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1. Introduction

The infrared behavior of Green’s functions in Landau gauge has theetopic of numerous
lattice studies by several groups in the past few years. Particular attdvatobeen devoted to
the gluon and ghost propagators, whose infrared behavior is at énedig¢he Gribov-Zwanziger
confinement scenario [2, 3, 4, 5]. There is now a consistent pictureom éxtensive numerical
simulations on very large lattices [6, 7, 8, 9, 10, 11, 12, 13, 14] — that (eethnd in four space-
time dimensions) the Landau gluon propagator shows a massive solution latrenmmeenta and
that the Landau ghost propagator is essentially free in the same limit. Thedes rare not in
agreement with the original Gribov-Zwanziger scenario [2, 3] but tleyle explained in the so-
calledrefined Gribov-Zwanziger framewofk5]. Let us also recall that a massive gluon allows a
better description of experimental data [16] and it has been related tocariinement by various
authors [17, 18].

Since the evaluation of Green’s functions depends on the gauge conditierimportant
to consider different gauges in order to obtain a clear (possibly gewg@endent) picture of
color confinement. Needless to say, this investigation should be carried thé nonperturbative
level. This is done from first principles using lattice simulations. In addition td_#relau gauge
case cited above, numerical studies of Green'’s functions have alaadbae in Coulomb gauge
[19, 20, 21],A -gauge (a gauge that interpolates between Landau and Coulomb) {P2jeedimally
Abelian gauge [23, 24]. For interesting recent comparisons of resuliaridau and in Coulomb
gauge see [25, 26].

On the other hand, the linear covariant gauge — which is a generalizati@ndau gauge —
proved for a long time quite hostile to the lattice approach [27, 28, 29, 3@23B3, 34]. Recently
we have introduced a new implementation of the linear covariant gauge orttibe [&], based
on a minimizing functional that extends in a natural way the Landau case whienving all the
properties of the continuum formulation. Let us note that, having a minimizingfimal for the
linear covariant gauge allows a numerical investigation of the first GribgionQ for the case
of gauge parametef £ 0. Such an investigation has been done analytically in [35], for a small
value of, but a similar numerical study is still lacking. At the same, a numerical investigatio
of the infrared behavior of gluon and ghost propagator& #t0 could provide important inputs
for analytic studies based on Dyson-Schwinger equations [36, 37Rll¥iit has been recently
proven [38, 39, 40] that the background-field Feynman gauge ivaqui (to all orders) to the
pinch technique [40, 41]. Thus, numerical studies using the Feynmagegatnich corresponds
to the valueg = 1, will allow a nonperturbative evaluation of the gauge-invariant offisBreen’s
functions of the pinch technique [42].

2. Linear Covariant Gauge
In the linear covariant gauge the gluon fi@lﬁi(x) satisfies (in the continuum) the relation

AL (X) = A°(x), (2.1)
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whereAP(x) are real-valued functions generated using a Gaussian distribution

P[/\b(x)} ~ exp{—zlf [/\b(x)]z} (2.2)

with width /&.

The limit & — 0 corresponds to the standard Landau gauge. In this case, the gmdie c
tion is (classically) equivalent to the Lorenz-gauge (sometimes mistakenly ¢allentz-gauge)
condition [43]

oA (x) = 0. (2.3)

This condition can be imposed by minimizing the functional
g 4 9y ()]
Ae{A%) O [ d'x ZJ[(A 5] (2.4)
H,

with respect to the gauge transformatidigéx) }. Let us recall here that, from the second variation
of & .c{A%}, we can define the Faddeev-Popov operatr Then, for the gauge-fixed configura-
tions, i.e. for local minima o&{ c{A%}, we have that this operator is positive-definite. This set of
local minima defines the first Gribov regiéh[2, 3].

In Ref. [27] it was shown that a similar minimizing function@lg{A%} for the linear covari-
ant gauge — i.e. fof # 0 — does not exist. Indeed, if it existed, we could write

@ﬁLCG[AgvA] - éaLG[Ag} + ﬁ[Ag,/\] ) (25)

for some functionalZ [A9,\]. Then, the second variation &éfcg with respect to the gauge trans-
formationg(x) = €“® would satisfy the relation
dz@ﬁLCG dz@ﬁLCG

OWP(X)OW(y) — OWE(y)wP(x) (2:6)

On the other hand, one can show that these two terms are, respectiopltytipnal to the structure
functions 2 and fa°¢, Since these functions are completely anti-symmetric in the color indices,
this equality cannot be realized [27].

3. Bypassing the No-Go Condition

One can of course avoid the no-go condition above by relaxing its hygpeghé-or example,
one can consider a different gauge condition, such as

F[3.AL(X) — A°(x)] = O (3.1)

with F[0] = 0O, for which a minimizing functional exists. Indeed, it has been shown in [R&f
that the minimizing functional

/ d* ;;»{ 0,259 —/\b(x)r} (3.2)
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allows one to impose the gauge condition
D3P0, [9uAD(x) —AP(x)| =0, (3.3)

where D2 is the covariant derivative.

On the other hand, the use of a different gauge condition introducegrdlems [27]. For
example, one can bring in spurious solutions, correspondifigfdo= 0 for s# 0. In the above
case, these solutions are the zeros of the ope[aiba?v. Also, in general, the second variation
of the minimizing functional, or equivalently the first variation of the gaugadj>condition (3.1),
does not correspond to the Faddeev-Popov operé#tor —d“Dﬁb of the usual linear covariant
gauge. Finally, the lattice discretization of the functional (3.2) is not linearérgdhuge transfor-
mation{g(x)}. This makes the numerical minimization difficult and one has to rely on a specific
discretization of the minimizing functional [28, 29] in order to make the lattice @gugir feasible.

More recently [33] the no-go condition has been overcome by avoidingsnef a minimizing
functionalé cc{A9%}. To this end, following the perturbative definition of the linear covarianbga
in the continuum, one first fixes the gluon field to Landau gai;g%(x) = 0. Then, one considers
the equation

(a,, focpC) x) = A°(x) . (3.4)

The solutiong®(x) of this equation can be used as a generator of a second gauge traatgjar
Note that, after fixing the lattice (or minimal) Landau gauge, the opeFaﬁperBC is positive-
definite and can be easily inverted. For sm@ll(x), the final (gauge-transformed) gluon field
A’g(x) satisfies the condition

A (X) = (Ag + Dgcpr) (X) = AP(x) . (3.5)

Of course, the above result is correct only for infinitesimal gauge foemstions. On the other
hand, usuallyp®(x) is not small in a numerical simulation. Indeed, numerical tests [33] havershow
that the distributions od?“A’g(x) and ofAP(x) do not agree very well. Atthe same time, the relation
p?D;(p?) = &, valid in the linear covariant gauge for the longitudinal gluon propadattp?), is
also not well verified by the data at small momenta [33].

4. A New Approach

Our new approach [1] is based on removingiraplicit hypothesis of the no-go condition,
i.e. that the gauge transformati¢g(x)} appears in the minimizing functional in the “canonical”
way AY. Thus, we may look for a minimizing functional of the tyg=c{A9,g} instead of simply
éice{A%}. Indeed, the lattice linear covariant gauge condition can be obtained by mimgntie
functional

SceiUY,g} = &6{U% +0 Trz ig(X) A\(X) , (4.2)
where

AcfU%=—-D0Try gx)Uu(x)g" (x+ey) (4.2)
XM

INote that solving a system of equatidBg = ¢ is equivalent to minimizing the quadratic foré‘tj,tBLp —yl.
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Figure 1. Convergence of the numerical gauge fixing. Here we reporvahee ofA =y, ;[0 Ab(x) —
AP(x)]? as a function of the number of iterationgor a given configuration. Left3 =4,V = 8% & =0 (red
line) andé = 0.5 (green line). Right =4,V = 16* & =0 (red line) ancE = 0.05 (green line). Note the
logarithmic scale on thg axis.

is the minimizing functional for the lattice Landau gauge. Here, the link varidi¢s) and the
site variableg(x) are matrices belonging to the U4 group (in the fundamental representation).
We also indicate with] the real part of a complex number and with the trace in color space.
Note that the functionadicc{U9Y,qg} is linear in the gauge transformati¢g(x)}.

By considering a one-parameter subgro@p 1) = exp[lryb )\b} of the gauge transforma-
tion {g(x)} itis easy to check that the stationarity condition

déice
ot =0

=0 vV yP(x) (4.3)

implies the lattice linear covariant gauge condition

0-AP(x) ZAb — AL (x—ey) = A°(x). (4.4)

Here, AP are the traceless Hermitian generators of the Lie algebra of thdlgdéuge group,
satisfying the usual normalization condition

Tr (/\ b/\C) — 24P, (4.5)

Also, we used\(x) = Tr[A(x) A"] and, similarly, A (x) = Tr [A,(x) A"].

At the same time, the second variation (with respect to the paramjeiéthe termig(x) A(x),
onther.h.s. of Eq. (4.1), is purely imaginary. Thus, it does not contriloutee second variation of
the functionaléi cc{U9,g}. This implies that, using the above minimizing functional, one finds for
the Faddeev-Popov matrix/ a discretized version of the usual Faddeev-Popov operaloD.
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5. Numerical Tests

We have performed some numerical tésisth the functional (4.1), using the stochastic-
overrelaxation algorithm [44, 45, 46].

For these first tests we considered the 4d SU(2) cagg-at4, for V = 8* and 16, with
¢ =0.01,0.05,0.1 and 05. The numerical gauge fixing works very well whér# 0, at least for
relatively small lattice volume¥ and gauge parametér(see the next section). In Figure 1 (left
panel) we compare the gauge fixing for a given configuratigh-at4 andV = 8 for the Landau
caseé =0 (red line) and fo€ = 0.5 (green line). The rate of convergence is essentially the same in
the two cases. However, note that the tuning of the stochastic-ovetietaglgorithm is different.
Indeed, we found that, for the chosen configuration, the best valtled@tochastic-overrelaxation
parameteip was about 0.73 in the Landau case and about 0.5 \§her®.5. A similar result (see
Figure 1, right panel) is obtained f@ = 4 with V = 16* for the Landau casef(= 0, red line)
and foré = 0.05 (green line). In this case the best value fovas about 0.82 in the Landau case
and about 0.81 whe& = 0.05. Let us note that the functionélcc{U? g} can be interpreted as
a spin-glass Hamiltonian for thepin variablesg(x) with a random interaction given by, (x), in
a random external magnetic fiefdx). The presence of this magnetic field does not modify the
convergence matrix [47] or, as a consequence, the behavior of thétlahy3

We also checked that the quantipyD, (p?) is constant within statistical fluctuations in all
cases considered. Pgr= 16* and& = 0.1 and 05 the data are shown in Figure 2. In these cases,
a fit of the typea/p® for D;(p?) givesa = 0.09947), b = 2.0039) with a x2/dof = 0.9 when
& =0.1 anda = 0.502(5), b= 2.01(1) with a x?/dof = 1.1 whené = 0.5. Similar fits have been
obtained in the other cases.

6. Discretization of the Gluon Field

In the above tests we used the usual discretization

U0 U0
2i

All (X) — traceless (6.1)
for the gluon field. However, one has to recall that, using this standardgact) discretization,
the gluon field is bounded. On the other hand, the functidl{g) [see Egs. (2.1) and (2.2)] satisfy
a Gaussian distribution, i.e. they are unbounded. This can give riseergemce problems [49].
Moreover, the problem is more severe for a larger width of the Gausitibdtion.

A possible way out of this problem is, of course, the use of differerdrelizations of the
gluon fieldA(x), in order to improve the convergence of the minimizing algorithms. To this end
we also did some tests using thegle projection [50] and the stereographic projection [51]. Note
that, in the last case, the gluon field is in principle unbounded even for a fittiteelapacing. We

2Note that Eq. (4.4) impliegx/\b(x) =0. Thus, after generating the functioh®(x) using the Gaussian distribution
(2.2), one has to remove possible zero modes from them.

3Note that, in the casp = o [46], the Landau case corresponds to solving the Laplace equation twaileear
covariant gauge corresponds to solving a Poisson equation. As ismeelirk these two equations show the same critical
behavior when solved using a relaxation method such as Gauss-3éHel [
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Figure2: The longitudinal gluon dressing functigrtD; (p?) as a function of the lattice momentupn(in
lattice units). We also show the predicted vapf®, (p?) = &. Left: B =4,V = 16* andé = 0.1. Right:
B =4,V =16 andé = 0.5. Note the relatively small range of values on yhaxis.

Table 1: Smallest value of for which the numerical gauge-fixing algorithm showed caogeace for the
lattice volumeV = 8*. Results are reported for the three different discretiraticonsidered and for five
different values of the gauge paramefeior each case we used five different configurations.

¢ stand. disc. angle proj. stereog. proj.

0.01 2.2 2.2 2.2
0.05 2.2 2.2 2.2
0.1 2.2 2.2 2.2
0.5 2.8 2.6 2.5
1.0 — 3.0 2.5

also stress that, in both cases, the numerical implementation gets simplified ifesghe<ornell
method [44, 45, 46] instead of the stochastic-overrelaxation algorithmyrasid the simulations
reported in the previous section.

We tested the standard discretization, the angle projection and the st@t@ogyeojection
usingV = 8% & =0.01,0.05,0.1,0.5,1.0 andB = 2.2,2.3,...,2.9,3.0. We found (see Table 1)
that the stereographic projection allows one to simulate at slightly larger valuesfor a given
lattice volumeV and lattice coupling3, compared to the other two cases.

7. Continuum Limit

In Ref. [33] it was shown that in the SN{) case, in order to obtain the correct continuum limit,
the functions\°(x) should be generated using a Gaussian distribution with wjdih= /2N.& /B,

“Note that, as explained in the next section, the Gaussian distribution gehavatee simulation actually has
squared widthro = 4& /3 [in the SU(2) case].
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instead of the widtt\/f. Thus, forf < 2N, the lattice width,/c is even larger than the continuum
width \/? On the other hand, one can always obtain a sufficiently small valuelbgrconsidering
large enough values of the lattice coupligHowever, if is too large, the physical volume is too
small (for a given lattice size) and one cannot study the infrared limit of tharyh

Note that, in the SU(2) case, one t@as- & only for 3 = 4, which corresponds to a very small
lattice spacing, i.ea= 0.001 fm [52]. On the contrary, in the SU3 case, one tias & for 8 = 6,
corresponding to a lattice spaciag- 0.102 fm [53], usually employed in lattice numerical studies.
Thus, simulations for the linear covariant gauge are probably easier 81i(® case.

One should also recall that the gluon fidldand the gauge parame@are (multiplicatively)
renormalized by the same factoy, i.e. Ag = Zé/ZAR andég = Z3&gr. Here,B andR indicate bare
and renormalized quantities respectively. This implies that, on the lattice, daiaexb for two
different values of3 in the scaling region — e.g; and3>, — would give the same (renormalized)
propagator only if the multiplicative factd®; = Z3(B1)/Zs(3;) relating the propagatotsilso re-
lates the gauge parametérsandé,. Since the value dRz is not known a priori, one has to find
numerically pairs of parametefg, &) yielding the same continuum renormalized propagators.

8. Transverse Gluon Propagator

In this section we present preliminary results for the momentum-space traagleon prop-
agatorDy(p?) for different values off. Using the stereographic projection, we have simulated
the linear covariant gauge fit= 2.2 andf = 2.3 for the lattice volume¥ = 8% 16* and 24,
considering several values of the gauge parantetarthe SU(2) case (see Table 2). We observe
that the quantityd, (p?)p?/&, which should be equal to 1, has a value &f9®(2) when averaged
over all dataD, (p?) produced. From the results shown in Figures 3 and 4 one clearly se¢gs tha
as in Landau gauge, the propagator is more infrared suppressediveriattice volume increases.

At the same time, for a fixed volume, the propagator is also more infrared suppressed when the
gauge parametdr increases. The latter result is in agreement with Ref. [31].

Let us recall that, on the lattice, the finite size of the system correspondsritraned cutoff
~ 21/L, wherelL is the lattice size. In the four-dimensional caseficr 2.2, in Landau gauge, one
needs to use a lattice volurieof about 64 in order to obtain infinite-volume-limit results [9, 10].
The data shown in Figures 3 and 4 seem to indicate that similar lattice volumels@meaded
for the linear covariant gauge. On the other hand, considering theefzdaed in Section 6, the
extrapolation to infinite volume for a giveh and a fixed value of seems harder than in Landau
gauge. Indeed, a6 — o, the number of sites characterized by a large value for the funation
increases, making the convergence of the gauge-fixing method moreldiffic

9. Conclusions

We have discussed a new lattice implementation of the linear covariant gaingegatige
fixing is done using a minimizing functiondl cc{U¥9, g}, which is a simple generalization of the
Landau-gauge functionadl g{U%}. Tests done for the SU(2) case in four space-time dimensions

5See Ref. [54] for the case of Landau gauge.
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Table 2: Values of the lattice coupling, the lattice volumé/ and the gauge parametérused in our
simulations. We also report, in each case, the total numtmardigurations considered.

B V ¢ numberofconf| BV ¢  number of conf.
22 & 0.0 500 23 & 0.0 500
22 & 001 500 23 8 0.01 500
22 & 0.05 500 23 8 0.05 500
22 & 01 500 23 8 01 500
22 & 0.2 500 23 & 03 500
22 & 03 500 23 & 05 500
22 & 04 500 23 & 06 500
22 & 05 542 23 & 07 543
22 168 0.0 400 23 168 0.0 400
22 16 0.01 400 23 16 0.01 400
22 16 0.05 400 23 16 0.05 400
22 18 0.1 400 23 18 0.1 400
23 16 0.2 336
22 24 0.0 158 23 24 0.0 200
22 24 0.01 200 23 24 0.01 200
2.2 24 0.05 160 2.3 24 0.05 310
2.3 24 0.07 59

show that this approach solves most problems encountered in earlier impddioremand ensures
a good quality for the gauge fixing with a rafiy (p?)p?/€ ~ 1 for all cases considered. We have
also presented preliminary results for the transverse gluon propdd&{m).

As discussed in Sections 6 and 8, the only open problem is the convergétite gauge-
fixing algorithm at large lattice volumes when the gauge parangeteralso large. However, as
mentioned above, this problem is probably less severe for the SU(3) gomapared to the SU(2)
case. We are currently simulating other valuegaindé in the 4d SU(2) case and considering
simulations also of the SU(3) group and of the 3d case [55].
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