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1. Introduction

The infrared behavior of Green’s functions in Landau gauge has been the topic of numerous
lattice studies by several groups in the past few years. Particular attentionhas been devoted to
the gluon and ghost propagators, whose infrared behavior is at the heart of the Gribov-Zwanziger
confinement scenario [2, 3, 4, 5]. There is now a consistent picture — from extensive numerical
simulations on very large lattices [6, 7, 8, 9, 10, 11, 12, 13, 14] — that (in three and in four space-
time dimensions) the Landau gluon propagator shows a massive solution at small momenta and
that the Landau ghost propagator is essentially free in the same limit. These results are not in
agreement with the original Gribov-Zwanziger scenario [2, 3] but they can be explained in the so-
calledrefined Gribov-Zwanziger framework[15]. Let us also recall that a massive gluon allows a
better description of experimental data [16] and it has been related to colorconfinement by various
authors [17, 18].

Since the evaluation of Green’s functions depends on the gauge condition, it is important
to consider different gauges in order to obtain a clear (possibly gauge-independent) picture of
color confinement. Needless to say, this investigation should be carried outat the nonperturbative
level. This is done from first principles using lattice simulations. In addition to theLandau gauge
case cited above, numerical studies of Green’s functions have also been done in Coulomb gauge
[19, 20, 21],λ -gauge (a gauge that interpolates between Landau and Coulomb) [22] and maximally
Abelian gauge [23, 24]. For interesting recent comparisons of results inLandau and in Coulomb
gauge see [25, 26].

On the other hand, the linear covariant gauge — which is a generalization ofLandau gauge —
proved for a long time quite hostile to the lattice approach [27, 28, 29, 30, 31,32, 33, 34]. Recently
we have introduced a new implementation of the linear covariant gauge on the lattice [1], based
on a minimizing functional that extends in a natural way the Landau case while preserving all the
properties of the continuum formulation. Let us note that, having a minimizing functional for the
linear covariant gauge allows a numerical investigation of the first Gribov regionΩ for the case
of gauge parameterξ 6= 0. Such an investigation has been done analytically in [35], for a small
value ofξ , but a similar numerical study is still lacking. At the same, a numerical investigation
of the infrared behavior of gluon and ghost propagators atξ 6= 0 could provide important inputs
for analytic studies based on Dyson-Schwinger equations [36, 37]. Finally, it has been recently
proven [38, 39, 40] that the background-field Feynman gauge is equivalent (to all orders) to the
pinch technique [40, 41]. Thus, numerical studies using the Feynman gauge, which corresponds
to the valueξ = 1, will allow a nonperturbative evaluation of the gauge-invariant off-shell Green’s
functions of the pinch technique [42].

2. Linear Covariant Gauge

In the linear covariant gauge the gluon fieldAb
µ(x) satisfies (in the continuum) the relation

∂µAb
µ(x) = Λb(x) , (2.1)
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whereΛb(x) are real-valued functions generated using a Gaussian distribution

P
[

Λb(x)
]

∼ exp

{

− 1
2ξ ∑

b

[

Λb(x)
]2

}

(2.2)

with width
√

ξ .
The limit ξ → 0 corresponds to the standard Landau gauge. In this case, the gauge condi-

tion is (classically) equivalent to the Lorenz-gauge (sometimes mistakenly called Lorentz-gauge)
condition [43]

∂µAb
µ(x) = 0 . (2.3)

This condition can be imposed by minimizing the functional

ELG{Ag} ∝
∫

d4x ∑
µ,b

[

(Ag)b
µ(x)

]2
(2.4)

with respect to the gauge transformations{g(x)}. Let us recall here that, from the second variation
of ELG{Ag}, we can define the Faddeev-Popov operatorM . Then, for the gauge-fixed configura-
tions, i.e. for local minima ofELG{Ag}, we have that this operator is positive-definite. This set of
local minima defines the first Gribov regionΩ [2, 3].

In Ref. [27] it was shown that a similar minimizing functionalELCG{Ag} for the linear covari-
ant gauge — i.e. forξ 6= 0 — does not exist. Indeed, if it existed, we could write

ELCG[Ag,Λ] = ELG[Ag] + F [Ag,Λ] , (2.5)

for some functionalF [Ag,Λ]. Then, the second variation ofELCG with respect to the gauge trans-
formationg(x) = eiw(x) would satisfy the relation

∂ 2ELCG

∂wb(x)∂wc(y)
=

∂ 2ELCG

∂wc(y)∂wb(x)
. (2.6)

On the other hand, one can show that these two terms are, respectively, proportional to the structure
functions f acb and f abc. Since these functions are completely anti-symmetric in the color indices,
this equality cannot be realized [27].

3. Bypassing the No-Go Condition

One can of course avoid the no-go condition above by relaxing its hypotheses. For example,
one can consider a different gauge condition, such as

F [∂µAb
µ(x) − Λb(x) ] = 0 (3.1)

with F [0] = 0, for which a minimizing functional exists. Indeed, it has been shown in Ref. [27]
that the minimizing functional

∫

d4x ∑
µ,b

{

[

∂µAb
µ(x)−Λb(x)

]2
}

(3.2)
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allows one to impose the gauge condition

Dab
ν ∂ν

[

∂µAb
µ(x)−Λb(x)

]

= 0 , (3.3)

whereDab
ν is the covariant derivative.

On the other hand, the use of a different gauge condition introduces newproblems [27]. For
example, one can bring in spurious solutions, corresponding toF [s] = 0 for s 6= 0. In the above
case, these solutions are the zeros of the operatorDab

ν ∂ν . Also, in general, the second variation
of the minimizing functional, or equivalently the first variation of the gauge-fixing condition (3.1),
does not correspond to the Faddeev-Popov operatorM = −∂µDab

µ of the usual linear covariant
gauge. Finally, the lattice discretization of the functional (3.2) is not linear in the gauge transfor-
mation{g(x)}. This makes the numerical minimization difficult and one has to rely on a specific
discretization of the minimizing functional [28, 29] in order to make the lattice approach feasible.

More recently [33] the no-go condition has been overcome by avoiding theuse of a minimizing
functionalELCG{Ag}. To this end, following the perturbative definition of the linear covariant gauge
in the continuum, one first fixes the gluon field to Landau gauge∂µAb

µ(x) = 0. Then, one considers
the equation

(

∂µDbc
µ φ c

)

(x) = Λb(x) . (3.4)

The solutionφ c(x) of this equation can be used as a generator of a second gauge transformation.
Note that, after fixing the lattice (or minimal) Landau gauge, the operator−∂µDbc

µ is positive-
definite and can be easily inverted. For smallφ c(x), the final (gauge-transformed) gluon field
A′b

µ(x) satisfies the condition

∂µA′b
µ(x) = ∂µ

(

Ab
µ +Dbc

µ φ c
)

(x) = Λb(x) . (3.5)

Of course, the above result is correct only for infinitesimal gauge transformations. On the other
hand, usuallyφ c(x) is not small in a numerical simulation. Indeed, numerical tests [33] have shown
that the distributions of∂µA′b

µ(x) and ofΛb(x) do not agree very well. At the same time, the relation
p2Dl (p2) = ξ , valid in the linear covariant gauge for the longitudinal gluon propagatorDl (p2), is
also not well verified by the data at small momenta [33].

4. A New Approach

Our new approach [1] is based on removing animplicit hypothesis of the no-go condition,
i.e. that the gauge transformation{g(x)} appears in the minimizing functional in the “canonical”
way Ag. Thus, we may look for a minimizing functional of the typeELCG{Ag,g} instead of simply
ELCG{Ag}. Indeed, the lattice linear covariant gauge condition can be obtained by minimizing the
functional1

ELCG{Ug,g} = ELG{Ug} + ℜ Tr∑
x

ig(x)Λ(x) , (4.1)

where

ELG{Ug}=− ℜ Tr∑
x,µ

g(x)Uµ(x)g†(x+eµ) (4.2)

1Note that solving a system of equationsBψ = ζ is equivalent to minimizing the quadratic form12ψBψ − ψ ζ .
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Figure 1: Convergence of the numerical gauge fixing. Here we report thevalue of∆ = ∑x,b[∇ ·Ab(x)−
Λb(x)]2 as a function of the number of iterationsn for a given configuration. Left:β = 4,V = 84, ξ = 0 (red
line) andξ = 0.5 (green line). Right:β = 4,V = 164, ξ = 0 (red line) andξ = 0.05 (green line). Note the
logarithmic scale on they axis.

is the minimizing functional for the lattice Landau gauge. Here, the link variablesUµ(x) and the
site variableg(x) are matrices belonging to the SU(Nc) group (in the fundamental representation).
We also indicate withℜ the real part of a complex number and withTr the trace in color space.
Note that the functionalELCG{Ug,g} is linear in the gauge transformation{g(x)}.

By considering a one-parameter subgroupg(x,τ) = exp
[

iτγb(x)λ b
]

of the gauge transforma-
tion {g(x)} it is easy to check that the stationarity condition

∂ELCG

∂τ

∣

∣

∣

∣

τ=0
= 0 ∀ γb(x) (4.3)

implies the lattice linear covariant gauge condition

∇ ·Ab(x) = ∑
µ

Ab
µ(x) − Ab

µ(x−eµ) = Λb(x) . (4.4)

Here, λ b are the traceless Hermitian generators of the Lie algebra of the SU(Nc) gauge group,
satisfying the usual normalization condition

Tr
(

λ bλ c
)

= 2δ bc . (4.5)

Also, we usedΛb(x) = Tr [Λ(x)λ b] and, similarly,Ab
µ(x) = Tr [Aµ(x)λ b] .

At the same time, the second variation (with respect to the parameterτ) of the termig(x)Λ(x) ,
on the r.h.s. of Eq. (4.1), is purely imaginary. Thus, it does not contributeto the second variation of
the functionalELCG{Ug,g}. This implies that, using the above minimizing functional, one finds for
the Faddeev-Popov matrixM a discretized version of the usual Faddeev-Popov operator−∂ ·D.
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5. Numerical Tests

We have performed some numerical tests2 with the functional (4.1), using the stochastic-
overrelaxation algorithm [44, 45, 46].

For these first tests we considered the 4d SU(2) case atβ = 4, for V = 84 and 164, with
ξ = 0.01,0.05,0.1 and 0.5. The numerical gauge fixing works very well whenξ 6= 0, at least for
relatively small lattice volumesV and gauge parameterξ (see the next section). In Figure 1 (left
panel) we compare the gauge fixing for a given configuration atβ = 4 andV = 84 for the Landau
caseξ = 0 (red line) and forξ = 0.5 (green line). The rate of convergence is essentially the same in
the two cases. However, note that the tuning of the stochastic-overrelaxation algorithm is different.
Indeed, we found that, for the chosen configuration, the best value for the stochastic-overrelaxation
parameterp was about 0.73 in the Landau case and about 0.5 whenξ = 0.5. A similar result (see
Figure 1, right panel) is obtained forβ = 4 with V = 164 for the Landau case (ξ = 0, red line)
and forξ = 0.05 (green line). In this case the best value forp was about 0.82 in the Landau case
and about 0.81 whenξ = 0.05. Let us note that the functionalELCG{Ug,g} can be interpreted as
a spin-glass Hamiltonian for thespinvariablesg(x) with a random interaction given byUµ(x), in
a random external magnetic fieldΛ(x). The presence of this magnetic field does not modify the
convergence matrix [47] or, as a consequence, the behavior of the algorithm.3

We also checked that the quantityp2Dl (p2) is constant within statistical fluctuations in all
cases considered. ForV = 164 andξ = 0.1 and 0.5 the data are shown in Figure 2. In these cases,
a fit of the typea/pb for Dl (p2) givesa = 0.0994(7), b = 2.003(9) with a χ2/do f = 0.9 when
ξ = 0.1 anda = 0.502(5), b = 2.01(1) with a χ2/do f = 1.1 whenξ = 0.5. Similar fits have been
obtained in the other cases.

6. Discretization of the Gluon Field

In the above tests we used the usual discretization

Aµ(x) =

[

Uµ(x)−U†
µ(x)

]

traceless

2i
(6.1)

for the gluon field. However, one has to recall that, using this standard (compact) discretization,
the gluon field is bounded. On the other hand, the functionsΛb(x) [see Eqs. (2.1) and (2.2)] satisfy
a Gaussian distribution, i.e. they are unbounded. This can give rise to convergence problems [49].
Moreover, the problem is more severe for a larger width of the Gaussian distribution.

A possible way out of this problem is, of course, the use of different discretizations of the
gluon fieldAµ(x), in order to improve the convergence of the minimizing algorithms. To this end
we also did some tests using theangleprojection [50] and the stereographic projection [51]. Note
that, in the last case, the gluon field is in principle unbounded even for a finite lattice spacing. We

2Note that Eq. (4.4) implies∑x Λb(x) = 0. Thus, after generating the functionsΛb(x) using the Gaussian distribution
(2.2), one has to remove possible zero modes from them.

3Note that, in the caseβ = ∞ [46], the Landau case corresponds to solving the Laplace equation whilethe linear
covariant gauge corresponds to solving a Poisson equation. As is well-known, these two equations show the same critical
behavior when solved using a relaxation method such as Gauss-Seidel [48].
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Figure 2: The longitudinal gluon dressing functionp2Dl (p2) as a function of the lattice momentump (in
lattice units). We also show the predicted valuep2Dl (p2) = ξ . Left: β = 4, V = 164 andξ = 0.1. Right:
β = 4,V = 164 andξ = 0.5. Note the relatively small range of values on they axis.

Table 1: Smallest value ofβ for which the numerical gauge-fixing algorithm showed convergence for the
lattice volumeV = 84. Results are reported for the three different discretizations considered and for five
different values of the gauge parameterξ . For each case we used five different configurations.

ξ stand. disc. angle proj. stereog. proj.

0.01 2.2 2.2 2.2
0.05 2.2 2.2 2.2
0.1 2.2 2.2 2.2
0.5 2.8 2.6 2.5
1.0 — 3.0 2.5

also stress that, in both cases, the numerical implementation gets simplified if one uses the Cornell
method [44, 45, 46] instead of the stochastic-overrelaxation algorithm, as done in the simulations
reported in the previous section.

We tested the standard discretization, the angle projection and the stereographic projection
usingV = 84, ξ = 0.01,0.05,0.1,0.5,1.0 andβ = 2.2,2.3, . . . ,2.9,3.0. We found (see Table 1)
that the stereographic projection allows one to simulate at slightly larger valuesof ξ , for a given
lattice volumeV and lattice couplingβ , compared to the other two cases.4

7. Continuum Limit

In Ref. [33] it was shown that in the SU(Nc) case, in order to obtain the correct continuum limit,
the functionsΛb(x) should be generated using a Gaussian distribution with width

√
σ =

√

2Ncξ/β ,

4Note that, as explained in the next section, the Gaussian distribution generated in the simulation actually has
squared widthσ = 4ξ/β [in the SU(2) case].
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instead of the width
√

ξ . Thus, forβ < 2Nc the lattice width
√

σ is even larger than the continuum
width

√

ξ . On the other hand, one can always obtain a sufficiently small value forσ by considering
large enough values of the lattice couplingβ . However, ifβ is too large, the physical volume is too
small (for a given lattice size) and one cannot study the infrared limit of the theory.

Note that, in the SU(2) case, one hasσ = ξ only for β = 4, which corresponds to a very small
lattice spacing, i.e.a≈ 0.001 fm [52]. On the contrary, in the SU3 case, one hasσ = ξ for β = 6,
corresponding to a lattice spacinga= 0.102 fm [53], usually employed in lattice numerical studies.
Thus, simulations for the linear covariant gauge are probably easier in theSU(3) case.

One should also recall that the gluon fieldA and the gauge parameterξ are (multiplicatively)
renormalized by the same factorZ3, i.e.AB = Z1/2

3 AR andξB = Z3 ξR. Here,B andR indicate bare
and renormalized quantities respectively. This implies that, on the lattice, data obtained for two
different values ofβ in the scaling region — e.g.β1 andβ2 — would give the same (renormalized)
propagator only if the multiplicative factorRZ = Z3(β1)/Z3(β2) relating the propagators5 also re-
lates the gauge parametersξ1 andξ2. Since the value ofRZ is not known a priori, one has to find
numerically pairs of parameters(β ,ξ ) yielding the same continuum renormalized propagators.

8. Transverse Gluon Propagator

In this section we present preliminary results for the momentum-space transverse gluon prop-
agatorDt(p2) for different values ofξ . Using the stereographic projection, we have simulated
the linear covariant gauge atβ = 2.2 andβ = 2.3 for the lattice volumesV = 84,164 and 244,
considering several values of the gauge parameterξ in the SU(2) case (see Table 2). We observe
that the quantityDl (p2)p2/ξ , which should be equal to 1, has a value of 0.999(2) when averaged
over all dataDl (p2) produced. From the results shown in Figures 3 and 4 one clearly sees that,
as in Landau gauge, the propagator is more infrared suppressed whenthe lattice volume increases.
At the same time, for a fixed volumeV, the propagator is also more infrared suppressed when the
gauge parameterξ increases. The latter result is in agreement with Ref. [31].

Let us recall that, on the lattice, the finite size of the system corresponds to aninfrared cutoff
∼ 2π/L, whereL is the lattice size. In the four-dimensional case forβ = 2.2, in Landau gauge, one
needs to use a lattice volumeV of about 644 in order to obtain infinite-volume-limit results [9, 10].
The data shown in Figures 3 and 4 seem to indicate that similar lattice volumes are also needed
for the linear covariant gauge. On the other hand, considering the data reported in Section 6, the
extrapolation to infinite volume for a givenβ and a fixed value ofξ seems harder than in Landau
gauge. Indeed, asV → ∞, the number of sites characterized by a large value for the functionΛb(x)
increases, making the convergence of the gauge-fixing method more difficult.

9. Conclusions

We have discussed a new lattice implementation of the linear covariant gauge. The gauge
fixing is done using a minimizing functionalELCG{Ug,g}, which is a simple generalization of the
Landau-gauge functionalELG{Ug}. Tests done for the SU(2) case in four space-time dimensions

5See Ref. [54] for the case of Landau gauge.
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Table 2: Values of the lattice couplingβ , the lattice volumeV and the gauge parameterξ used in our
simulations. We also report, in each case, the total number of configurations considered.

β V ξ number of conf. β V ξ number of conf.

2.2 84 0.0 500 2.3 84 0.0 500
2.2 84 0.01 500 2.3 84 0.01 500
2.2 84 0.05 500 2.3 84 0.05 500
2.2 84 0.1 500 2.3 84 0.1 500
2.2 84 0.2 500 2.3 84 0.3 500
2.2 84 0.3 500 2.3 84 0.5 500
2.2 84 0.4 500 2.3 84 0.6 500
2.2 84 0.5 542 2.3 84 0.7 543

2.2 164 0.0 400 2.3 164 0.0 400
2.2 164 0.01 400 2.3 164 0.01 400
2.2 164 0.05 400 2.3 164 0.05 400
2.2 164 0.1 400 2.3 164 0.1 400

2.3 164 0.2 336

2.2 244 0.0 158 2.3 244 0.0 200
2.2 244 0.01 200 2.3 244 0.01 200
2.2 244 0.05 160 2.3 244 0.05 310

2.3 244 0.07 59

show that this approach solves most problems encountered in earlier implementations and ensures
a good quality for the gauge fixing with a ratioDl (p2)p2/ξ ≈ 1 for all cases considered. We have
also presented preliminary results for the transverse gluon propagatorDt(p2).

As discussed in Sections 6 and 8, the only open problem is the convergence of the gauge-
fixing algorithm at large lattice volumes when the gauge parameterξ is also large. However, as
mentioned above, this problem is probably less severe for the SU(3) group compared to the SU(2)
case. We are currently simulating other values ofβ andξ in the 4d SU(2) case and considering
simulations also of the SU(3) group and of the 3d case [55].
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