
mentum space cutoff should be much larger thaap, the natural scale of the strong interactions.
For a lattice approach, the lattice spacang considered as much smaller thafi\cp.

| consider the effective potentisl for various meson fields. This represents the resulting vac-
uum energy density for a given field expectation. Such candpizetl formally via a Legendre
transformation in the standard way. Here | will ignore cotityeissues associated with the phase
separation that will occur when a field is constrained to keenaively concave region. A more pre-
cise treatment would be in terms of the phase transitiortotta@ur with global minimum changes.
Instead | proceed with the generally familiar language ohsyetry breaking in terms of multiple
minima in the effective potential. For simplicity | conceate onNs degenerate quarks. To start |
will also takeN; even; this is because of some interesting subtleties wittddmumber of flavors
that | will get to later in the talk.

I will be considering a variety of composite fields. Becausese are generally singular prod-
ucts of fields at the same space time point, | assume that gpeuified regulator has some way of
handling this. The particular fields I will work with are

o~qy
T ~ 1 PAq Vs (2.1)
n' ~igyy.

HereA, represents the generalized Gell-Mann matrices generditenfiavor groupSU(Ns ).

3. Spontaneous chiral symmetry breaking

Spontaneous breaking of chiral symmetry is a crucial paduofunderstanding of the strong
interactions. It is usually discussed in terms of a doublé steucture for the effective potential
considered as a function of the fietd~ @Y. The vacuum selects one of these minima giving
an expectation value to the sigma field;) = v # 0. When the mass vanishes it is a convention
whether one takes the positive or the negative minimum.

With multiple flavors the vacuum is continuously degeneratith the non-singlet pseudo-
scalars being Goldstone bosons. This is associated witmesyry under flavored chiral rotations
of the quark fields

P — ePA/2y

TTII—>H7ei¢V5Au/2, (31)
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Figurel: Spontaneous chiral symmetry breaking is represented bylaewell effective potential with the
vacuum settling into a non-trivial minimum. Chiral symmeis broken by the selection of a specific value
for the quark condensate. The flavor non-singlet pseudiarsteesons are Goldstone bosons corresponding
to flat directions in the effective potential.

Figure2: A small quark mass tilts the effective potential, selectimg direction for the true vacuum and
giving the Goldstone bosons a mass.

There is one such symmetry for each generator of the flavapgdt)(N; ). For example, with two
flavors this symmetry mixes the andrtfields

o — cog@)o +sin(@)n?,

n? — cog @) —sin(g)o. (3.2

The minimum of the potential hds? — 1 “flat” directions. This standard scenario is illustrated i
Fig. 1.

If we now consider a small quark mass, this will select oneuuat as unique. Physically, a
mass term represented Ysy— V — mo tilts the effective potential downward in a specific direati
as illustrated in Fig. 2. In the process the Goldstone bosogsire a mass proportional to the
square root of the quark mass.

4. The chiral anomaly

It is the chiral anomaly that gives the flavor-singlgta mass even if the quark mass vanishes.
This mass is of order the scale of the strong interactions= O(Agcp), and does not go to zero
when the quark mass does. In terms of the effective poteXftiat, n’) is not symmetric under the

rotation
o — ocog )+ n'sin(@)

0 — n'cosg) — osin(g). *1)

4
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If we expand the effective potential near the vacuum state v andn’ ~ 0 we should expect a
form like
V(o,n') =mg (o —vy+mn™+0((o - v)*n") (4.2)

with both masses being of ord&gcp.
In quark language, the above rotation mixing thandn’ fields is associated with the classical
symmetry of the naive action under

Y — eifpvs/Zw

T oA, (4.3)

This symmetry is “anomalous” in the sense that it must be dmdby any valid regulator. The’
mass is a remnant of this breaking that survives as the rtegitaremoved.

Fujikawa [13] has presented a rather elegant way to see h@wartbmaly arises. The above
variable change alters the fermion measure

dy — e '9%/2|dy = e 19T/ 2dy. (4.4)

Now naively ys is a traceless matrix, and one might conclude that this dhamghe measure is
harmless. Fujikawa pointed out that this does not apply énrégulated theory. For example one
might define the trace ok as

. 7D2//\2
lim Tr (yge ) £0 (4.5)

whereD is the kinetic part of the Dirac actiofy(D +m). In the usual continuum analysis this
satisfiesD" = —D and anti-commutes with gamma fiV®, y5], = 0. Thus motivated, we can use
the eigenstates @

Diygr) = Ailgn) (4.6)
to define the trace

Trys =3 (Wilys|us). (.7

|

At this point we bring in the index theorem; this states tiiahé gauge field has non-trivial
winding v, D will have at leasv zero mode®|y;) = 0. These modes are chirak|ys) = +|Y)
and the counting is such that= n, —n_. Thus the zero modes contributeo the trace ofs.

Now the non-zero eigenmodes all occur in complex conjugatesp If we haveD|y) =
AY), thenDys|Y) = —A ys|) = A* s |). As D is anti-hermitian,|@) and |y ) are orthogonal
wheneverd #£ 0. As a consequence, the space spanne/bynd|ys) gives no contribution to
Trys. We are led to the remarkable conclusion that only the zerdesmi@ount in calculating the
above trace. Thus we have

Trys =5 (Wilyslh) = v, (4.8)

|
which does not vanish when the topology is non-trivial.

So where did the opposite chirality states go? In continuaumguiage, they are “lost at infinity”
in the sense that they have been driven “above the cutoff.th@rattice there are no infinities; so
things are a bit more subtle. With the overlap operator [##]eigenvalues lie on a circle in the
complex plane, and corresponding to every zero mode is asfmnding mode of opposite chirality
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&% N

Figure3: The circles in this figure inclose the two minima in e’ plane located atr = =vandn’ = 0.
Can we find any other minima?

on the opposite side of this circle. This technique bringa modified chiral matrix through the
relation Dys = — D and the winding appears via T = 2v. With Wilson fermions [15] the
low lying approximate zero modes are compensated by additi@al eigenvalues in the doubler
region.

Note that this discussion involves both short and long dista. The zero modes associated
with topology are compensated by additional modes lostatthoff. This means that it can be
dangerous to assume that one can ignore instanton physigsity to short distances. Further-
more it becomes impossible to uniquely separate pertwegbatid non-perturbative effects; as one
changes, say, the scale of the cutoff, small instantons fedirtffrough the lattice.” In general this
issue is scheme dependent.

So we conclude that under the transformation of Eq. (4.3, régulated fermion measure
changes by '#T"% — 1%V, Thijs factor changes the weighting of gauge configuratioitis mon-
zero winding. Note that this introduces a sign problem fomkéoCarlo, but that is not the topic
under discussion here.

To end this section, note that the angld have used here is the conventiof®@/N¢. This
is since | have given each flavor a common phase. Each caesimgually, and the full trace
including flavor space is 7§ = N¢v.

5. A Zn, symmetry

I now return to the earlier effective-potential languagénave argued that, because of spon-
taneous chiral symmetry breaking, there are at least twanmairin the o,n’ plane, located as
sketched in Fig. 3. Do we know anything about the potentisé\wehere in ther,n’ plane? Re-
markably the answer is yes; there are actullifyphysically equivalent minima in this plane.

At this point it is useful to project out left handed fermioalfls

1
Y= %4/- (5.1)

Then, because of the anomaly, a singlet rotation of onlydfiedhinded field

W — €2y (5.2)
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Figure4: For four flavors, the effective potential has four equivalmimima, marked here with circles, in
thea, n’ plane. This generalizes d¢ minima withN; flavors.

is not a good symmetry for generge On the other hand, a flavored rotation

W — gLy = %Ay (5.3)

is a symmetry fog. € SU(N¢). The point | wish to emphasize is that for special discreteneints
these two types of rotation can cross. In particular | cae tgik the center oSU(Ny)

g=e"/Nt ¢ 7y, < SU(Ny), (5.4)

and we obtain a valid discrete singlet symmetry

0 — ocog21/N¢) + n'sin(2r/Ns )

n" — n’cog2m/N¢) — osin(2m/Ns). (-5)

This Zy, symmetry applies to the effective potential when the quaaksrvanishes. Then there are
N¢ equivalent minima in théa, n’) plane. This is sketched for tidy = 4 case in Fig. 4.

At the chiral Lagrangian level this symmetry arises becalsés a subgroup of botBU(N)
andU (1). At the quark level it can be understood from the fact that’th¢ooft vertex gets a
contribution from each flavor and multiplying together thepesp, — €%/Nr ¢y from each gives
a net factor of unity.

6. Including the quark mass

A quark mass term-miy ~ —mo can be thought of as tilting the effective potential down-
ward in the sigma direction. This picks one vacuum as thedtwexpanding the potential about the
n'th minimum gives an effective pion mass in the given minimgaing asm? ~ mcog27m/Nj ).
Thusn = 0 is the true vacuum while the highest minima are unstabledmg direction. Note that
multiple truly meta-stable minima become possible wNen> 4.

While the conventional mass term is proportionaliyy, it is interesting to consider a more
general term obtained by an anomalous rotation

M@y — mcog @) PY +imsin(@)Pysy. (6.1)
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Figure5: With massive quarks and a twisting angle@#= 11/N;, two of the minima in thes, n’ plane
become degenerate. This corresponds to a first order ftanat® = 1.

This corresponds to tilting the potential downward not ie $igma direction, but in a direction at
an the anglep in the g, n’ plane. In general this will give an inequivalent theory. Borall ¢, the
vacuum will remain in the vicinity of the minimum at positige however, agp increases through
11/N¢, vacuum will jump from this minimum to a neighboring one. 3T illustrated in Fig. 5.

In this discussion | have given the mass for each flavor a camphasep. In more conven-
tional treatments one introduces the sum of these with tfieitien © = N¢¢. TheZy, symmetry
implies a 2t periodicity in®. What has been demonstrated here is that with degenerateligrks
a first order transition is expected@t= 7.

The underlyingZy, can be thought of as a discrete symmetry in mass paramets spa

m— mexp<@> . (6.2)
Nt
In particular forNs = 4 a mass term of forrmgy is physically equivalent to considering one of
form im@ Y. This specific equivalence is only true fidg a multiple of 4.

7. Odd N

At this point it should be beginning to be clear why | had riettid myself to eveiNs. Now
consider an odd number of flavold; = 2N + 1. The crucial point is that-1 is not an element
of SU(2N 4 1). This means thatn > 0 andm < 0 not equivalent! In particular a negative mass
represent$ = 1 and will exhibit spontaneous CP violation withy’) £ 0. Fig. 6 sketches the
situation forSU(3).

The fact that the sign of the quark mass is relevant for an odcber of flavors is something
not seen in perturbation theory. In any given Feynman dragthe sign of the mass can be flipped
by a s rotation. Thus positive and negative mass three flavor QG2 Iidentical perturbative
expansions and yet are physically different. This is a sengxample of the remarkable fact that
inequivalent theories can have identical perturbativeaagjons!

A special case of an odd number of flavors is one-flavor QCDhimgituation the anomaly
removes all chiral symmetry and there is a uniqgue minimurmhaa,n’ plane, as sketched in
Fig. 7. This minimum does not occur at the origin, being skifto () > 0 by the 't Hooft
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Figure 6: For oddNg¢, such as th&U(3) case sketched here, QCD is not symmetric under changing the
sign of the quark mass. Negative mass corresponds to t&kiagr.

Vo

Figure7: The effective potential for one-flavor QCD with small quarks$s has a unique minimum in the
o,n’ plane. The minimum is shifted from zero due to the effect ef'ttHooft vertex.

vertex, which for one flavor is just an additive mass shift][18nlike the case with more flavors,
this expectation cannot be regarded as a spontaneous sgybmedking since there is no chiral
symmetry to break. Any regulator that preserves a remnaohiofl symmetry in the one flavor
theory must inevitably fail [9]. Note also that there is nader the necessity of a first order phase
transition at® = 7. It has been argued [17] that for finite quark mass such aiti@msvill occur

if the mass is sufficiently negative, but physics is analiftimin a finite region around vanishing
mass.

It is important to remember that the details of the instargéfiacts are scheme dependent;
this is sometimes called the “renormalon” ambiguity [18pr Ehe one flavor case this means the
usual polar coordinate@gn, ©) are singular. Indeed, it is more natural to &= m,Im m) as our
fundamental parameters. The ambiguity is tied to rough gaogfigurations of ill-defined winding
number. Even the overlap operator does not solve this isaae & is not unique, depending on
a parameter often called the “domain wall height.” Becausthie, m= 0 for a non-degenerate
guark is an ambiguous concept. In Appendix A | discuss thibiguity from the point of view of
the renormalization group.
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8. When isrooting okay?

Starting with four flavors, can one adjusi down to one using the formal expression

D+m 0 0 0 |3
0 D+m 0 0
— ?
o o Dbam o ID+m|? (8.1)
0 0 0 D+m

This has been proposed and is widely used as a method fonaling the extra species appearing
with staggered fermion simulations.

It is important to emphasize that asking about the viabiityeq. 8.1 is a vacuous question
outside the context of a regulator. Field theory has diverge that need to be controlled, and, as
we have seen above, the appearance of anomalies requieesrcparticular, the regulated theory
must break all anomalous symmetries.

So we must apply Eq. 8.1 before removing the regulator. Brignerally expected to be okay
as long as the regulator breaks any anomalous symmetriegpaiapely on each of the four factors.
For example, we expect rooting to be valid for four copieshef dverlap operator. This satisfies a
modified chiral symmetrys = — D where the gauge winding appears in the gauge dependent
matrix y through T = 2v.

But now suppose we try to force tha symmetry in mass parameter space before we root.
This is easily done by considering the determinant

D+me? 0 0 0
e
0 D+me=z 0 0
i 8.2
0 0 D+ me# 0 ®8.2)
0 0 0 D+me ¢

This maintains then — mé™s/2 symmetry through a permutation of the four flavors. Thid stil
gives a valid formulation of the four flavor theory at vanighi® because the imposed phases
cancel. But expressed in this way, we start with four onesflakieories with different values of
©. Were we to root this form, we would be averaging over fouginealent theories. This is not
expected to be correct, much as we would not expect rootingltfferent masses to give a theory
of the average masse.

(ID +my||D + mp|)/? # D + /Mgy (8.3)

So we have both a correct and an incorrect way to root a fouorfltneory down to one.
What is the situation with staggered fermions, the primdage where rooting has been applied?
The problem is that the kinetic term of the staggered actiamtains one exact chiral symmetry.
Without rooting this is an allowed symmetry amongst what @saally called “tastes.” Under
this symmetry there are two tastes of each chirality. Butabee of this exact symmetry, which
contains a4 subgroup, rooting to reduce the theory to one flavor is notetqu to be valid. In
particular, rooting does not remove thg discrete symmetry in the mass parameter, a symmetry
which is anomalous in the one flavor theory. Thus, as in the@lexample, the tastes are not
equivalent and rooting averages inequivalent theories.

10
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The conclusion is that rooted staggered fermions are not (B what is expected to go
wrong? The unbrokeZ, symmetry will give rise to extra minima in the effective potial as
a function ofo andn’. Forcing these minima would most likely drive tip¢ mass down from
its physical value. This shift should be rather large, ofeomtgcp. This is testable, but being
dominated by disconnected diagrams, may be rather difficwiérify in practice.

9. Summary

We have seen that QCD witly massless flavors has a discrete flavor-singlgtchiral sym-
metry. Associated with this is a first order transition@at= T whenm# 0. As a consequence,
the sign of the mass is significant fbly odd, a property not seen in perturbation theory. Going
down to theNs = 1 case, no chiral symmetry survives, leavimg= 0 unprotected from additive
renormalization. And finally, this structure is inconsigtevith rooted staggered quarks due to an
anomalousZy symmetry being improperly preserved.

Appendix A: The renormalization group and the quark mass

The ambiguity in defining the mass of a non-degenerate quarke nicely formulated in the
renormalization group framework [8]. The renormalizatgroup equation for the bare quark mass

am_
da
can in general contain a non-perturbative part that vasish&ter ing than any power. From the
perturbative part and using the corresponding flow equdtiothe bare coupling, we learn that
the bare quark mass runs to zero logarithmically with thefEut

my(g) = m(ywg’ + 19" + ...) + non-perturbative (9.1)

mO g%/ (1+0(g?) —a-00. (9.2)

whereg is the bare gauge coupling, which, by asymptotic freedoms ta zero. We can thus define
a renormalized quark mass
m = lim mg %/, (9.3)

a—0
In general the numerical value of depends on the details of the regularization scheme used.
The anomaly, through the 't Hooft vertex, contributes a perturbative part- mN—1 to the mass
flow. For the case dii; = 1, this ceases to vanish in the massless limit. Indeed, rdreiing that

1 _ 2 2
my 0 e 1/2B00 =B/ B (9.4)

we might expect a similar form to appear in renormalizatiooug equation for the mass. This is
particularly so if then’ mass is used as a physical observable defining the renoatiatizcheme.
Note that this non-perturbative expression formally diesrif we takea to zero without the ap-
propriate simultaneous decrease of the coupling. Alloveinch a term can give rise to an additive
shift in the renormalized quark mass. As an extreme exaroptesider a new scheme defined by

d=a

g=9 - (9.5)
~ —1/2By9 B/ B
m= m_mgVO/BO X %

11
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This is crafted so that on the renormalization group trajgcthe last factor approaches unity. With
this particular non-perturbative redefinition of parameige have

M = ggomfw/% —m —m =0, (9.6)

Thus in the one flavor theory it is always possible to find a sehevhere the renormalized quark
mass vanishes! We conclude timat= O for a non-degenerate quark is an ambiguous concept. Of
course, with degenerate quarkg = 0 definean= 0.
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